Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,938)

Search Parameters:
Keywords = miR-155

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10113 KiB  
Article
Identification of a New Role of miR-199a-5p as Factor Implied in Neuronal Damage: Decreasing the Expression of Its Target X-Linked Anti-Apoptotic Protein (XIAP) After SCI
by Teresa Muñoz-Galdeano, David Reigada, Altea Soto, María Asunción Barreda-Manso, Pablo Ruíz-Amezcua, Manuel Nieto-Díaz and Rodrigo M. Maza
Int. J. Mol. Sci. 2024, 25(22), 12374; https://doi.org/10.3390/ijms252212374 (registering DOI) - 18 Nov 2024
Abstract
Spinal cord injury (SCI) results in a cascade of primary and secondary damage, with apoptosis being a prominent cause of neuronal cell death. The X-linked inhibitor of apoptosis (XIAP) plays a critical role in inhibiting apoptosis, but its expression is reduced following SCI, [...] Read more.
Spinal cord injury (SCI) results in a cascade of primary and secondary damage, with apoptosis being a prominent cause of neuronal cell death. The X-linked inhibitor of apoptosis (XIAP) plays a critical role in inhibiting apoptosis, but its expression is reduced following SCI, contributing to increased neuronal vulnerability. This study investigates the regulatory role of miR-199a-5p on XIAP expression in the context of SCI. Using bioinformatic tools, luciferase reporter assays, and in vitro and in vivo models of SCI, we identified miR-199a-5p as a post-transcriptional regulator of XIAP. Overexpression of miR-199a-5p significantly reduced XIAP protein levels, although no changes were observed at the mRNA level, suggesting translational repression. In vivo, miR-199a-5p expression was upregulated at 3 and 7 days post-injury, while XIAP expression inversely decreased in both neurons and oligodendrocytes, being particularly significant in the latter at 7 dpi. These findings suggest that miR-199a-5p contributes to the downregulation of XIAP and may exacerbate neuronal apoptosis after SCI. Targeting miR-199a-5p could offer a potential therapeutic strategy to modulate XIAP levels and reduce apoptotic cell death in SCI. Full article
(This article belongs to the Special Issue Molecular Advances in Neurodegenerative Diseases)
Show Figures

Figure 1

20 pages, 5538 KiB  
Article
Reduced Levels of miR-145-3p Drive Cell Cycle Progression in Advanced High-Grade Serous Ovarian Cancer
by Eva González-Cantó, Mariana Monteiro, Cristina Aghababyan, Ana Ferrero-Micó, Sergio Navarro-Serna, Maravillas Mellado-López, Sarai Tomás-Pérez, Juan Sandoval, Antoni Llueca, Alejandro Herreros-Pomares, Juan Gilabert-Estellés, Vicente Pérez-García and Josep Marí-Alexandre
Cells 2024, 13(22), 1904; https://doi.org/10.3390/cells13221904 - 18 Nov 2024
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal form of gynecologic cancer, with limited treatment options and a poor prognosis. Epigenetic factors, such as microRNAs (miRNAs) and DNA methylation, play pivotal roles in cancer progression, yet their specific contributions to HGSOC remain [...] Read more.
High-grade serous ovarian cancer (HGSOC) is the most lethal form of gynecologic cancer, with limited treatment options and a poor prognosis. Epigenetic factors, such as microRNAs (miRNAs) and DNA methylation, play pivotal roles in cancer progression, yet their specific contributions to HGSOC remain insufficiently understood. In this study, we performed comprehensive high-throughput analyses to identify dysregulated miRNAs in HGSOC and investigate their epigenetic regulation. Analysis of tissue samples from advanced-stage HGSOC patients revealed 20 differentially expressed miRNAs, 11 of which were corroborated via RT-qPCR in patient samples and cancer cell lines. Among these, miR-145-3p was consistently downregulated post-neoadjuvant therapy and was able to distinguish tumoural from control tissues. Further investigation confirmed that DNA methylation controls MIR145 expression. Functional assays showed that overexpression of miR-145-3p significantly reduced cell migration and induced G0/G1 cell cycle arrest by modulating the cyclin D1-CDK4/6 pathway. These findings suggest that miR-145-3p downregulation enhances cell proliferation and motility in HGSOC, implicating its restoration as a potential therapeutic target focused on G1/S phase regulation in the treatment of HGSOC. Full article
Show Figures

