Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (70,521)

Search Parameters:
Keywords = metabolic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 844 KiB  
Review
The Cardioprotective Effects of Polyunsaturated Fatty Acids Depends on the Balance Between Their Anti- and Pro-Oxidative Properties
by Malgorzata Sidorkiewicz
Nutrients 2024, 16(22), 3937; https://doi.org/10.3390/nu16223937 (registering DOI) - 18 Nov 2024
Abstract
Polyunsaturated fatty acids (PUFAs) are not only structural components of membrane phospholipids and energy storage molecules in cells. PUFAs are important factors that regulate various biological functions, including inflammation, oxidation, and immunity. Both n-3 and n-6 PUFAs from cell membranes can [...] Read more.
Polyunsaturated fatty acids (PUFAs) are not only structural components of membrane phospholipids and energy storage molecules in cells. PUFAs are important factors that regulate various biological functions, including inflammation, oxidation, and immunity. Both n-3 and n-6 PUFAs from cell membranes can be metabolized into pro-inflammatory and anti-inflammatory metabolites that, in turn, influence cardiovascular health in humans. The role that PUFAs play in organisms depends primarily on their structure, quantity, and the availability of enzymes responsible for their metabolism. n-3 PUFAs, such as eicosapentaenoic (EPA) and docosahexaenoic (DHA), are generally known for anti-inflammatory and atheroprotective properties. On the other hand, n-6 FAs, such as arachidonic acid (AA), are precursors of lipid mediators that display mostly pro-inflammatory properties and may attenuate the efficacy of n-3 by competition for the same enzymes. However, a completely different light on the role of PUFAs was shed due to studies on the influence of PUFAs on new-onset atrial fibrillation. This review analyzes the role of PUFAs and PUFA derivatives in health-related effects, considering both confirmed benefits and newly arising controversies. Full article
37 pages, 2386 KiB  
Review
Cajaninstilbene Acid and Its Derivative as Multi-Therapeutic Agents: A Comprehensive Review
by Wen Hou, Lejun Huang, Jinyang Wang, Walter Luyten, Jia Lai, Zhinuo Zhou, Sishuang Kang, Ping Dai, Yanzhu Wang, Hao Huang and Jinxia Lan
Molecules 2024, 29(22), 5440; https://doi.org/10.3390/molecules29225440 (registering DOI) - 18 Nov 2024
Abstract
: Pigeon pea (Cajanus cajan (L.) Millsp.) is a traditional Chinese medicinal plant widely utilized in folk medicine due to its significant pharmacological and nutritional properties. Cajaninstilbene acid (CSA), a stilbene compound derived from pigeon pea leaves, has been extensively investigated [...] Read more.
: Pigeon pea (Cajanus cajan (L.) Millsp.) is a traditional Chinese medicinal plant widely utilized in folk medicine due to its significant pharmacological and nutritional properties. Cajaninstilbene acid (CSA), a stilbene compound derived from pigeon pea leaves, has been extensively investigated since the 1980s. A thorough understanding of CSA’s mechanisms of action and its therapeutic effects on various diseases is crucial for developing novel therapeutic approaches. This paper presents an overview of recent research advancements concerning the biological activities and mechanisms of CSA and its derivatives up to February 2024. The review encompasses discussions on the in vivo metabolism of CSA and its derivatives, including antipathogenic micro-organisms activity, anti-tumor activity, systematic and organ protection activity (such as bone protection, cardiovascular protection, neuroprotection), anti-inflammatory activity, antioxidant activity, immune regulation as well as action mechanism of CSA and its derivatives. The most studied activities are antipathogenic micro-organisms activities. Additionally, the structure–activity relationships of CSA and its derivatives as well as the total synthesis of CSA are explored, highlighting the potential for developing new pharmaceutical agents. This review aims to provide a foundation for future clinical applications of CSA and its derivatives. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
16 pages, 1235 KiB  
Article
Vitamin D is Associated with Lipid Metabolism: A Sex- and Age-Dependent Analysis of a Large Outpatient Cohort
by Xitong Li, Yvonne Liu, Jingyun Wang, Xin Chen, Christoph Reichetzeder, Saban Elitok, Bernhard K. Krämer, Cornelia Doebis, Katrin Huesker, Volker von Baehr and Berthold Hocher
Nutrients 2024, 16(22), 3936; https://doi.org/10.3390/nu16223936 (registering DOI) - 18 Nov 2024
Abstract
Background: Vitamin D is a fat-soluble steroid that influences cardiovascular health by affecting lipid metabolism. Since dyslipidemia is a key risk factor for cardiovascular disease (CVD), our study aimed to explore the relationship between vitamin D levels and lipid parameters, considering the effects [...] Read more.
