Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,119)

Search Parameters:
Keywords = mutant detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6462 KiB  
Article
Genomic and Bioinformatics Analysis of Familial Partial Lipodystrophy Type 3 Identified in a Patient with Novel PPARγ Mutation and Robust Response to Pioglitazone
by Abdulrahman Hummadi, Saeed Yafei, Dhayf Alrahman Mutawwam, Raed Abutaleb, Yahia Solan, Abdullah Khawaji, Ali Jaber Alhagawy, Turki Algohani, Mamdouh Khardali, Mohammed Hakami, Abdulrraheem Daghriri, Wegdan Hezam and Nourah Kariri
Int. J. Mol. Sci. 2024, 25(22), 12060; https://doi.org/10.3390/ijms252212060 - 10 Nov 2024
Viewed by 853
Abstract
Familial partial lipodystrophies (FPLDs) are very rare inherited disorders characterized by partial loss of adipose tissue from the upper and lower extremities. At least seven subtypes of FPLD have been identified and are mostly dominantly inherited. FPLD type 3 is caused by mutations [...] Read more.
Familial partial lipodystrophies (FPLDs) are very rare inherited disorders characterized by partial loss of adipose tissue from the upper and lower extremities. At least seven subtypes of FPLD have been identified and are mostly dominantly inherited. FPLD type 3 is caused by mutations in the PPARγ gene, which encodes for the protein peroxisome proliferator-activated receptor gamma (PPARγ). We identified a Saudi female with PFLD3 presented with partial lipoatrophy, uncontrolled diabetes, severe hypertriglyceridemia, and recurrent pancreatitis. The clinical and biochemical findings in this proband were described before and after treatment with Pioglitazone in addition to the conventional treatment. DNA extraction and whole exome sequencing (WES) were performed to detect the variant. The mutant gene was subjected to Sanger analysis to confirm the results. We applied five specific computational prediction tools to assess the pathogenicity of variation, namely the MT, DANN, CADD, BayesDel, and fitCons tools. We assessed protein modeling and stability with the AlphaFold-generated structures for both wild-type and mutant proteins. Finally, we conducted molecular docking using the AutoDock Vina virtual docking. Upon whole exome sequencing, a c.1024C>T p.(Gln342Ter) missense mutation was detected in the PPARγ gene associated with FPLD3. This variant is a novel mutation that has not been described in all genome databases. Sanger analysis confirmed the heterogenicity and pathogenicity of this variant. All five computational prediction tools indicate that this variant is considered highly pathogenic. Our patient showed a dramatic response to Pioglitazone, a synthetic PPARγ agonist. From structural modeling, we found that the enhanced binding affinity of the mutant PPARγ protein to Pioglitazone likely improves the activation of PPARγ, enhancing its transcriptional activity and resulting in better clinical outcomes. These findings extend the spectrum of PPARγ mutations responsible for FPLD3 and highlight the potential for personalized treatment strategies based on genetic mutations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1040 KiB  
Case Report
Targeted NGS Revealed Pathogenic Mutation in a 13-Year-Old Patient with Homozygous Familial Hypercholesterolemia: A Case Report
by Ayaulym E. Chamoieva, Zhanel Z. Mirmanova, Madina R. Zhalbinova, Saule E. Rakhimova, Asset Z. Daniyarov, Ulykbek Y. Kairov, Almira I. Baigalkanova, Murat A. Mukarov, Makhabbat S. Bekbossynova and Ainur R. Akilzhanova
Int. J. Mol. Sci. 2024, 25(22), 11882; https://doi.org/10.3390/ijms252211882 - 5 Nov 2024
Viewed by 426
Abstract
Familial hypercholesterolemia is an autosomal hereditary disease defined by an increased level of low-density lipoprotein cholesterol (LDL-C), which predisposes significant risks for premature cardiovascular disorders. We present a family trio study: proband, a 13-year-old Kazakh girl with homozygous familial hypercholesterolemia (HoFH) and her [...] Read more.
Familial hypercholesterolemia is an autosomal hereditary disease defined by an increased level of low-density lipoprotein cholesterol (LDL-C), which predisposes significant risks for premature cardiovascular disorders. We present a family trio study: proband, a 13-year-old Kazakh girl with homozygous familial hypercholesterolemia (HoFH) and her parents. HoFH is much more rare and severe than a heterozygous form of the disorder. HoFH patients generally present with LDL-C levels exceeding 13 mmol/L, resulting in early and life-threatening cardiovascular events within the first decades of life. In cases of neglected treatment, young patients have a risk of death from coronary diseases before the age of 30. The aim of this research was to identify genetic mutations in the affected patient and her parents. Genetic testing was necessary due to highly elevated LDL-C levels and the presence of multiple xanthomas. Targeted next-generation sequencing (NGS) was performed in this study using the Illumina TruSight cardio panel, which targets 174 genes related to cardiac disorders. The girl was diagnosed with HoFH based on the results of genetic testing. A biallelic mutation was observed in exon 3 of the low-density lipoprotein receptor (LDLR): c. 295 G>A (p.Glu99Lys). Sanger sequencing confirmed that the mutant gene was inherited from both parents. After confirming the genetic diagnosis of HoFH, the patient was treated with LDL apheresis and statins. This case report is the first study of HoFH in a pediatric patient from the Central Asian region. Globally, it emphasizes the need for increased clinical awareness among healthcare providers, as early detection and intervention are important for improving outcomes, particularly in pediatric patients with this rare genetic disorder. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2921 KiB  
Article
Exploring the Molecular Mechanisms of Resistance to Prochloraz by Lasiodiplodia theobromae Isolated from Mango
by Rui He, Jinlin Liu, Pengsheng Li, Yu Zhang, Xiaoyu Liang and Ye Yang
J. Fungi 2024, 10(11), 757; https://doi.org/10.3390/jof10110757 - 31 Oct 2024
Viewed by 388
Abstract
Mango stem-end rot caused by Lasiodiplodia theobromae is a major postharvest disease in China. Prochloraz is commonly used for disease control in mango orchards and in storage. However, prochloraz resistance has been detected in L. theobromae. This study aimed to explore the [...] Read more.
Mango stem-end rot caused by Lasiodiplodia theobromae is a major postharvest disease in China. Prochloraz is commonly used for disease control in mango orchards and in storage. However, prochloraz resistance has been detected in L. theobromae. This study aimed to explore the underlying mechanisms responsible for prochloraz resistance in L. theobromae. The results show that no point mutation in the target gene LtCYP51 of the prochloraz-resistant L. theobromae strain was detected, but the expression was upregulated significantly. Additionally, the full-length sequences of the cytochrome P450 gene CYP55A3 were successfully amplified and identified from L. theobromae, and the qRT-PCR results confirm that CYP55A3 was significantly upregulated after treatment with prochloraz. The knockout mutant of the CYP55A3 presented significantly lower gene expression levels than the wild-type strain HL02, with a 16.67-fold reduction, but a 1.34-fold reduction in P450 activities and a 1.72-fold increase in the accumulation of prochloraz in the mycelia. Treatment with the P450 enzyme inhibitor significantly synergized with the prochloraz toxicity. The wild-type strain was highly resistant to pyraclostrobin and carbendazim; similarly, the sensitivity of the knockout mutant to pyraclostrobin and carbendazim also notably increased. There was no significant difference between the wild-type strain and the gene-complemented strain. The homology model and molecular docking analysis provide evidence that prochloraz interacts with the protein structure of CYP55A3. These findings suggest that the overexpression of the target gene LtCYP51 and the detoxification gene CYP55A3 were involved in the molecular mechanisms of resistance to prochloraz by L. theobromae. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