Figure 1

17 pages, 6775 KiB  
Article
MiR-101-3p Promotes Tumor Cell Proliferation and Migration via the Wnt Signal Pathway in MNNG-Induced Esophageal Squamous Cell Carcinoma
by Jianding Wang, Wenwen Zhang, Rui Zhang, Hanteng Yang, Yitong Li, Junling Wang and Chengyun Li
Toxics 2024, 12(11), 824; https://doi.org/10.3390/toxics12110824 (registering DOI) - 18 Nov 2024
Abstract
N-methyl-n’-nitroso-n’-nitroso guanidine (MNNG) can induce esophageal squamous cell carcinoma (ESCC), and microRNAs are associated with the development of ESCC and may serve as potential tumor prognostic markers. Thus, the aim of this study was to evaluate the potential function of miR-101-3p in MNNG-induced [...] Read more.
N-methyl-n’-nitroso-n’-nitroso guanidine (MNNG) can induce esophageal squamous cell carcinoma (ESCC), and microRNAs are associated with the development of ESCC and may serve as potential tumor prognostic markers. Thus, the aim of this study was to evaluate the potential function of miR-101-3p in MNNG-induced ESCC. An investigation of risk factors in patients with ESCC was carried out and the concentration of nine nitrosamines in urine samples was detected by the SPE-GC-MS technique. Then, we performed cancer tissue gene sequencing analysis, and RT-qPCR verified the expression level of miR-101-3p. Subsequently, the relationship between miR-101-3p potential target genes and the ESCC patients’ prognosis was predicted. Finally, we investigated the function of miR-101-3p in MNNG-induced ESCC pathogenesis and the regulatory mechanism of the signaling pathway by in vivo and in vitro experiments. The results revealed that high dietary nitrosamine levels are high-risk factors for ESCC. MiR-101-3p is down-regulated in ESCC tissues and cells, and its potential target genes are enriched in cell migration and cancer-related pathways. MiR-101-3p target genes include AXIN1, CK1, and GSK3, which are involved in the regulation of the Wnt signaling pathway. MiR-101-3p overexpression promotes apoptosis and inhibits the proliferation and migration of Eca109 cells. The Wnt pathway is activated after subchronic exposure to MNNG, and the Wnt pathway is inhibited by the overexpression of miR-101-3p in Eca109 cells. Down-regulated miR-101-3p may exert tumor suppressive effects by regulating the Wnt pathway and may be a useful biomarker for predicting ESCC progression. Full article
Show Figures

Figure 1

14 pages, 4679 KiB  
Article
miR-5100 Overexpression Inhibits Prostate Cancer Progression by Inducing Cell Cycle Arrest and Targeting E2F7
by An Zhang, Wen Deng, Haojie Shang, Jian Wu, Yucong Zhang, Qianyuan Zhuang, Cuntai Zhang and Yuan Chen
Curr. Issues Mol. Biol. 2024, 46(11), 13151-13164; https://doi.org/10.3390/cimb46110784 (registering DOI) - 18 Nov 2024
Abstract
Despite advances in treatment, prostate cancer remains a leading cause of cancer-related deaths among men, highlighting the urgent need for innovative therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulatory molecules in cancer biology. In this research, we investigated the tumor-suppressive role of [...] Read more.
Despite advances in treatment, prostate cancer remains a leading cause of cancer-related deaths among men, highlighting the urgent need for innovative therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulatory molecules in cancer biology. In this research, we investigated the tumor-suppressive role of miR-5100 in PCa and its underlying molecular mechanism. By using RT-qPCR, we observed lower miR-5100 expression in PCa cell lines than in benign prostate cells. Functional assays demonstrated that miR-5100 overexpression significantly suppressed PCa cell proliferation, migration, and invasion. By using RNA-sequencing, we identified 446 down-regulated and 806 upregulated candidate miR-5100 target genes overrepresenting cell cycle terms. Mechanistically, E2F7 was confirmed as a direct target of miR-5100 using the reporter gene assay and RIP assay. By conducting flow cytometry analysis, cell cycle progression was blocked at the S phase. E2F7 overexpression partially mitigated the suppressive impact of miR-5100 in PCa cells. In conclusion, miR-5100 is a tumor suppressor in PCa by blocking cell cycle and targeting E2F7. Full article
(This article belongs to the Special Issue Molecular Research of Urological Diseases)
Show Figures

