Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,153)

Search Parameters:
Keywords = metastasis inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2735 KiB  
Article
CD47 in Osteosarcoma: Correlation with Metastasis and Macrophage-Mediated Phagocytosis
by Yunmi Ko, Seog-Yun Park, Jong Woong Park, June Hyuk Kim, Hyun Guy Kang and Jun Ah Lee
Cells 2024, 13(22), 1862; https://doi.org/10.3390/cells13221862 (registering DOI) - 10 Nov 2024
Abstract
CD47 is expressed on cell surfaces and acts as a “don’t eat me” signal by interacting with signal-regulatory protein-α on the macrophage surface. Some cancer cells express CD47 protein and can evade macrophage phagocytosis. Herein, we evaluated the feasibility of targeting CD47 for [...] Read more.
CD47 is expressed on cell surfaces and acts as a “don’t eat me” signal by interacting with signal-regulatory protein-α on the macrophage surface. Some cancer cells express CD47 protein and can evade macrophage phagocytosis. Herein, we evaluated the feasibility of targeting CD47 for osteosarcoma by analyzing its expression patterns, clinicopathological correlations, and immunotherapeutic potential. We performed a retrospective analysis on 24 biopsy samples from patients with osteosarcoma to investigate correlations between CD47 protein positivity and clinicopathological characteristics. CD47 protein expression was detected in 20.8% of the biopsy samples. CD47 positivity correlated with metastasis at diagnosis. Patients with CD47-positive tumors were older than those with CD47-negative tumors. However, CD47 protein expression was not associated with sex, tumor size, or histologic response to preoperative chemotherapy. In vitro, CD47 antibody (B6H12) did not affect osteosarcoma cell viability or apoptosis. In a wound-healing assay, CD47 inhibited the migration of osteosarcoma cells. Differentiated macrophages exhibited higher phagocytic activity against osteosarcoma cells when pretreated with B6H12 compared with the isotype control. Our preliminary data suggest a possible interaction between CD47 protein and macrophage phagocytosis in osteosarcoma metastasis. A better understanding of the role of CD47 is necessary to develop an innovative immunotherapeutic approach against osteosarcoma. Full article
(This article belongs to the Special Issue Cell–Cell Interactome-Based Therapies for Osteosarcoma)
Show Figures

Figure 1

29 pages, 3065 KiB  
Review
Annexin A2 in Tumors of the Gastrointestinal Tract, Liver, and Pancreas
by Konstantinos Christofidis, Alexandros Pergaris, Rodanthi Fioretzaki, Nikolaos Charalampakis, Emmanouil Ι. Kapetanakis, Nikolaos Kavantzas, Dimitrios Schizas and Stratigoula Sakellariou
Cancers 2024, 16(22), 3764; https://doi.org/10.3390/cancers16223764 - 8 Nov 2024
Viewed by 301
Abstract
Annexin A2 (ANXA2) is a protein that is involved in many physiological and pathological cellular processes. There is compelling evidence that its dysregulated expression, be it up- or downregulation, contributes to the oncogenesis of various neoplasms, including those of the digestive system. The [...] Read more.
Annexin A2 (ANXA2) is a protein that is involved in many physiological and pathological cellular processes. There is compelling evidence that its dysregulated expression, be it up- or downregulation, contributes to the oncogenesis of various neoplasms, including those of the digestive system. The present review summarizes the current knowledge on the role of ANXA2 in the main tumors of the digestive system. The clinical significance of ANXA2 is primordial, due to its potential use as a diagnostic and prognostic biomarker, and as a part of therapeutic protocols. Certain preclinical studies have shown that inhibiting ANXA2 or disrupting its interactions with key molecules can suppress tumor growth, invasion, and metastasis, as well as increase the cancer cells’ sensitivity to treatment in various cancers. Further research is needed to fully elucidate the complex role of ANXA2 in the carcinogenesis of tumors of the digestive system, and to translate these findings into clinical applications for improved diagnosis, prognosis, and treatment. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