24 pages, 2902 KiB  
Review
Advancing CRISPR-Based Solutions for COVID-19 Diagnosis and Therapeutics
by Roaa Hadi, Abhishek Poddar, Shivakumar Sonnaila, Venkata Suryanarayana Murthy Bhavaraju and Shilpi Agrawal
Cells 2024, 13(21), 1794; https://doi.org/10.3390/cells13211794 - 30 Oct 2024
Viewed by 936
Abstract
Since the onset of the COVID-19 pandemic, a variety of diagnostic approaches, including RT-qPCR, RAPID, and LFA, have been adopted, with RT-qPCR emerging as the gold standard. However, a significant challenge in COVID-19 diagnostics is the wide range of symptoms presented by patients, [...] Read more.
Since the onset of the COVID-19 pandemic, a variety of diagnostic approaches, including RT-qPCR, RAPID, and LFA, have been adopted, with RT-qPCR emerging as the gold standard. However, a significant challenge in COVID-19 diagnostics is the wide range of symptoms presented by patients, necessitating early and accurate diagnosis for effective management. Although RT-qPCR is a precise molecular technique, it is not immune to false-negative results. In contrast, CRISPR-based detection methods for SARS-CoV-2 offer several advantages: they are cost-effective, time-efficient, highly sensitive, and specific, and they do not require sophisticated instruments. These methods also show promise for scalability, enabling diagnostic tests. CRISPR technology can be customized to target any genomic region of interest, making it a versatile tool with applications beyond diagnostics, including therapeutic development. The CRISPR/Cas systems provide precise gene targeting with immense potential for creating next-generation diagnostics and therapeutics. One of the key advantages of CRISPR/Cas-based therapeutics is the ability to perform multiplexing, where different sgRNAs or crRNAs can target multiple sites within the same gene, reducing the likelihood of viral escape mutants. Among the various CRISPR systems, CRISPR/Cas13 and CARVER (Cas13-assisted restriction of viral expression and readout) are particularly promising. These systems can target a broad range of single-stranded RNA viruses, making them suitable for the diagnosis and treatment of various viral diseases, including SARS-CoV-2. However, the efficacy and safety of CRISPR-based therapeutics must be thoroughly evaluated in pre-clinical and clinical settings. While CRISPR biotechnologies have not yet been fully harnessed to control the current COVID-19 pandemic, there is an optimism that the limitations of the CRISPR/Cas system can be overcome soon. This review discusses how CRISPR-based strategies can revolutionize disease diagnosis and therapeutic development, better preparing us for future viral threats. Full article
Show Figures