Figure 1

18 pages, 4679 KiB  
Article
circARID1A Inhibits Tail Fat Cell Differentiation in Guangling Large-Tailed Sheep by Regulating the miR-493-3p/YTHDF2 Axis
by Yan Shen, Yu Liang, Zikun Yuan, Liying Qiao, Jianhua Liu, Yangyang Pan, Kaijie Yang and Wenzhong Liu
Int. J. Mol. Sci. 2024, 25(22), 12351; https://doi.org/10.3390/ijms252212351 - 18 Nov 2024
Viewed by 195
Abstract
The Guangling Large-Tailed sheep is renowned for its unique tail fat deposition, with a significant proportion of its total body fat being localized in the tail region. Fat deposition is a complex biological process regulated by various molecular mechanisms. Our previous studies have [...] Read more.
The Guangling Large-Tailed sheep is renowned for its unique tail fat deposition, with a significant proportion of its total body fat being localized in the tail region. Fat deposition is a complex biological process regulated by various molecular mechanisms. Our previous studies have identified a large number of differentially expressed circular RNAs (circRNAs) in the tail adipose tissue of the Guangling Large-Tailed sheep. These circRNAs may play a pivotal role in the process of fat deposition. Given the potential regulatory functions of circRNAs in adipose metabolism, investigating their roles in tail fat deposition is of significant scientific importance. In this study, we identified novel circARID1A. Using various experimental methods, including lentivirus infection, RNase R treatment, actinomycin D assay, qPCR, western blotting, and dual-luciferase reporter assays, we determined that circARID1A inhibits the expression of miR-493-3p through competitive binding, thereby regulating adipocyte differentiation. Further research revealed that miR-493-3p promotes adipocyte differentiation by targeting YTH domain family 2 (YTHDF2), and this regulatory effect is also influenced by circARID1A. In conclusion, our findings suggest that circARID1A inhibits tail fat cell differentiation in the Guangling Large-Tailed sheep through the circARID1A/miR-493-3p/YTHDF2 axis, providing theoretical support for improving meat quality and fat deposition in sheep. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 8340 KiB  
Article
Fabrication of Mid-Infrared Porous Anodic Alumina Optical Microcavities via Aluminum Anodization
by Ewelina Białek, Weronika Gruszczyńska, Maksymilian Włodarski, Malwina Liszewska and Małgorzata Norek
Materials 2024, 17(22), 5620; https://doi.org/10.3390/ma17225620 (registering DOI) - 18 Nov 2024
Viewed by 279
Abstract
This study reports the production of mid-infrared (MIR) porous anodic alumina (PAA)-based microcavities with tunable optical quality. The spectral position of the cavity resonance peak (λC), along with its intensity (IR) and Q-factor, varies depending on the geometric positioning [...] Read more.
This study reports the production of mid-infrared (MIR) porous anodic alumina (PAA)-based microcavities with tunable optical quality. The spectral position of the cavity resonance peak (λC), along with its intensity (IR) and Q-factor, varies depending on the geometric positioning of the cavity layer within the multilayer stack of alternating low- and high-porosity layers, as well as the type of cavity produced—either by high voltage (CvH-type) or low voltage (CvL-type) pulses. In most cases, PAA microcavities with CvH-type cavity layers exhibited superior light confinement properties compared to those with CvL-type cavities. Additionally, shifting the cavity layer from the center toward the edges of the multilayer stack enhanced the intensity of the resonance peak. For PAA microcavities with CvH-type cavity layers, the highest intensity (IR = 53%) and the largest Q-factor (Q = 31) were recorded at λC of around 5.1 µm. The anodization approach used in this study demonstrates significant potential for designing PAA-based microcavities with high optical performance in the MIR spectral region, especially with further refinement of electrochemical parameters. These findings pave the way for the development of new photonic materials specifically tailored for the MIR spectral range, broadening their applications in various optoelectronic and sensing technologies. Full article
Show Figures