14 pages, 1430 KiB  
Review
The Role of Chemerin in Upper Gastrointestinal Cancer
by Adam Mylonakis, Maximos Frountzas, Irene Lidoriki, Alexandros Kozadinos, Areti Kalfoutzou, Eva Karanikki, Iliana Tsikrikou, Maria Kyriakidou, Dimitrios Theodorou, Konstantinos G. Toutouzas and Dimitrios Schizas
Metabolites 2024, 14(11), 599; https://doi.org/10.3390/metabo14110599 - 7 Nov 2024
Viewed by 302
Abstract
Background/Objectives: Chemerin, which is a multifunctional cytokine and adipokine, has been implicated in inflammatory and metabolic processes and might play a role in upper gastrointestinal (GI) malignancies, particularly gastric and esophageal cancer. The aim of this review is to explore the role [...] Read more.
Background/Objectives: Chemerin, which is a multifunctional cytokine and adipokine, has been implicated in inflammatory and metabolic processes and might play a role in upper gastrointestinal (GI) malignancies, particularly gastric and esophageal cancer. The aim of this review is to explore the role of chemerin in the pathophysiology of upper GI cancers, as well as its potential as a biomarker for early detection and as a therapeutic target. Methods: A comprehensive review of recent studies about chemerin’s biochemical properties and interaction with its receptors, as well as its effects on inflammatory responses, immune regulation, and metabolic processes, was conducted. The clinical implications of chemerin for gastric and esophageal cancer were analyzed, whereas the potential therapeutic strategies targeting chemerin were discussed. Results: Elevated chemerin levels are associated with poor prognosis in gastric cancer and promote invasiveness and metastasis in esophageal cancer. Chemerin receptor antagonists show promising results in inhibiting cancer cell migration, invasion, and progression. Conclusions: Chemerin could represent a valuable prognostic biomarker and therapeutic target for upper GI cancers. Future observational studies should validate its clinical applications and investigate the efficacy of chemerin inhibitors as potential therapeutic targets. Full article
Show Figures

Graphical abstract

23 pages, 6439 KiB  
Article
Modeling Lymphoma Angiogenesis, Lymphangiogenesis, and Vessel Co-Option, and the Effects of Inhibition of Lymphoma–Vessel Interactions with an αCD20-EndoP125A Antibody Fusion Protein
by Christian Elledge, Yu Zhang, Seung-Uon Shin, Hyun-Mi Cho, Sundaram Ramakrishnan, Ankita Sankar, Jennifer R. Chapman, Daniel Bilbao, Rathin Das, Hava Gil-Henn, Izidore S. Lossos and Joseph D. Rosenblatt
Cells 2024, 13(22), 1835; https://doi.org/10.3390/cells13221835 - 6 Nov 2024
Viewed by 292
Abstract
Lymphoma growth, progression, and dissemination require tumor cell interaction with supporting vessels and are facilitated through tumor-promoted angiogenesis, lymphangiogenesis, and/or lymphoma vessel co-option. Vessel co-option has been shown to be responsible for tumor initiation, metastasis, and resistance to anti-angiogenic treatment but is largely [...] Read more.
Lymphoma growth, progression, and dissemination require tumor cell interaction with supporting vessels and are facilitated through tumor-promoted angiogenesis, lymphangiogenesis, and/or lymphoma vessel co-option. Vessel co-option has been shown to be responsible for tumor initiation, metastasis, and resistance to anti-angiogenic treatment but is largely uncharacterized in the setting of lymphoma. We developed an in vitro model to study lymphoma–vessel interactions and found that mantle cell lymphoma (MCL) cells co-cultured on Matrigel with human umbilical vein (HUVEC) or human lymphatic (HLEC) endothelial cells migrate to and anneal with newly formed capillary-like (CLS) or lymphatic-like (LLS) structures, consistent with lymphoma–vessel co-option. To inhibit this interaction, we constructed an antibody fusion protein, αCD20-EndoP125A, linking mutant anti-angiogenic endostatin (EndoP125A) to an αCD20-IgG1-targeting antibody. αCD20-EndoP125A inhibited both CLS and LLS formation, as well as MCL migration and vessel co-option. Lymphoma vessel co-option requires cell migration, which is regulated by chemokine–chemokine receptor interactions. CXCL12 and its receptor, CXCR4, are highly expressed by both endothelial cells forming CLS and by MCL cells during vessel co-option. αCD20-EndoP125A suppressed expression of both CXCL12 and CXCR4, which were required to facilitate CLS assembly and vessel co-option. We also tested αCD20-EndoP125A effects in vivo using an aggressive murine B cell lymphoma model, 38c13-hCD20, which demonstrated rapid growth and dissemination to tumor-draining lymph nodes (TDLNs) and the spleen, lung, and brain. The pattern of lymphoma distribution and growth within the lung was consistent with vessel co-option. As predicted by our in vitro model, αCD20-EndoP125A treatment inhibited primary tumor growth, angiogenesis, and lymphangiogenesis, and markedly reduced the number of circulating tumor cells and lymphoma dissemination to TDLNs and the lungs, spleen, and brain. αCD20-EndoP125A inhibited lymphoma vessel co-option within the lung. Marked inhibition of MCL primary tumor growth and dissemination were also seen using an MCL xenograft model. The ability of αCD20-EndoP125A to inhibit angiogenesis, lymphangiogenesis, and lymphoma vessel co-option provides a novel therapeutic approach for inhibition of lymphoma progression and dissemination. Full article
Show Figures