Background: Vitamin D is a fat-soluble steroid that influences cardiovascular health by affecting lipid metabolism. Since dyslipidemia is a key risk factor for cardiovascular disease (CVD), our study aimed to explore the relationship between vitamin D levels and lipid parameters, considering the effects of age and gender. Methods: In this cross-sectional study of 47,778 outpatients, we analyzed correlations between two forms of vitamin D—25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D)—and lipid parameters, including low-density lipoprotein (LDL), high-density lipoprotein (HDL), and total cholesterol (TC). Subgroup analyses by age and gender provided additional insights. Results: Results showed that 25(OH)D levels were negatively correlated with LDL and TC across the cohort. This association was particularly evident in men over 50, whereas women showed a positive correlation with LDL and TC before age 50 and a negative correlation after. HDL levels positively correlated with 25(OH)D across all age groups, with the strongest association in postmenopausal women. In contrast, 1,25(OH)2D showed a positive correlation only with HDL in individuals over 50, with no significant correlation with LDL or TC in any age group. Conclusions: In conclusion, findings from this cross-sectional study underscore an association between elevated levels of 25(OH)D and more favorable lipid profiles, characterized by reduced LDL and total cholesterol, as well as increased HDL levels. This association is particularly pronounced among individuals over 50 years of age and postmenopausal women. Full article
(This article belongs to the Section Nutrition and Public Health)
14 pages, 717 KiB  
Review
The Effects of SGLT2 Inhibitors on Blood Pressure and Other Cardiometabolic Risk Factors
by Alexandra Katsimardou, Panagiotis Theofilis, Aikaterini Vordoni, Michael Doumas and Rigas G. Kalaitzidis
Int. J. Mol. Sci. 2024, 25(22), 12384; https://doi.org/10.3390/ijms252212384 (registering DOI) - 18 Nov 2024
Abstract
Beyond their established hypoglycemic, cardioprotective, and nephroprotective properties, sodium–glucose cotransporters 2 (SGLT2) inhibitors exert other pleiotropic actions on blood pressure levels, body weight, and lipid metabolism. Blood pressure (BP) reduction varies based on the background history, including an effect on systolic, diastolic BP, [...] Read more.
Beyond their established hypoglycemic, cardioprotective, and nephroprotective properties, sodium–glucose cotransporters 2 (SGLT2) inhibitors exert other pleiotropic actions on blood pressure levels, body weight, and lipid metabolism. Blood pressure (BP) reduction varies based on the background history, including an effect on systolic, diastolic BP, and 24 h BP measurements. The reduction in body weight between 1 and 2 kg for the first months is caused by a reduction in visceral and subcutaneous fat due to glycosuria and loss of calories. Regarding lipid metabolism, a reduction in triglycerides and an increase in total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) have been reported, although these alterations are small and could provide additional cardiovascular protection. Various pathophysiologic mechanisms have been proposed to explain the above-mentioned pleiotropic actions of SGLT2 inhibitors. Natriuresis, osmotic diuresis, body weight reduction, amelioration of endothelial dysfunction and arterial stiffness, sympathetic tone decrease, and uric acid reduction are among those that have been suggested for BP reduction. Apart from glycosuria and calorie loss, other mechanisms seem to contribute to body weight reduction, such as the beiging of white adipose tissue, while the mechanisms involved in lipid metabolism alterations have not been clearly determined. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
15 pages, 2646 KiB  
Article
A Novel Gene, OsRLCK191, Involved in Culm Strength Improving Lodging Resistance in Rice
by Huilin Chang, Hanjing Sha, Shiwei Gao, Qing Liu, Yuqiang Liu, Cheng Ma, Bowen Shi and Shoujun Nie
Int. J. Mol. Sci. 2024, 25(22), 12382; https://doi.org/10.3390/ijms252212382 (registering DOI) - 18 Nov 2024
Abstract
Lodging is one of the major problems in rice production. However, few genes that can explain the culm strength within the temperate japonica subspecies have been identified. In this study, we identified OsRLCK191, which encodes receptor-like cytoplasmic kinase and plays critical roles [...] Read more.