Figure 1

12 pages, 2408 KiB  
Article
Tumor Suppressor miR-27a-5p and Its Significance for Breast Cancer
by Paola Parrella, Raffaela Barbano, Katharina Jonas, Andrea Fontana, Serena Barile, Michelina Rendina, Antonio lo Mele, Giuseppina Prencipe, Luigi Ciuffreda, Maria Grazia Morritti, Vanna Maria Valori, Paolo Graziano, Evaristo Maiello, Massimiliano Copetti, Martin Pichler and Barbara Pasculli
Biomedicines 2024, 12(11), 2625; https://doi.org/10.3390/biomedicines12112625 - 17 Nov 2024
Viewed by 291
Abstract
Background: MicroRNAs are well established as master regulators of carcinogenesis and potential biomarkers in breast cancer (BC). In a preliminary effort, we found miR-27a-5p to be significantly downregulated in experimentally derived mammospheres and BC patients from The Cancer Genome Atlas Breast Invasive Carcinoma [...] Read more.
Background: MicroRNAs are well established as master regulators of carcinogenesis and potential biomarkers in breast cancer (BC). In a preliminary effort, we found miR-27a-5p to be significantly downregulated in experimentally derived mammospheres and BC patients from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset. Objectives. Herein, we sought to investigate the putative involvement of miR-27a-5p in promoting a migratory phenotype of breast cancer cells, and establish whether miR-27a-5p is associated with patient clinicopathological characteristics. Methods: miR-27a-5p capability of inducing a metastasis-prone cell phenotype was analyzed in SUM159 and MDA-MB-231, both representing the triple negative BC subtype. miR-27a-5p expression profile was carried out in a cohort of 232 BC patients and normal breast tissues (NBTs) by RT-qPCR. Results: Transient miR-27a-5p inhibition did not affect cell proliferation but led to a significant increase of cell migration in knocked-down compared to control cells. Following quantification in the patient cohort, miR-27a-5p was found higher in NBTs (Median 2.28, IQR 1.50–5.40) and pre-invasive breast lesions (Median 3.32, IQR 1.68–4.32) compared to tumors. In particular, miR-27a-5p was less expressed in patients with synchronous (Median 1.03, IQR 0.83–1.58) or metachronous (Median 1.83, IQR 1.29–3.17) metastases than in patients free from metastases after a 5-year follow-up (Median 2.17, IQR 1.19–3.64), suggesting that miR-27a-5p expression is negatively correlated with breast pathology evolution (R = −0.13, p = 0.038). However, time-to-event analysis did not highlight significant associations with patient outcome in either our internal cohort or TCGA-BRCA dataset. Conclusions: Our study suggests a potential role of miR-27a-5p as tumor suppressor miRNA in breast cancer. Further investigations may help define its biomarker potential in each breast cancer subtype, and identify other molecular partners as targets for new interventions. Full article
(This article belongs to the Special Issue Breast Cancer: New Diagnostic and Therapeutic Approaches)
Show Figures

Figure 1

18 pages, 2502 KiB  
Article
Effects of Co-Exposure to Benzene, Toluene, and Xylene, Polymorphisms of microRNA Genes, and Their Interactions on Genetic Damage in Chinese Petrochemical Workers
by Shuangqi Li, Xiaojing Liao, Rui Ma, Na Deng, Haimei Wu, Zhaorui Zhang, Liping Chen, Qing Wang, Qilong Liao, Qianxi Li, Xinyi Ouyang, Yongmei Xiao and Qifei Deng
Toxics 2024, 12(11), 821; https://doi.org/10.3390/toxics12110821 (registering DOI) - 16 Nov 2024
Viewed by 287
Abstract
Benzene, toluene, and xylene (BTX) co-exist in human environments, yet their individual and combined effects on genetic damage at low exposure levels are not fully understood. Additionally, single nucleotide polymorphisms in microRNAs (mirSNPs) might be involved in cancer etiology by affecting the related [...] Read more.
Benzene, toluene, and xylene (BTX) co-exist in human environments, yet their individual and combined effects on genetic damage at low exposure levels are not fully understood. Additionally, single nucleotide polymorphisms in microRNAs (mirSNPs) might be involved in cancer etiology by affecting the related early health damage. To investigate the influence of BTX exposure, mirSNPs, and their interactions on genetic damage, we conducted a cross-sectional study in 1083 Chinese petrochemical workers, quantifying the BTX cumulative exposure levels and multiple genetic damage biomarkers. Additionally, we genotyped multiple common mirSNPs. Benzene and a BTX mixture were positive associated with the olive tail moment (OTM) and tail DNA% (p < 0.05). Higher levels of toluene and xylene enhanced the association of benzene with genetic damage levels. Genotypes and/or mutant allele counts of miR-4482-related rs11191980, miR-4433-related rs136547, miR-27a-related rs2594716, miR-3130-related rs725980, and miR-3928-related rs878718 might significantly influence genetic damage levels. Stronger effect estimates of benzene/BTX exposure were found in carriers of miR-196a-2-related rs11614913 heterozygotes and of wild homozygotes of miR-1269b-related rs12451747, miR-612-related rs12803915, and miR-4804-related rs266437. Our findings provide further support of the involvement of BTX co-exposure, mirSNPs, and their gene–environment interactions in determining the severity of DNA strand break in a complex manner. Full article
(This article belongs to the Special Issue Health Effects of Exposure to Environmental Pollutants)
Show Figures