Figure 1

3 pages, 1102 KiB  
Correction
Correction: Huang et al. Identification of the Novel Tumor Suppressor Role of FOCAD/miR-491-5p to Inhibit Cancer Stemness, Drug Resistance and Metastasis via Regulating RABIF/MMP Signaling in Triple Negative Breast Cancer. Cells 2021, 10, 2524
by Wei-Chieh Huang, Hsiang-Cheng Chi, Shiao-Lin Tung, Po-Ming Chen, Ya-Chi Shih, Yi-Ching Huang and Pei-Yi Chu
Cells 2024, 13(22), 1830; https://doi.org/10.3390/cells13221830 - 6 Nov 2024
Viewed by 190
Abstract
In the original publication [...] Full article
Show Figures

Figure 5

18 pages, 6095 KiB  
Article
Axl and EGFR Dual-Specific Binding Affibody for Targeted Therapy in Nasopharyngeal Carcinoma
by Saidu Kamara, He Wen, Yanru Guo, Ying Liu, Lei Liu, Wangqi Du, Jun Chen, Shanli Zhu and Lifang Zhang
Cells 2024, 13(22), 1823; https://doi.org/10.3390/cells13221823 - 5 Nov 2024
Viewed by 344
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor of the head and neck, with a higher incidence in southern China and Southeast Asia. Radiotherapy and chemotherapy are the main treatments; however, metastasis and recurrence remain the main causes of treatment failure. Further, the majority of [...] Read more.
Nasopharyngeal carcinoma (NPC) is a tumor of the head and neck, with a higher incidence in southern China and Southeast Asia. Radiotherapy and chemotherapy are the main treatments; however, metastasis and recurrence remain the main causes of treatment failure. Further, the majority of patients are diagnosed in the late stage due to lack of tumor-specific biomarker for early diagnosis. Therefore, an effective treatment and early detection can improve the outcome of patient with NPC. Axl and EGFR are co-expressed in NPC tissues and play key roles in tumor proliferation, migration, and invasion, which are often correlated with poor prognosis and therapy resistance. In this study, we generated a novel bispecific affibody (Z239-1907) for the dual targeting and inhibition of Axl and EGFR expression in NPC-positive cells both in vitro and in vivo. The in vitro experiments demonstrated that Z239-1907 had more pronounced antitumor effects than either modality alone (ZAXL239 or ZEGFR1907) in NPC-positive cells. Further, mice bearing NPC-positive tumors showed significant inhibition in tumor growth after treatment with Z239-1907 compared to ZAXL239 and ZEGFR1907. The in vivo tumor targeting ability and imaging also showed that Z239-1907 specifically and selectively targeted NPC xenograft mice models and accumulate at tumor site as early as 30 min and disappeared within 24 h post-injection. Collectively, these results suggest that Z239-1907 dual-target affibody is a promising therapeutic agent and a molecular imaging probe for early diagnosis in NPC. Full article
Show Figures