Figure 1

24 pages, 3073 KiB  
Article
Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases
by Chitra Palanivel, Tabbatha N. Somers, Bailey M. Gabler, Yuanhong Chen, Yongji Zeng, Jesse L. Cox, Parthasarathy Seshacharyulu, Jixin Dong, Ying Yan, Surinder K. Batra and Michel M. Ouellette
Cancers 2024, 16(21), 3605; https://doi.org/10.3390/cancers16213605 - 25 Oct 2024
Viewed by 580
Abstract
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional [...] Read more.
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC. In Ras-driven tumors, YAP can also substitute for oncogenic KRAS to drive tumor survival after the repression of the oncogene. Ras oncoproteins exert their transforming properties through their downstream effectors, including the PI3K kinase, Rac1 GTPase, and MAPK pathways. Methods: To identify Ras effectors that regulate YAP, YAP levels were measured in PC cells exposed to inhibitors of oncogenic K-Ras and its effectors. Results: In PC cells, the inhibition of Rac1 leads to a time-dependent decline in YAP protein, which could be blocked by proteosome inhibitor MG132. This YAP degradation after Rac1 inhibition was observed in a range of cell lines using different Rac1 inhibitors, Rac1 siRNA, or expression of dominant negative Rac1T17N mutant. Several E3 ubiquitin ligases, including SCFβTrCP, regulate YAP protein stability. To be recognized by this ligase, the βTrCP degron of YAP (amino acid 383–388) requires its phosphorylation by casein kinase 1 at Ser384 and Ser387, but these events must first be primed by the phosphorylation of Ser381 by LATS1/2. Using Flag-tagged mutants of YAP, we show that YAP degradation after Rac1 inhibition requires the integrity of this degron and is blocked by the silencing of βTrCP1/2 and by the inhibition of casein kinase 1. Unexpectedly, YAP degradation after Rac1 inhibition was still observed after the silencing of LATS1/2 or in cells carrying a LATS1/2 double knockout. Conclusions: These results reveal Rac1 as an oncogenic KRAS effector that contributes to YAP stabilization in PC cells. They also show that this regulation of YAP by Rac1 requires the SCFβTrCP ligase but occurs independently of the LATS1/2 kinases. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

