Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = multi-level Gaussian curvature filtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4338 KiB  
Article
Infrared and Visible Image Fusion with Significant Target Enhancement
by Xing Huo, Yinping Deng and Kun Shao
Entropy 2022, 24(11), 1633; https://doi.org/10.3390/e24111633 - 10 Nov 2022
Cited by 6 | Viewed by 2644
Abstract
Existing fusion rules focus on retaining detailed information in the source image, but as the thermal radiation information in infrared images is mainly characterized by pixel intensity, these fusion rules are likely to result in reduced saliency of the target in the fused [...] Read more.
Existing fusion rules focus on retaining detailed information in the source image, but as the thermal radiation information in infrared images is mainly characterized by pixel intensity, these fusion rules are likely to result in reduced saliency of the target in the fused image. To address this problem, we propose an infrared and visible image fusion model based on significant target enhancement, aiming to inject thermal targets from infrared images into visible images to enhance target saliency while retaining important details in visible images. First, the source image is decomposed with multi-level Gaussian curvature filtering to obtain background information with high spatial resolution. Second, the large-scale layers are fused using ResNet50 and maximizing weights based on the average operator to improve detail retention. Finally, the base layers are fused by incorporating a new salient target detection method. The subjective and objective experimental results on TNO and MSRS datasets demonstrate that our method achieves better results compared to other traditional and deep learning-based methods. Full article
(This article belongs to the Special Issue Advances in Image Fusion)
Show Figures

Figure 1

28 pages, 890 KiB  
Article
Modelling USA Age-Cohort Mortality: A Comparison of Multi-Factor Affine Mortality Models
by Zhiping Huang, Michael Sherris, Andrés M. Villegas and Jonathan Ziveyi
Risks 2022, 10(9), 183; https://doi.org/10.3390/risks10090183 - 15 Sep 2022
Cited by 4 | Viewed by 2775
Abstract
Affine mortality models are well suited for theoretical and practical application in pricing and risk management of mortality risk. They produce consistent, closed-form stochastic survival curves allowing for the efficient valuation of mortality-linked claims. We model USA age-cohort mortality data using five multi-factor [...] Read more.
Affine mortality models are well suited for theoretical and practical application in pricing and risk management of mortality risk. They produce consistent, closed-form stochastic survival curves allowing for the efficient valuation of mortality-linked claims. We model USA age-cohort mortality data using five multi-factor affine mortality models. We focus on three-factor models and compare four Gaussian models along with a model based on the Cox–Ingersoll–Ross (CIR) process, allowing for Gamma-distributed mortality rates. We compare and assess the Gaussian Arbitrage-Free Nelson–Siegel (AFNS) mortality model, which incorporates level, slope and curvature factors, and the canonical Gaussian factor model, both with and without correlations in the factor dynamics. We show that for USA mortality data, the probability of negative mortality rates in the Gaussian models is small. Models are estimated using discrete time versions of the models with age-cohort data capturing variability in cohort mortality curves. Poisson variation in mortality data is included in the model estimation using the Kalman filter through the measurement equation. We consider models incorporating factor dependence to capture the effects of age-dependence in the mortality curves. The analysis demonstrates that the Gaussian independent-factor AFNS model performs well compared to the other affine models in explaining and forecasting USA age-cohort mortality data. Full article
(This article belongs to the Special Issue Longevity Risk Modelling and Management)
Show Figures

Figure 1

Back to TopTop