Graphical abstract

17 pages, 582 KiB  
Review
Investigating the Imperative Role of microRNAs Expression in Human Embryo Implantation: A Narrative Review Based on Recent Evidence
by Anastasios Potiris, Sofoklis Stavros, Ioanna Zouganeli, Nikolaos Machairiotis, Eirini Drakaki, Athanasios Zikopoulos, Ismini Anagnostaki, Athanasios Zachariou, Angeliki Gerede, Ekaterini Domali and Peter Drakakis
Biomedicines 2024, 12(11), 2618; https://doi.org/10.3390/biomedicines12112618 - 15 Nov 2024
Viewed by 285
Abstract
Background/Objectives: Embryo implantation is a highly complex process that requires the precise regulation of numerous molecules to be orchestrated successfully. Micro RNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a crucial role in the regulation of embryo implantation. This [...] Read more.
Background/Objectives: Embryo implantation is a highly complex process that requires the precise regulation of numerous molecules to be orchestrated successfully. Micro RNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a crucial role in the regulation of embryo implantation. This article aims to summarize the key findings of the literature regarding the role of miRNAs in human embryo implantation, emphasizing their involvement in critical stages such as decidualization, endometrial receptivity and trophoblast adhesion. Methods: This review includes primary research articles from the past decade. The studies utilize a range of experimental methodologies, including gene expression analysis and in vitro studies. Results: MicroRNAs, like miR-320a, miR-149, and miR30d secreted by preimplantation embryos and blastocysts significantly influence endometrial receptivity by promoting essential cellular processes, such as cell migration and trophoblast cell attachment, while others—miR17-5p, miR-193-3p, miR-372, and miR-542-3p—secreted from the endometrium regulate the decidualization phase. During the apposition and adhesion phases, miRNAs play a complex role by promoting, for example, miR-23b-3p, and inhibiting—as do miR-29c and miR-519d-3p—important biological pathways of these stages. During invasion, miR-26a-5p and miR-125-5p modulate important genes. Conclusions: This review underscores the critical impact of miRNAs in the regulation of embryo implantation and early pregnancy. The ability of miRNAs to modulate gene expression at various stages of reproduction presents promising therapeutic avenues for improving assisted reproductive technologies outcomes and addressing infertility. Further research into miRNA-based diagnostic tools and therapeutic strategies is essential to enhance our understanding of their role in reproductive health and to exploit their potential for clinical applications. Full article
Show Figures

Figure 1

29 pages, 4005 KiB  
Article
Possible Role of Endothelial-Derived Cellular and Exosomal-miRNAs in Lipid-Mediated Diabetic Retinopathy: Microarray Studies
by Khaled Elmasry, Samar Habib, Inas Helwa, Mariam Lotfy Khaled, Ahmed S. Ibrahim, Amany Tawfik and Mohamed Al-Shabrawey
Cells 2024, 13(22), 1886; https://doi.org/10.3390/cells13221886 - 15 Nov 2024
Viewed by 322
Abstract
Diabetic retinopathy (DR) is a salient cause of blindness worldwide. There is still an immense need to understand the pathophysiology of DR to discover better diagnostic and therapeutic modalities. Human retinal endothelial cells (HRECs) were treated with 15-HETE or D-glucose, then miRNAs were [...] Read more.
Diabetic retinopathy (DR) is a salient cause of blindness worldwide. There is still an immense need to understand the pathophysiology of DR to discover better diagnostic and therapeutic modalities. Human retinal endothelial cells (HRECs) were treated with 15-HETE or D-glucose, then miRNAs were isolated, and a microarray was performed. MirWALK 2 and Ingenuity Pathway Analysis (IPA) were used to analyze the microarray results. Exosomal miRNAs from 15-HETE-treated HRECs were isolated, microarrayed, and then imported into IPA for further analysis. The microarray results showed that 15-HETE downregulated 343 miRNAs and upregulated 297 miRNAs in HRECs. High glucose treatment induced a differential expression of HREC-miRNAs where 185 miRNAs were downregulated and 244 were upregulated. Comparing the impact of 15-HETE versus DG or diabetic mouse retina elaborated commonly changing miRNAs. Pathway and target analysis for miRNAs changed in 15-HETE-treated HRECs revealed multiple targets and pathways that may be involved in 15-HETE-induced retinal endothelial dysfunction. The HREC-exosomal miRNAs were differentially expressed after 15-HETE treatment, with 34 miRNAs downregulated and 45 miRNAs upregulated, impacting different cellular pathways. Here, we show that 15-HETE induces various changes in the cellular and exosomal miRNA profile of HRECs, highlighting the importance of targeting the 12/15 lipoxygenase pathway in DR. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