17 pages, 5213 KiB  
Article
A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis
by Ying-Rui Li, Wei Cai, Ya-Xuan Zhang, Ning-Xin Zhang, Qiao-Ling Huang, Ying-Tang Lu and Ting-Ting Yuan
Int. J. Mol. Sci. 2024, 25(21), 11455; https://doi.org/10.3390/ijms252111455 - 25 Oct 2024
Viewed by 494
Abstract
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, [...] Read more.
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics)
Show Figures

Figure 1

14 pages, 2588 KiB  
Article
UBL3 Interacts with PolyQ-Expanded Huntingtin Fragments and Modifies Their Intracellular Sorting
by Soho Oyama, Hengsen Zhang, Rafia Ferdous, Yuna Tomochika, Bin Chen, Shuyun Jiang, Md. Shoriful Islam, Md. Mahmudul Hasan, Qing Zhai, A. S. M. Waliullah, Yashuang Ping, Jing Yan, Mst. Afsana Mimi, Chi Zhang, Shuhei Aramaki, Yusuke Takanashi, Tomoaki Kahyo, Yoshio Hashizume, Daita Kaneda and Mitsutoshi Setou
Neurol. Int. 2024, 16(6), 1175-1188; https://doi.org/10.3390/neurolint16060089 - 22 Oct 2024
Viewed by 892
Abstract
Background/Objectives: UBL3 (Ubiquitin-like 3) is a protein that plays a crucial role in post-translational modifications, particularly in regulating protein transport within small extracellular vesicles. While previous research has predominantly focused on its interactions with α-synuclein, this study investigates UBL3’s role in Huntington’s disease [...] Read more.
Background/Objectives: UBL3 (Ubiquitin-like 3) is a protein that plays a crucial role in post-translational modifications, particularly in regulating protein transport within small extracellular vesicles. While previous research has predominantly focused on its interactions with α-synuclein, this study investigates UBL3’s role in Huntington’s disease (HD). HD is characterized by movement disorders and cognitive impairments, with its pathogenesis linked to toxic, polyglutamine (polyQ)-expanded mutant huntingtin fragments (mHTT). However, the mechanisms underlying the interaction between UBL3 and mHTT remain poorly understood. Methods: To elucidate this relationship, we performed hematoxylin and eosin (HE) staining and immunohistochemistry (IHC) on postmortem brain tissue from HD patients. Gaussia princeps-based split-luciferase complementation assay and co-immunoprecipitation were employed to confirm the interaction between UBL3 and mHTT. Additionally, we conducted a HiBiT lytic detection assay to assess the influence of UBL3 on the intracellular sorting of mHTT. Finally, immunocytochemical staining was utilized to validate the colocalization and distribution of these proteins. Results: Our findings revealed UBL3-positive inclusions in the cytoplasm and nuclei of neurons throughout the striatum of HD patients. We discovered that UBL3 colocalizes and interacts with mHTT and modulates its intracellular sorting. Conclusions: These results suggest that UBL3 may play a significant role in the interaction and sorting of mHTT, contributing to the understanding of its potential implications in the pathophysiology of Huntington’s disease. Full article
(This article belongs to the Special Issue New Insights into Genetic Neurological Diseases)
Show Figures