Figure 1

27 pages, 3602 KiB  
Article
Ecto-NOX Disulfide-Thiol Exchanger 2 (ENOX2/tNOX) Is a Potential Prognostic Marker in Primary Malignant Melanoma and May Serve as a Therapeutic Target
by Matti Böcker, Eftychia Chatziioannou, Heike Niessner, Constanze Hirn, Christian Busch, Kristian Ikenberg, Hubert Kalbacher, Rupert Handgretinger and Tobias Sinnberg
Int. J. Mol. Sci. 2024, 25(21), 11853; https://doi.org/10.3390/ijms252111853 - 4 Nov 2024
Viewed by 377
Abstract
With an increasing incidence of malignant melanoma, new prognostic biomarkers for clinical decision making have become more important. In this study, we evaluated the role of ecto-NOX disulfide-thiol exchanger 2 (ENOX2/tNOX), a cancer- and growth-associated protein, in the prognosis and therapy of primary [...] Read more.
With an increasing incidence of malignant melanoma, new prognostic biomarkers for clinical decision making have become more important. In this study, we evaluated the role of ecto-NOX disulfide-thiol exchanger 2 (ENOX2/tNOX), a cancer- and growth-associated protein, in the prognosis and therapy of primary malignant melanoma. We conducted a tissue microarray analysis of immunohistochemical ENOX2 protein expression and The Cancer Genome Atlas (TCGA) ENOX2 RNA expression analysis, as well as viability assays and Western blots of melanoma cell lines treated with the ENOX2 inhibitor phenoxodiol (PXD) and BRAF inhibitor (BRAFi) vemurafenib. We discovered that high ENOX2 expression is associated with decreased overall (OS), disease-specific (DSS) and metastasis-free survival (MFS) in primary melanoma (PM) and a reduction in electronic tumor-infiltrating lymphocytes (eTILs). A gradual rise in ENOX2 expression was found with an increase in malignant potential from benign nevi (BNs) via PMs to melanoma metastases (MMs), as well as with an increasing tumor thickness and stage. These results highlight the important role of ENOX2 in cancer growth, progression and metastasis. The ENOX2 expression was not limited to malignant cell lines but could also be found in keratinocytes, fibroblasts and melanocytes. The viability of melanoma cell lines could be inhibited by PXD. A reduced induction of phospho-AKT under PXD could prevent the development of acquired BRAFi resistance. In conclusion, ENOX2 may serve as a potential prognostic marker and therapeutic target in malignant melanoma. Full article
(This article belongs to the Special Issue Advances in Pathogenesis and Treatment of Skin Cancer)
Show Figures

Figure 1

27 pages, 1918 KiB  
Review
VEGF—Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications
by Cristina Sánchez-Martínez, Esther Grueso, Tania Calvo-López, Jorge Martinez-Ortega, Ana Ruiz and José M. Almendral
Cells 2024, 13(21), 1815; https://doi.org/10.3390/cells13211815 - 4 Nov 2024
Viewed by 694
Abstract
Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in [...] Read more.
Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in conditions such as cancer and eye diseases. Some viruses may alter the levels of VEGF in the pathogenesis of respiratory syndromes, or they may encode VEGF-like factors, promoting vascular disruption and angiogenesis to enable viruses’ systemic spread. Oncogenic viruses may express interactive factors that perturb VEGF’s functional levels or downstream signaling, which increases the neovascularization and metastasis of tumors. Furthermore, many viruses are being developed as therapeutic vectors for vascular pathologies in clinical trials. Major examples are those viral vectors that inhibit the role of VEGF in the neovascularization required for cancer progression; this is achieved through the induction of immune responses, by exposing specific peptides that block signaling or by expressing anti-VEGF and anti-VEGF receptor-neutralizing antibodies. Other viruses have been engineered into effective pro- or anti-angiogenesis multitarget vectors for neovascular eye diseases, paving the way for therapies with improved safety and minimal side effects. This article critically reviews the large body of literature on these issues, highlighting those contributions that describe the molecular mechanisms, thus expanding our understanding of the VEGF–virus interactions in disease and therapy. This could facilitate the clinical use of therapeutic virus vectors in precision medicine for the VEGF system. Full article
(This article belongs to the Special Issue Vascular Endothelial Functions in Health and Diseases)
Show Figures