13 pages, 4063 KiB  
Article
Community Structure and Biodiversity of Active Microbes in the Deep South China Sea
by Taoran Yang, Yinghui He, Ming Yang, Zhaoming Gao, Jin Zhou and Yong Wang
Microorganisms 2024, 12(11), 2325; https://doi.org/10.3390/microorganisms12112325 - 15 Nov 2024
Viewed by 256
Abstract
The deep ocean harbors a group of highly diversified microbes, while our understanding of the active microbes that are real contributors to the nutrient cycle remains limited. In this study, we report eukaryotic and prokaryotic communities in ~590 m and 1130 m depths [...] Read more.
The deep ocean harbors a group of highly diversified microbes, while our understanding of the active microbes that are real contributors to the nutrient cycle remains limited. In this study, we report eukaryotic and prokaryotic communities in ~590 m and 1130 m depths using 16S and 18S rRNA Illumina reads (miTags) extracted from 15 metagenomes (MG) and 14 metatranscriptomes (MT). The metagenomic 16S miTags revealed the dominance of Gammaproteobacteria, Alphaproteobacteria, and Nitrososphaeria, while the metatranscriptomic 16S miTags were highly occupied by Gammaproteobacteria, Acidimicrobiia, and SAR324. The consistency of the active taxa between the two depths suggests the homogeneity of the functional microbial groups across the two depths. The eukaryotic microbial communities revealed by the 18S miTags of the metagenomic data are dominated by Polycystinea; however, they were almost all absent in the 18S metatranscriptomic miTags. The active eukaryotes were represented by the Arthropoda class (at 590 m depth), Dinophyceae, and Ciliophora classes. Consistent eukaryotic communities were also exhibited by the 18S miTags of the metatranscriptomic data of the two depths. In terms of biodiversity, the ACE and Shannon indices of the 590 m depth calculated using the 18S metatranscriptomic miTags were much higher than those of the 1130 m depth, while a reverse trend was shown for the indices based on the metagenomic data. Our study reports the active microbiomes functioning in the nutrient utilization and carbon cycle in the deep-sea zone, casting light on the quantification of the ecological processes occurring in the deep ocean. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 3002 KiB  
Article
Alterations in the Levels of Urinary Exosomal MicroRNA-183-5p and MicroRNA-125a-5p in Individuals with Type 2 Diabetes Mellitus
by Yixuan Fang, Shiyi Sun, Jing Wu, Guanjian Liu, Qinqin Wu and Xingwu Ran
Biomedicines 2024, 12(11), 2608; https://doi.org/10.3390/biomedicines12112608 - 14 Nov 2024
Viewed by 586
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder, and urinary exosomal microRNAs (miRNAs) were utilized as potential disease prediction or diagnostic biomarkers in numerous studies. This study investigated the differential expression of urinary exosomal miRNAs between non-diabetes mellitus (NDM) individuals and [...] Read more.
Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder, and urinary exosomal microRNAs (miRNAs) were utilized as potential disease prediction or diagnostic biomarkers in numerous studies. This study investigated the differential expression of urinary exosomal miRNAs between non-diabetes mellitus (NDM) individuals and those with T2DM. Aim: To elucidate the association between urinary exosomal miRNAs and T2DM. Methods: We recruited patients diagnosed with T2DM and NDM individuals in West China Hospital, Sichuan University, from November 2023 to February 2024. Subsequently, we performed sequencing of urinary exosomal microRNAs in both groups. The obtained sequencing results were further validated using RT-qPCR in both the training set and the validation set. Additionally, we conducted logistic regression analysis and Spearman correlation analysis on miRNAs with significant differential expression, as well as analysis of their biological functions. Results: A total of 118 urine samples were collected, 59 from individuals diagnosed with T2DM and 59 from NDM. There were differentially expressed miR-183-5p (p = 0.034) and miR-125a-5p (p = 0.008) between the two groups. Furthermore, multivariate regression analysis demonstrated that higher miR-125a-5p levels were negatively associated with the risk of T2DM (p = 0.044; OR: 0.046; 95% CI: 0.002, 0.922). Bioinformatics analysis indicated that the target genes of miR-183-5p were predominantly involved in insulin signaling and glucose transport processes, while those target genes of miR-125a-5p primarily mediated autophagy. Conclusions: miR-183-5p and miR-125a-5p might be involved in the pathogenesis of T2DM, while higher urinary exosomal miR-125a-5p was negatively associated with the risk of T2DM. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