Figure 1

21 pages, 2154 KiB  
Article
The HIV-1 vpr R77Q Mutant Induces Apoptosis, G2 Cell Cycle Arrest, and Lower Production of Pro-Inflammatory Cytokines in Human CD4+ T Cells
by Antonio Solis-Leal, Dalton C. Karlinsey, Sidney T. Sithole, Jack Brandon Lopez, Amanda Carlson, Vicente Planelles, Brian D. Poole and Bradford K. Berges
Viruses 2024, 16(10), 1642; https://doi.org/10.3390/v16101642 - 21 Oct 2024
Viewed by 1188
Abstract
Acquired immunodeficiency syndrome (AIDS) occurs when HIV depletes CD4+ helper T cells. Some patients develop AIDS slowly or not at all, and are termed long-term non-progressors (LTNP), and while mutations in the HIV-1 Viral Protein R (vpr) gene such as R77Q [...] Read more.
Acquired immunodeficiency syndrome (AIDS) occurs when HIV depletes CD4+ helper T cells. Some patients develop AIDS slowly or not at all, and are termed long-term non-progressors (LTNP), and while mutations in the HIV-1 Viral Protein R (vpr) gene such as R77Q are associated with LTNP, mechanisms for this correlation are unclear. This study examines the induction of apoptosis, cell cycle arrest, and pro-inflammatory cytokine release in the HUT78 T cell line following infection with replication-competent wild-type strain NL4-3, the R77Q mutant, or a vpr Null mutant. Our results show a significant enhancement of apoptosis and G2 cell cycle arrest in HUT78 cells infected with R77Q, but not with WT NL4-3 or the vpr Null strain. Conversely, HUT78 cells infected with the WT virus show higher levels of necrosis. We also detected lower TNF and IL-6 release after infection with R77Q vs. WT. The apoptotic phenotype was also seen in the CEM cell line and in primary CD4+ T cells. Protein expression of the R77Q vpr variant was low compared to WT vpr, but expression levels alone cannot explain these phenotypes because the Null virus did not show apoptosis or G2 arrest. These results suggest that R77Q triggers a non-inflammatory apoptotic pathway that attenuates inflammation, possibly contributing to LTNP. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

13 pages, 1815 KiB  
Article
Development of a High-Resolution Melting Method for the Detection of Clarithromycin-Resistant Helicobacter pylori in the Gastric Microbiome
by Zupeng Kuang, Huishu Huang, Ling Chen, Yanyan Shang, Shixuan Huang, Jun Liu, Jianhui Chen, Xinqiang Xie, Moutong Chen, Lei Wu, He Gao, Hui Zhao, Ying Li and Qingping Wu
Antibiotics 2024, 13(10), 975; https://doi.org/10.3390/antibiotics13100975 - 16 Oct 2024
Viewed by 649
Abstract
Background: The issue of Helicobacter pylori (H. pylori) resistance to clarithromycin (CLR) has consistently posed challenges for clinical treatment. Hence, a rapid susceptibility testing (AST) method urgently needs to be developed. Methods: In the present study, 35 isolates of H. pylori [...] Read more.
Background: The issue of Helicobacter pylori (H. pylori) resistance to clarithromycin (CLR) has consistently posed challenges for clinical treatment. Hence, a rapid susceptibility testing (AST) method urgently needs to be developed. Methods: In the present study, 35 isolates of H. pylori were isolated from 203 gastritis patients of the Guangzhou cohort, and the antimicrobial resistance phenotypes were associated with their genomes to analyze the relevant mutations. Based on these mutations, a rapid detection system utilizing high-resolution melting (HRM) curve analysis was designed and verified by the Shenzhen cohort, which consisted of 38 H. pylori strains. Results: Genomic analysis identified the mutation of the 2143 allele from A to G (A2143G) of 23S rRNA as the most relevant mutation with CLR resistance (p < 0.01). In the HRM system, the wild-type H. pylori showed a melting temperature (Tm) of 79.28 ± 0.01 °C, while the mutant type exhibited a Tm of 79.96 ± 0.01 °C. These differences enabled a rapid distinction between two types of H. pylori (p < 0.01). Verification examinations showed that this system could detect target DNA as low as 0.005 ng/μL in samples without being affected by other gastric microorganisms. The method also showed a good performance in the Shenzhen validation cohort, with 81.58% accuracy, and 100% specificity. Conclusions: We have developed an HRM system that can accurately and quickly detect CLR resistance in H. pylori. This method can be directly used for the detection of gastric microbiota samples and provides a new benchmark for the simple detection of H. pylori resistance. Full article
Show Figures