Graphical abstract

15 pages, 3130 KiB  
Article
Role of Peroxisome Proliferator-Activated Receptor α-Dependent Mitochondrial Metabolism in Ovarian Cancer Stem Cells
by Seo Yul Lee, Min Joo Shin, Seong Min Choi, Dae Kyoung Kim, Mee Gyeon Choi, Jun Se Kim, Dong Soo Suh, Jae Ho Kim and Seong Jang Kim
Int. J. Mol. Sci. 2024, 25(21), 11760; https://doi.org/10.3390/ijms252111760 - 1 Nov 2024
Viewed by 437
Abstract
Peroxisome proliferator-activated receptors (PPARs), including PPAR-α, PPAR-β/δ, and PPAR-γ, are involved in various cellular responses, including metabolism and cell proliferation. Increasing evidence suggests that PPARs are closely associated with tumorigenesis and metastasis. However, the exact role of PPARs in energy metabolism and cancer [...] Read more.
Peroxisome proliferator-activated receptors (PPARs), including PPAR-α, PPAR-β/δ, and PPAR-γ, are involved in various cellular responses, including metabolism and cell proliferation. Increasing evidence suggests that PPARs are closely associated with tumorigenesis and metastasis. However, the exact role of PPARs in energy metabolism and cancer stem cell (CSC) proliferation remains unclear. This study investigated the role of PPARs in energy metabolism and tumorigenesis in ovarian CSCs. The expression of PPARs and fatty acid consumption as an energy source increased in spheroids derived from A2780 ovarian cancer cells (A2780-SP) compared with their parental cells. GW6471, a PPARα inhibitor, induced apoptosis in A2780-SP. PPARα silencing mediated by small hairpin RNA reduced A2780-SP cell proliferation. Treatment with GW6471 significantly inhibited the respiratory oxygen consumption of A2780-SP cells, with reduced dependency on fatty acids, glucose, and glutamine. In a xenograft tumor transplantation mouse model, intraperitoneal injection of GW6471 inhibited in vivo tumor growth of A2780-SP cells. These results suggest that PPARα plays a vital role in regulating the proliferation and energy metabolism of CSCs by altering mitochondrial activity and that it offers a promising therapeutic target to eradicate CSCs. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