14 pages, 2524 KiB  
Article
Circulating Micro-RNAs Predict the Risk of Recurrence in Triple-Negative Breast Cancer
by Jouni Kujala, Maria Tengström, Sami Heikkinen, Mari Taipale, Veli-Matti Kosma, Jaana M. Hartikainen and Arto Mannermaa
Cells 2024, 13(22), 1884; https://doi.org/10.3390/cells13221884 - 14 Nov 2024
Viewed by 317
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a high tendency for developing a recurrent disease. Circulating micro-RNAs (cmiRNAs) obtained through liquid biopsy are potential prognostic biomarkers for the assessment of TNBC recurrence risk. In this study, we sequenced [...] Read more.
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a high tendency for developing a recurrent disease. Circulating micro-RNAs (cmiRNAs) obtained through liquid biopsy are potential prognostic biomarkers for the assessment of TNBC recurrence risk. In this study, we sequenced cmiRNAs from the serum samples of 14 recurrent and 19 non-recurrent TNBC cases and compared expression profiles in relation to recurrence status, survival data and miRNA expression in matched tumor samples. Differential expression analysis between recurrent and non-recurrent cases identified ten differentially expressed (DE) cmiRNAs, of which cmiRNAs miR-21-5p (p = 0.030, HR = 1.87, 95% CI 1.06–3.30), miR-16-5p (p = 0.032, HR = 0.53, 95% CI 0.30–0.95), and miR-26b-5p (p = 0.023, HR = 0.52, 95% CI 0.29–0.91) were associated with recurrence-free survival in multivariable survival analysis. Expression profiles of matched tumor and serum samples were shown to correlate with each other. DE cmiRNAs were associated with common cancer-related signaling pathways and improved the overall predictive performance of the logistic regression model assessing the recurrence risk. Our results indicate that recurrent and non-recurrent TNBC differ in their cmiRNA expression profiles, and that three specific cmiRNAs can be used to assess the risk of recurrence in TNBC. Full article
(This article belongs to the Special Issue Current Status and Future Challenges of Liquid Biopsy)
Show Figures