Figure 1

19 pages, 10825 KiB  
Article
Role of ACSBG1 in Brain Lipid Metabolism and X-Linked Adrenoleukodystrophy Pathogenesis: Insights from a Knockout Mouse Model
by Xiaoli Ye, Yuanyuan Li, Domingo González-Lamuño, Zhengtong Pei, Ann B. Moser, Kirby D. Smith and Paul A. Watkins
Cells 2024, 13(20), 1687; https://doi.org/10.3390/cells13201687 - 12 Oct 2024
Viewed by 693
Abstract
“Bubblegum” acyl-CoA synthetase (ACSBG1) is a pivotal player in lipid metabolism during mouse brain development, facilitating the activation of long-chain fatty acids (LCFA) and their incorporation into lipid species that are crucial for brain function. ACSBG1 converts LCFA into acyl-CoA derivatives, supporting vital [...] Read more.
“Bubblegum” acyl-CoA synthetase (ACSBG1) is a pivotal player in lipid metabolism during mouse brain development, facilitating the activation of long-chain fatty acids (LCFA) and their incorporation into lipid species that are crucial for brain function. ACSBG1 converts LCFA into acyl-CoA derivatives, supporting vital metabolic processes. Fruit fly mutants lacking ACSBG1 exhibited neurodegeneration and had elevated levels of very long-chain fatty acids (VLCFA), characteristics of human X-linked adrenoleukodystrophy (XALD). To explore ACSBG1’s function and potential as a therapeutic target in XALD, we created an ACSBG1 knockout (Acsbg1−/−) mouse and examined the effects on brain FA metabolism during development. Phenotypically, Acsbg1−/− mice resembled wild type (w.t.) mice. ACSBG1 expression was found mainly in tissue affected pathologically in XALD, namely the brain, adrenal gland and testis. ACSBG1 depletion did not significantly reduce the total ACS enzyme activity in these tissue types. In adult mouse brain, ACSBG1 expression was highest in the cerebellum; the low levels detected during the first week of life dramatically increased thereafter. Unexpectedly, lower, rather than higher, saturated VLCFA levels were found in cerebella from Acsbg1−/− vs. w.t. mice, especially after one week of age. Developmental changes in monounsaturated ω9 FA and polyunsaturated ω3 FA levels also differed between w.t. and Acsbg1−/− mice. ACSBG1 deficiency impacted the developmental expression of several cerebellar FA metabolism enzymes, including those required for the synthesis of ω3 polyunsaturated FA, precursors of bioactive signaling molecules like eicosanoids and docosanoids. These changes in membrane lipid FA composition likely affect membrane fluidity and may thus influence the body’s response to inflammation. We conclude that, despite compelling circumstantial evidence, it is unlikely that ACSBG1 directly contributes to the pathology of XALD, decreasing its potential as a therapeutic target. Instead, the effects of ACSBG1 knockout on processes regulated by eicosanoids and/or docosanoids should be further investigated. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

19 pages, 2657 KiB  
Article
Bioinformatic Characterization of the Functional and Structural Effect of Single Nucleotide Mutations in Patients with High-Grade Glioma
by Sara Vélez Gómez, Juliana María Martínez Garro, León Darío Ortiz Gómez, Jorge Emilio Salazar Flórez, Fernando P. Monroy and Ronald Guillermo Peláez Sánchez
Biomedicines 2024, 12(10), 2287; https://doi.org/10.3390/biomedicines12102287 - 9 Oct 2024
Viewed by 724
Abstract
Background: Gliomas are neoplasms of the central nervous system that originate in glial cells. The genetic characteristics of this type of neoplasm are the loss of function of tumor suppressor genes such as TP53 and somatic mutations in genes such as IDH1/2. [...] Read more.
Background: Gliomas are neoplasms of the central nervous system that originate in glial cells. The genetic characteristics of this type of neoplasm are the loss of function of tumor suppressor genes such as TP53 and somatic mutations in genes such as IDH1/2. Additionally, in clinical cases, de novo single nucleotide polymorphisms (SNP) are reported, of which their pathogenicity and their effects on the function and stability of the protein are known. Methodology: Non-synonymous SNPs were analyzed for their structural and functional effect on proteins using a set of bioinformatics tools such as SIFT, PolyPhen-2, PhD-SNP, I-Mutant 3.0, MUpro, and mutation3D. A structural comparison between normal and mutated residues for disease-associated coding SNPs was performed using TM-aling and the SWISS MODEL. Results: A total of 13 SNPs were obtained for the TP53 gene, 1 SNP for IDH1, and 1 for IDH2, which would be functionally detrimental and associated with disease. Additionally, these changes compromise the structure and function of the protein; the A161S SNP for TP53 that has not been reported in any databases was classified as detrimental. Conclusions: All non-synonymous SNPs reported for TP53 were in the region of the deoxyribonucleic acid (DNA) binding domain and had a great impact on the function and stability of the protein. In addition, the two polymorphisms detected in IDH1 and IDH2 genes compromise the structure and activity of the protein. Both genes are related to the development of high-grade gliomas. All the data obtained in this study must be validated through experimental approaches. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