Lodging is one of the major problems in rice production. However, few genes that can explain the culm strength within the temperate japonica subspecies have been identified. In this study, we identified OsRLCK191, which encodes receptor-like cytoplasmic kinase and plays critical roles in culm strength. OsRLCK191 mutants were produced by the CRISPR-Cas9 DNA-editing system. Compared with wild types (WTs), the bending moment of the whole plant (WP), the bending moment at breaking (BM), and the section modulus (SM) were decreased in rlck191 significantly. Although there is no significant decrease in the culm length of rlck191 compared with the WT; in the mutant, except the length of the fourth internode being significantly increased, the lengths of other internodes are significantly shortened. In addition, the yield traits of panicle length, thousand-seed weight, and seed setting rate decreased significantly in rlck191. Moreover, RNA-seq experiments were performed at an early stage of rice panicle differentiation in shoot apex. The differentially expressed genes (DEGs) are mainly involved in cell wall biogenesis, cell wall polysaccharide metabolic processes, cellar component biogenesis, and DNA-binding transcription factors. Transcriptome analysis of the cell wall biological process pathways showed that major genes that participated in the cytokinin oxidase/dehydrogenase family, cellulose synthase catalytic subunit genes, and ethylene response factor family transcription factor were related to culm strength. Our research provides an important theoretical basis for analyzing the lodging resistance mechanism and lodging resistance breeding of temperate japonica. Full article
(This article belongs to the Section Molecular Plant Sciences)
17 pages, 2100 KiB  
Article
Effects of Different Levels of Antarctic Krill Oil on the Ovarian Development of Macrobrachium rosenbergii
by Xiaochuan Zheng, Jie Yang, Xin Liu, Cunxin Sun, Qunlan Zhou, Aimin Wang, Jianming Chen and Bo Liu
Animals 2024, 14(22), 3313; https://doi.org/10.3390/ani14223313 (registering DOI) - 18 Nov 2024
Abstract
Antarctic krill oil has been proven to be able to promote the ovarian development of crustaceans, but its optimal application dose and potential regulatory mechanism in Macrobrachium rosenbergii are still unclear. In this study, five isonitrogenous and isolipidic diets with gradient additions of [...] Read more.
Antarctic krill oil has been proven to be able to promote the ovarian development of crustaceans, but its optimal application dose and potential regulatory mechanism in Macrobrachium rosenbergii are still unclear. In this study, five isonitrogenous and isolipidic diets with gradient additions of Antarctic krill oil (0%, 1.5%, 3%, 4.5%, and 6%) were served exposed to 8 weeks of feeding. The results show that 3–4.5% Antarctic krill oil supplementation significantly increases the weight gain rate and specific growth rate of M. rosenbergii (p < 0.05). In addition, 3–4.5% Antarctic krill oil supplementation significantly increased the content of hemolymph vitellogenin (VTG) and the levels of reproductive hormones, including methyl farnesoate (MF), estradiol (E2), and progesterone (P4) (p < 0.05). The differences in ovarian index, oocyte volume, yolk granule deposition in oocytes, and the transcription levels of VTG genes in hepatopancreas and ovarian tissues demonstrated that the addition of Antarctic krill oil significantly promoted ovarian development and vitellogenesis, especially at the 4.5% addition level. In terms of molecular signaling, this study confirms that the retinol metabolic signaling pathway, MF signaling pathway, steroid hormone signaling pathway, and ecdysone signaling pathway, along with their specific molecules, such as Farnesoic acid-O-methyltransferase (FAMeT), retinoid x receptor (RXR), ecdysone receptor (EcR), and estrogen-related receptor (ERR), are involved in the regulation of the ovarian development of M. rosenbergii by adding Antarctic krill oil at appropriate doses. The findings indicate that the supplementation of 4.5% Antarctic krill oil in the diet is optimal for stimulating the secretion of reproductive hormones in female M. rosenbergii, thereby promoting vitellogenesis and ovarian development. Full article
(This article belongs to the Special Issue Advances in Aquaculture Nutrition for Sustainable Health Management)
Show Figures

Figure 1

28 pages, 1231 KiB  
Review
Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective
by Chester Yan Jie Ng, Linda Zhong, Han Seong Ng, Kia Seng Goh and Yan Zhao
Nutrients 2024, 16(22), 3935; https://doi.org/10.3390/nu16223935 (registering DOI) - 18 Nov 2024
Abstract
Background: Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One [...] Read more.