15 pages, 646 KiB  
Review
Copper and Colorectal Cancer
by Maciej Małyszko and Adam Przybyłkowski
Cancers 2024, 16(21), 3691; https://doi.org/10.3390/cancers16213691 - 31 Oct 2024
Viewed by 429
Abstract
Minerals constitute only 5% of the typical human diet but are vital for health and functionality. Copper, a trace element, is absorbed by the human gut at 30–40% from diets typical of industrialized countries. The liver produces metallothioneins, which store copper. Copper is [...] Read more.
Minerals constitute only 5% of the typical human diet but are vital for health and functionality. Copper, a trace element, is absorbed by the human gut at 30–40% from diets typical of industrialized countries. The liver produces metallothioneins, which store copper. Copper is crucial for mitochondrial respiration, pigmentation, iron transport, antioxidant defense, hormone production, and extracellular matrix biosynthesis. Copper deficiency, often caused by mutations in the ATP7A gene, results in Menkes disease, an X-linked recessive disorder. On the contrary, Wilson disease is characterized by toxic copper accumulation. Cuproptosis, a unique form of cell death regulated by copper, is a subtype of necrosis induced by enhanced mitochondrial metabolism and intracellular copper accumulation. This process can reduce the malignant potential of tumor cells by inhibiting glucose metabolism. Therapeutically, copper and its complexes have shown efficacy in malignancy treatments. The disruption of copper homeostasis and excessive cuproplasia are significant in colorectal cancer development and metastasis. Therefore, manipulating copper status presents a potential therapeutic target for colorectal cancer, using copper chelators to inhibit copper formation or copper ion carriers to promote cuproptosis. This review highlights the role of copper in human physiology and pathology, emphasizing its impact on colorectal cancer and potential therapeutic strategies. Future AI-based approaches are anticipated to accelerate the development of new compounds targeting cuproptosis and copper disruption in colorectal cancer. Full article
Show Figures

Figure 1

19 pages, 6339 KiB  
Article
Autocrine Motility Factor and Its Peptide Derivative Inhibit Triple-Negative Breast Cancer by Regulating Wound Repair, Survival, and Drug Efflux
by Se Gie Kim, Seok Joong Kim, Thanh Van Duong, Yuhan Cho, Bogeun Park, Ulhas Sopanrao Kadam, Hee Sung Park and Jong Chan Hong
Int. J. Mol. Sci. 2024, 25(21), 11714; https://doi.org/10.3390/ijms252111714 - 31 Oct 2024
Viewed by 372
Abstract
Triple-negative breast cancer (TNBC) presents a significant challenge in oncology due to its aggressive nature and limited targeted therapeutic options. This study explores the potential of autocrine motility factor (AMF) and an AMF-derived peptide as novel treatments for TNBC. AMF, primarily secreted by [...] Read more.
Triple-negative breast cancer (TNBC) presents a significant challenge in oncology due to its aggressive nature and limited targeted therapeutic options. This study explores the potential of autocrine motility factor (AMF) and an AMF-derived peptide as novel treatments for TNBC. AMF, primarily secreted by neoplastic cells, plays a crucial role in cancer cell motility, metastasis, and proliferation. The research demonstrates that AMF and its derived peptide inhibit TNBC cell proliferation by modulating cellular migration, redox homeostasis, apoptotic pathways, and drug efflux mechanisms. Dose-dependent antiproliferative effects were observed across three TNBC cell lines, with higher concentrations impairing cellular migration. Mechanistic studies revealed decreased glucose-6-phosphate dehydrogenase expression and elevated reactive oxygen species production, suggesting redox imbalance as a primary mediator of apoptosis. Combination studies with conventional therapeutics showed near-complete eradication of resistant TNBC cells. The observed reduction in p53 levels and increased intranuclear doxorubicin accumulation highlight the AMF/AMF peptide’s potential as multidrug resistance modulators. This study underscores the promise of using AMF/AMF peptide as a novel therapeutic approach for TNBC, addressing current treatment limitations and warranting further investigation. Full article
Show Figures