Figure 1

25 pages, 4910 KiB  
Article
Point-to-Interval Prediction Method for Key Soil Property Contents Utilizing Multi-Source Spectral Data
by Shuyan Liu, Dongyan Huang, Lili Fu, Shengxian Wu, Yanlei Xu, Yibing Chen and Qinglai Zhao
Agronomy 2024, 14(11), 2678; https://doi.org/10.3390/agronomy14112678 - 14 Nov 2024
Viewed by 240
Abstract
Key soil properties play pivotal roles in shaping crop growth and yield outcomes. Accurate point prediction and interval prediction of soil properties serve as crucial references for making informed decisions regarding fertilizer applications. Traditional soil testing methods often entail laborious and resource-intensive chemical [...] Read more.
Key soil properties play pivotal roles in shaping crop growth and yield outcomes. Accurate point prediction and interval prediction of soil properties serve as crucial references for making informed decisions regarding fertilizer applications. Traditional soil testing methods often entail laborious and resource-intensive chemical analyses. To address this challenge, this study introduced a novel approach leveraging spectral data fusion techniques to forecast key soil properties. The initial datasets were derived from UV–visible–near-infrared (UV-Vis-NIR) spectral data and mid-infrared (MIR) spectral data, which underwent preprocessing stages involving smoothing denoising and fractional-order derivative[s] (FOD) transform techniques. After extracting the characteristic bands from both types of spectral data, three fusion strategies were developed, which were further enhanced using machine learning techniques. Among these strategies, the outer-product analysis fusion algorithm proved particularly effective in improving prediction accuracy. For point predictions, metrics such as the coefficient of determination (R2) and error metrics demonstrated significant enhancements compared to predictions based solely on single-source spectral data. Specifically, R2 values increased by 0.06 to 0.41, underscoring the efficacy of the fusion approach combined with partial least squares regression (PLSR). In addition, based on the coverage width criterion to establish reliable prediction intervals for key soil properties, including soil organic matter (SOM), total nitrogen (TN), hydrolyzed nitrogen (HN), and available potassium (AK). These intervals were developed within the framework of the kernel density estimation (KDE) interval prediction model, which facilitates the quantification of uncertainty in property estimates. For available phosphorus (AP), a preliminary assessment of its concentration was also provided. By integrating advanced spectral data fusion with machine learning, this study paves the way for more informed agricultural decision making and sustainable soil management strategies. Full article
(This article belongs to the Special Issue Advances in Soil Fertility, Plant Nutrition and Nutrient Management)
Show Figures

Figure 1

14 pages, 1780 KiB  
Article
Microvesicle-Shuttled microRNA-130b Activates the Hepatic Inflammation by Inhibiting Glucocorticoid-Receptor-Mediated Immunosuppression in High-Fat Diet-Induced Obese Mice
by Zhengqiang Han, Lijun Wang, Shiyong Xu, Horsen Zhang, Ji Cheng and Shifeng Pan
Vet. Sci. 2024, 11(11), 565; https://doi.org/10.3390/vetsci11110565 - 13 Nov 2024
Viewed by 501
Abstract
Metabolism-disorder-induced liver diseases have become increasingly prevalent worldwide and are clinically linked to obesity and type 2 diabetes. In addition, a large number of previous literature studies have indicated that plasma miR-130b is a promising biomarker for the early diagnosis and treatment of [...] Read more.
Metabolism-disorder-induced liver diseases have become increasingly prevalent worldwide and are clinically linked to obesity and type 2 diabetes. In addition, a large number of previous literature studies have indicated that plasma miR-130b is a promising biomarker for the early diagnosis and treatment of obesity. However, whether miRNA-130b that was positively correlated with obesity resulted in hepatic inflammation needs to be further studied. Therefore, the study aims to determine the effect of microvesicle-shuttled miRNA-130b (miR-130b-MV) on the hepatic inflammation and its potential mechanism in high-fat diet-induced obese mice. Three-week-old C57BL/6 mice were fed a high-fat diet for eight weeks. Then, the obese mice received tail vein injections of MV-packaged scrambled control microRNA (miR-SC-MV) or miR-130b-MV every other day for 10 days. Compared with the control group, the miR-130b-MV injection significantly reduced the body weight while increasing the ratio of liver wet weight to total body weight. In addition, the miR-130b-MV injection significantly activated the hepatic inflammation by increasing the expression of proinflammatory genes, although the plasma concentrations of IL-6 and TNF-α were only slightly increased. Furthermore, the miR-130b-MV injection significantly increased the hepatic miR-130b expression while significantly suppressing the protein expression and phosphorylation of GR, a potential target of miR-130b. Moreover, the miR-130b overexpression results in a decrease in the expression of endogenous GR protein and a decrease in the activity of the luciferase reporter of GR 3′-UTR. In addition, the miR-130b-MV injection significantly upregulated NF-kB (p50) in both the cytoplasm and nucleus, showing enhanced proinflammation response. The above results demonstrated that miR-130b-MV activated the hepatic inflammation by inhibiting GR-mediated immunosuppression in high-fat diet-induced obese mice, suggesting a novel mechanism underlying the obesity-induced hepatic inflammation, and the inhibition of miR-130b may serve as a new molecular therapeutic target for the prevention and treatment of hepatic inflammation. Full article
(This article belongs to the Section Nutritional and Metabolic Diseases in Veterinary Medicine)
Show Figures

Figure 1

Back to TopTop