Background: Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment. Full article
15 pages, 1880 KiB  
Article
High-Sensitivity C-Reactive Protein Levels in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), Metabolic Alcohol-Associated Liver Disease (MetALD), and Alcoholic Liver Disease (ALD) with Metabolic Dysfunction
by Seong-Uk Baek and Jin-Ha Yoon
Biomolecules 2024, 14(11), 1468; https://doi.org/10.3390/biom14111468 (registering DOI) - 18 Nov 2024
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a recently introduced term for steatotic liver disease (SLD). Although the inflammatory process is central to the pathogenesis of SLD, research investigating the differences in systemic inflammation across various SLD subtypes as well as sex differences [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a recently introduced term for steatotic liver disease (SLD). Although the inflammatory process is central to the pathogenesis of SLD, research investigating the differences in systemic inflammation across various SLD subtypes as well as sex differences is limited. This population-based, cross-sectional study investigated the association between SLD subtypes and high-sensitivity C-reactive protein (hs-CRP) levels among Korean adults (N = 20,141; mean age: 50.8 ± 16.7 years). The participants were classified into five groups that included no SLD, MASLD, metabolic alcohol-associated liver disease (MetALD), alcoholic liver disease with metabolic dysfunction (ALD with MD), and other SLDs. The median (Q1, Q3) value of the hs-CRP level was 0.54 mg/L (0.33, 1.04). Among men, compared to levels in the no SLD group, the MASLD, MetALD, and ALD with MD groups were associated with 41.9% (95% confidence interval [CI]: 35.1–49.1%), 46.8% (95% CI: 35.0–59.6%), and 51.8% (95% CI: 30.0–77.2%) increases in hs-CRP levels, respectively. The association between SLD subtypes and hs-CRP levels was stronger among women, and compared to the levels in the no SLD group, the MASLD, MetALD, and ALD with MD groups were associated with 81.5% (95% CI: 73.6–89.8%), 84.3% (95% CI: 58.1–114.8%), and 98.2% (95% CI: 38.0–184.8%) increases in hs-CRP levels, respectively. In conclusion, our findings indicate a varying profile of systemic inflammation across SLD subtypes, with more pronounced increases in hs-CRP levels in women with SLDs. Full article
(This article belongs to the Special Issue Liver Damage and Associated Metabolic Disorders)
Show Figures

Figure 1

15 pages, 2622 KiB  
Article
Small Leucine Zipper Protein Regulates Glucose Metabolism of Prostate Cancer Cells via Induction of Phosphoglycerate Kinase 1
by Sila Han, Sungyeon Park, Suhyun Kim, Sujin Kwon and Jesang Ko
Cancers 2024, 16(22), 3861; https://doi.org/10.3390/cancers16223861 (registering DOI) - 18 Nov 2024
Abstract
Background: Cancer cells exhibit altered metabolism whereby glucose is preferentially utilized to produce lactate through aerobic glycolysis. The increase in lactate production creates an acidic microenvironment that supports tumor progression and metastasis. Human small leucine zipper protein (sLZIP) is involved in the transcriptional [...] Read more.
Background: Cancer cells exhibit altered metabolism whereby glucose is preferentially utilized to produce lactate through aerobic glycolysis. The increase in lactate production creates an acidic microenvironment that supports tumor progression and metastasis. Human small leucine zipper protein (sLZIP) is involved in the transcriptional regulation of genes related to migration and invasion of prostate cancer. However, the role of sLZIP in modulating glucose metabolism in prostate cancer remains unknown. This study investigates whether sLZIP regulates the transcription of glycolysis-related genes to promote metabolic reprogramming in prostate cancer. Methods: Depletion of sLZIP resulted in the downregulation of several glycolytic genes, including glucose transporter 1, phosphofructokinase liver type, phosphoglycerate kinase 1 (PGK1), and lactate dehydrogenase. Among these, only PGK1 showed a prominent dose-dependent decrease in mRNA and protein expression after sLZIP silencing. Results: Mechanistically, increasing or decreasing sLZIP affected the promoter activity of PGK1 in a similar manner. Moreover, the absence of sLZIP attenuated the maximum glycolytic rate in prostate cancer cells. These results were further supported by a reduction in lactate secretion, glucose uptake, and ATP production in sLZIP-knockout prostate cancer cells. sLZIP deficiency hindered cancer growth, as demonstrated by proliferation assays. However, overexpression of PGK1 in sLZIP knockout cells resulted in recovery of aerobic glycolysis. Results of the xenograft experiment revealed that mice injected with sLZIP knockout cells exhibited a decrease in tumor mass compared to those injected with control cells. Conclusion: These findings suggest that sLZIP contributes to the metabolic reprogramming of prostate cancer cells via the transcriptional regulation of PGK1. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

28 pages, 2695 KiB  
Article
Sugar Composition of Thai Desserts and Their Impact on the Gut Microbiome in Healthy Volunteers: A Randomized Controlled Trial
by Sayamon Senaprom, Nuttaphat Namjud, Thunnicha Ondee, Akkarach Bumrungpert and Krit Pongpirul
Nutrients 2024, 16(22), 3933; https://doi.org/10.3390/nu16223933 (registering DOI) - 18 Nov 2024
Abstract
Background: The relationship between consuming Thai desserts—predominantly composed of carbohydrates—and gut microbiome profiles remains unclear. This study aimed to evaluate the effects of consuming various Thai desserts with different GI values on the gut microbiomes of healthy volunteers. Methods: This open-label, parallel randomized [...] Read more.