25 pages, 6515 KiB  
Article
Modulation of the Arabidopsis Starch Metabolic Network by the Cytosolic Acetyl-CoA Pathway in the Context of the Diurnal Illumination Cycle
by Lei Wang, Carol M. Foster, Wieslawa I. Mentzen, Rezwan Tanvir, Yan Meng, Basil J. Nikolau, Eve Syrkin Wurtele and Ling Li
Int. J. Mol. Sci. 2024, 25(19), 10850; https://doi.org/10.3390/ijms251910850 - 9 Oct 2024
Viewed by 716
Abstract
The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants [...] Read more.
The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants with reduced ACL activity accumulate abnormally enlarged starch granules. In this study, we explored the underlying molecular mechanisms linking cytosolic acetyl-CoA generation and starch metabolism under short-day photoperiods. We performed transcriptome and quantification of starch accumulation in the leaves of wild-type and antisense seedlings with reduced ACL activity. The antisense-ACLA mutant accumulated more starch than the wild type under short-day conditions. Zymogram analyses were conducted to compare the activities of starch-metabolizing enzymes with transcriptomic changes in the seedling. Differential expression between wild-type and antisense-ACLA plants was detected in genes implicated in starch and acetyl-CoA metabolism, and cell wall metabolism. These analyses revealed a strong correlation between the transcript levels of genes responsible for starch synthesis and degradation, reflecting coordinated regulation at the transcriptomic level. Furthermore, our data provide novel insights into the regulatory links between cytosolic acetyl-CoA metabolism and starch metabolic pathways. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 1433 KiB  
Article
Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems
by Bánk Pápai, Zsófia Kovács, Kitti Andrea Tóth-Lencsés, Janka Bedő, Khin Nyein Chan, Mária Kovács-Weber, Tibor István Pap, Gábor Csilléry, Antal Szőke and Anikó Veres
Agriculture 2024, 14(10), 1771; https://doi.org/10.3390/agriculture14101771 - 8 Oct 2024
Viewed by 697
Abstract
The cultivation of horticultural plants in controlled greenhouse environments is a pivotal practice in modern agriculture, offering the potential to enhance crop productivity and mitigate climate change effects. This study investigates the biomechanical properties and lignin content of various Capsicum annuum mutant lines—‘fragile-plant’ [...] Read more.
The cultivation of horticultural plants in controlled greenhouse environments is a pivotal practice in modern agriculture, offering the potential to enhance crop productivity and mitigate climate change effects. This study investigates the biomechanical properties and lignin content of various Capsicum annuum mutant lines—‘fragile-plant’ (frx), ‘tortuous internodi’ (tti), and ‘puffy-structured stem’ (pfi)—in comparison to a commercially established variety, ‘Garai Fehér’. We employed the acetyl bromide method to quantify lignin content and conducted three-point bending tests to assess rigidity in three distinct regions of the stem. Gene expression analysis of key lignin biosynthetic pathway genes (PAL, C4H, 4CL, CCoAOMT, CAD) was performed using qRT-PCR. The results revealed significant differences in lignin content and breaking force among the genotypes and stem regions. The tti mutants exhibited similar lignin content to the control but lower breaking strength, likely due to elongated internodes. The frx mutants showed uniformly reduced lignin content, correlating with their fragile stems. The pfi mutants displayed abnormally high lignin content in the top region yet demonstrated the lowest stem rigidity in every region. Overexpression of CAD and CCoAOMT was detected in the mutants in specific regions of the stem, suggesting alterations in lignin biosynthesis; however, we could not confirm the correlation between them. Our findings indicate that while lignin content generally correlates with stem rigidity, this trait is complex and influenced by more factors. Full article
(This article belongs to the Special Issue Effects of Crop Management on Yields)
Show Figures