Figure 1

18 pages, 3344 KiB  
Article
Integrin α6β4 Upregulates PTPRZ1 Through UCHL1-Mediated Hif-1α Nuclear Accumulation to Promote Triple-Negative Breast Cancer Cell Invasive Properties
by Min Chen, Parvanee A. Karimpour, Andrew Elliott, Daheng He, Teresa Knifley, Jinpeng Liu, Chi Wang and Kathleen L. O’Connor
Cancers 2024, 16(21), 3683; https://doi.org/10.3390/cancers16213683 - 31 Oct 2024
Viewed by 454
Abstract
Integrin α6β4 drives triple-negative breast cancer (TNBC) aggressiveness through the transcriptional regulation of key genes. Here, we investigated how integrin α6β4 regulates protein tyrosine phosphatase receptor type Z1 (PTPRZ1). Using stable re-expression of integrin β4 (ITGB4) in cells naturally devoid of integrin α6β4 [...] Read more.
Integrin α6β4 drives triple-negative breast cancer (TNBC) aggressiveness through the transcriptional regulation of key genes. Here, we investigated how integrin α6β4 regulates protein tyrosine phosphatase receptor type Z1 (PTPRZ1). Using stable re-expression of integrin β4 (ITGB4) in cells naturally devoid of integrin α6β4 or knockdown or knockout (KO) of ITGB4, we found that integrin α6β4 regulates PTPRZ1 expression. To gain mechanistic insight, we focused on Hif-1α due to the impact of integrin α6β4 on a hypoxia-associated signature. We found that nuclear localization of Hif-1α, but not Hif-2α, was substantially enhanced with integrin α6β4 signaling. Hif-1α knockdown by shRNA or chemical inhibition decreased PTPRZ1 expression, while chemical activation of Hif-1α increased it. Upstream of Hif-1α, integrin α6β4 upregulates UCHL1 to stabilize Hif-1α and ultimately regulate PTPRZ1. Inhibition of UCHL1 and PTPRZ1 dramatically decreases integrin α6β4-mediated cell migration and three-dimensional invasive growth. Finally, public breast cancer database analyses demonstrated that ITGB4 correlates with PTPRZ1 and that high expression of ITGB4, UCHL1, HIF1A, and PTPRZ1 associated with decreased overall survival, distant metastasis free survival, post progression survival, and relapse-free survival. In summary, these findings provide a novel function of integrin α6β4 in promoting tumor invasive phenotypes through UCHL1-Hif-1α-mediated regulation of PTPRZ1. Full article
(This article belongs to the Special Issue Neoadjuvant Therapy of Breast Cancer)
Show Figures

Figure 1

21 pages, 9112 KiB  
Article
Melittin Inhibits Colorectal Cancer Growth and Metastasis by Ac-Tivating the Mitochondrial Apoptotic Pathway and Suppressing Epithelial–Mesenchymal Transition and Angiogenesis
by Kangli Wang, Lingchen Tao, Meifei Zhu, Xinyu Yu, Yuanyuan Lu, Bin Yuan and Fuliang Hu
Int. J. Mol. Sci. 2024, 25(21), 11686; https://doi.org/10.3390/ijms252111686 - 30 Oct 2024
Viewed by 416
Abstract
Melittin has previously been found to have a positive effect on colorectal cancer (CRC) treatment, one of the most difficult-to-treat malignancies, but the mechanism by which this effect occurs remains unclear. We evaluated melittin’s pro-apoptotic and anti-metastatic effects on CRC in vitro and [...] Read more.
Melittin has previously been found to have a positive effect on colorectal cancer (CRC) treatment, one of the most difficult-to-treat malignancies, but the mechanism by which this effect occurs remains unclear. We evaluated melittin’s pro-apoptotic and anti-metastatic effects on CRC in vitro and in vivo. The results showed that melittin-induced mitochondrial ROS bursts decreased ΔΨm, inhibited Bcl-2 expression, and increased Bax expression in both cells and tumor tissues. This led to increased mitochondrial membrane permeability and the release of pro-apoptotic factors, particularly the high expression of Cytochrome C, initiating the apoptosis program. Additionally, through wound-healing and transwell assays, melittin inhibited the migration and invasion of CRC cells. In vivo, the anti-metastatic effect of melittin was also verified in a lung metastasis mouse model. Western blotting and immunohistochemistry analysis indicated that melittin suppressed the expression of MMPs and regulated the expression of crucial EMT markers and related transcription factors, thereby inhibiting EMT. Furthermore, the melittin disrupts neovascularization, ultimately inhibiting the metastasis of CRC. In conclusion, melittin exerts anti-CRC effects by promoting apoptosis and inhibiting metastasis, providing a theoretical basis for further research on melittin as a targeted therapeutic agent for CRC. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds: 3rd Edition)
Show Figures