Figure 1

14 pages, 1477 KiB  
Article
Mutations of the Cx43 Gene in Non-Small Cell Lung Cancer: Association with Aberrant Localization of Cx43 Protein Expression and Tumor Progression
by Jung-Chien Chen, Kun-Tu Yeh, Yueh-Min Lin and Ya-Wen Cheng
Medicina 2024, 60(10), 1641; https://doi.org/10.3390/medicina60101641 - 7 Oct 2024
Viewed by 785
Abstract
Background and Objectives: The Connexin43 (Cx43) gene is a suspected tumor suppressor gene, as re-expressed wild-type Cx43 genes reduce the malignancy potential of tumor cells. However, the role of Cx43 gene expression in human lung tumorigenesis remains unclear. Materials and [...] Read more.
Background and Objectives: The Connexin43 (Cx43) gene is a suspected tumor suppressor gene, as re-expressed wild-type Cx43 genes reduce the malignancy potential of tumor cells. However, the role of Cx43 gene expression in human lung tumorigenesis remains unclear. Materials and Methods: Tumor tissues from 165 primary lung cancer patients were collected to study Cx43 protein expression and gene mutations using immunohistochemistry and direct DNA sequencing. In addition, Cx43 genes with or without mutations were transfected to CL-3 human lung cancer cells to confirm the function of these mutant forms of the Cx43 gene. Results: Aberrant localization of Cx43 protein in the nucleus and cytoplasm of tumor cells was detected in 14 out of 165 non-small cell lung cancer (NSCLC) patients. Mutations in the Cx43 gene were also found in patients with aberrant Cx43 localization, and transfection of these mutant genes into lung cancer cells enhanced their proliferation. Conclusions: To our knowledge, this is the first study to demonstrate Cx43 gene mutations in human lung neoplasm, supporting the hypothesis that Cx43 may function as a tumor suppressor in some lung cancer patients. Additionally, the findings suggest an association between aberrant localization of Cx43 protein expression and tumor progression. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

17 pages, 7857 KiB  
Article
Full-Length Transcriptome Analysis and Characterization of DFRs Involved in the Formation of Anthocyanin in Allium wallichii
by Zhigang Ju, Lin Liang, Hongxi Shi, Yaqiang Zheng, Wenxuan Zhao, Wei Sun and Yuxin Pang
Horticulturae 2024, 10(10), 1068; https://doi.org/10.3390/horticulturae10101068 - 6 Oct 2024
Viewed by 569
Abstract
Allium wallichii is famous for its reddish-purple flowers, which can be utilized as cut flowers and garden landscaping. Flower color is mainly determined by flavonoids, betalains, carotenoids, as well as other pigments. However, there is no research on the color formation mechanism in [...] Read more.
Allium wallichii is famous for its reddish-purple flowers, which can be utilized as cut flowers and garden landscaping. Flower color is mainly determined by flavonoids, betalains, carotenoids, as well as other pigments. However, there is no research on the color formation mechanism in A. wallichii, which restricts its genetic improvement and development of superior varieties. The flower of A. wallichii was collected for full-length transcriptome sequencing and metabolome analysis using PacBio SMART and UPLC-MS, respectively. A total of 45 anthocyanins were detected in its flower, and 75,778 transcripts of 107,208 non-redundant transcripts were annotated. Then, two AwDFRs were cloned and characterized using bioinformatics tools. Enzyme activity assays revealed that both AwDFR1 and AwDFR2 possessed DFR activity in vitro that only accepted DHQ and DHM as substrates, except for DHK. Finally, physiological results showed that AwDFR1 and AwDFR2 could restore the lacking phenotypes of Arabidopsis tt3 mutant and increase the content of anthoycanin in tobacco petals. The anthocyanins and transcriptome in A. wallichii were firstly reported, and AwDFR1 and AwDFR2 are key enzymes participating in the biosynthesis of anthocyanins. This research provides important guidance for future key gene mining, color improvement, and horticultural breeding in A. wallichii. Full article
Show Figures

Figure 1

Back to TopTop