Figure 1

18 pages, 1009 KiB  
Review
The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity
by Adam Kowalczyk, Calro Ignazio Giovanni Tuberoso and Igor Jerković
Antioxidants 2024, 13(11), 1313; https://doi.org/10.3390/antiox13111313 - 28 Oct 2024
Viewed by 623
Abstract
Rosmarinic acid (RA), a polyphenolic compound found in herbs, such as rosemary, basil, and mint, has garnered significant attention due to its potent antioxidant and anticancer properties. This review examined the molecular mechanisms underlying these properties and their potential application in cancer prevention [...] Read more.
Rosmarinic acid (RA), a polyphenolic compound found in herbs, such as rosemary, basil, and mint, has garnered significant attention due to its potent antioxidant and anticancer properties. This review examined the molecular mechanisms underlying these properties and their potential application in cancer prevention and therapy. It focuses specifically on RA’s role in modulating cancer-related pathways and presents a detailed analysis of recent advancements in this area. A systematic review of PubMed, Scopus, and Web of Science databases was conducted in accordance with PRISMA (Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, focusing on studies published between 2019 and 2024. A total of 25 articles providing evidence from in vitro, in vivo, and in silico studies were selected. These findings elucidate the role of RA in inhibiting tumor cell proliferation, inducing apoptosis, and preventing metastasis in various types of cancer through diverse mechanisms, including its antioxidant properties. Despite these promising results, RA’s bioavailability challenges limit its therapeutic efficacy, underscoring the necessity for improved delivery methods. This review concludes that RA exhibits significant potential as a natural agent for cancer prevention and treatment, although further clinical trials are warranted. Full article
(This article belongs to the Special Issue Phenolic Antioxidants)
Show Figures

Figure 1

15 pages, 1247 KiB  
Review
Adipose-Derived Stromal Cells and Cancer-Associated Fibroblasts: Interactions and Implications in Tumor Progression
by Rasha S. Abo El Alaa, Wafaa Al-Mannai, Nour Darwish and Layla Al-Mansoori
Int. J. Mol. Sci. 2024, 25(21), 11558; https://doi.org/10.3390/ijms252111558 - 28 Oct 2024
Viewed by 462
Abstract
Adipose-derived stromal cells (ASCs) and cancer-associated fibroblasts (CAFs) play pivotal roles in the tumor microenvironment (TME), significantly influencing cancer progression and metastasis. This review explores the plasticity of ASCs, which can transdifferentiate into CAFs under the influence of tumor-derived signals, thus enhancing their [...] Read more.
Adipose-derived stromal cells (ASCs) and cancer-associated fibroblasts (CAFs) play pivotal roles in the tumor microenvironment (TME), significantly influencing cancer progression and metastasis. This review explores the plasticity of ASCs, which can transdifferentiate into CAFs under the influence of tumor-derived signals, thus enhancing their secretion of extracellular matrix components and pro-inflammatory cytokines that promote tumorigenesis. We discuss the critical process of the epithelial-to-mesenchymal transition (EMT) facilitated by ASCs and CAFs, highlighting its implications for increased invasiveness and therapeutic resistance in cancer cells. Key signaling pathways, including the transforming growth factor-β (TGF-β), Wnt/β-catenin, and Notch, are examined for their roles in regulating EMT and CAF activation. Furthermore, we address the impact of epigenetic modifications on ASC and CAF functionality, emphasizing recent advances in targeting these modifications to inhibit their pro-tumorigenic effects. This review also considers the metabolic reprogramming of ASCs and CAFs, which supports their tumor-promoting activities through enhanced glycolytic activity and lactate production. Finally, we outline potential therapeutic strategies aimed at disrupting the interactions between ASCs, CAFs, and tumor cells, including targeted inhibitors of key signaling pathways and innovative immunotherapy approaches. By understanding the complex roles of ASCs and CAFs within the TME, this review aims to identify new therapeutic opportunities that could improve patient outcomes in cancer treatment. Full article
Show Figures

Figure 1

Back to TopTop