Background: The relationship between consuming Thai desserts—predominantly composed of carbohydrates—and gut microbiome profiles remains unclear. This study aimed to evaluate the effects of consuming various Thai desserts with different GI values on the gut microbiomes of healthy volunteers. Methods: This open-label, parallel randomized clinical trial involved 30 healthy individuals aged 18 to 45 years. Participants were randomly assigned to one of three groups: Phetchaburi’s Custard Cake (192 g, low-GI group, n = 10), Saraburi’s Curry Puff (98 g, medium-GI group, n = 10), and Lampang’s Crispy Rice Cracker (68 g, high-GI group, n = 10), each consumed alongside their standard breakfast. Fecal samples were collected at baseline and 24 h post-intervention for metagenomic analysis of gut microbiome profiles using 16S rRNA gene sequencing. Results: After 24 h, distinct trends in the relative abundance of various gut microbiota were observed among the dessert groups. In the high-GI dessert group, the abundance of Collinsella and Bifidobacterium decreased compared to the low- and medium-GI groups, while Roseburia and Ruminococcus showed slight increases. Correlation analysis revealed a significant negative relationship between sugar intake and Lactobacillus abundance in the medium- and high-GI groups, but not in the low-GI group. Additionally, a moderately negative association was observed between Akkermansia abundance and sugar intake in the high-GI group. These bacteria are implicated in energy metabolism and insulin regulation. LEfSe analysis identified Porphyromonadaceae and Porphyromonas as core microbiota in the low-GI group, whereas Klebsiella was enriched in the high-GI group, with no predominant bacteria identified in the medium-GI group. Conclusions: The findings suggest that Thai desserts with varying GI levels can influence specific gut bacteria, though these effects may be temporary. Full article
(This article belongs to the Special Issue Nutrition–Microbiome Interaction in Healthy Metabolism)
16 pages, 934 KiB  
Article
Impact of a Physical Exercise and Health Education Program on Metabolic Syndrome and Quality of Life in Postmenopausal Breast Cancer Women Undergoing Adjuvant Treatment with Aromatase Inhibitors
by Pedro Cespedes, Francisco M. Martínez-Arnau, María Dolores Torregrosa, Omar Cauli and Cristina Buigues
Medicina 2024, 60(11), 1893; https://doi.org/10.3390/medicina60111893 (registering DOI) - 18 Nov 2024
Abstract
Background and Objectives: Adjuvant treatment with aromatase inhibitors (AIs) in breast cancer (BC) survivors can cause adverse effects such as metabolic syndrome (MS) (insulin resistance, central obesity, atherogenic dyslipidemia, and hypertension) associated with morbidity and premature mortality. We evaluate the effect of [...] Read more.
Background and Objectives: Adjuvant treatment with aromatase inhibitors (AIs) in breast cancer (BC) survivors can cause adverse effects such as metabolic syndrome (MS) (insulin resistance, central obesity, atherogenic dyslipidemia, and hypertension) associated with morbidity and premature mortality. We evaluate the effect of a multimodal program based on physical exercise and health education on MS and health-related quality of life (QoL) in postmenopausal women with BC under AIs. Methods: A total of 56 postmenopausal women, diagnosed with BC, aged 60 years or older (mean age 67.2 years) and on hormonal treatment with AIs, were included in the multimodal physical exercise and health education program, and evaluated before and after their participation. The assessment of the five criteria of the MS included the following: waist circumference, high blood pressure, fasting glucose, triglycerides, and high-density lipoprotein cholesterol. Two main instruments were used to evaluate the impact of the intervention on QoL: the EORTC QLQ C30 (questionnaire for cancers in general) and the EORTC QLQ BR23 (specifically for breast cancer patients). The EuroQol 5D (EQ-5D) was also used to compare these results. Results: The percentage of women meeting the MS criteria was 37.7% at baseline and fell to 15.1% at 3 months after the intervention (p = 0.02). The intervention significantly reduced hypertension (p < 0.001), central obesity (p < 0.001), and the concentration of triglycerides (p = 0.016). No significant changes were observed in fasting glucose and HDL concentration. A statistically significant improvement was found in QoL (on both the QLQ30 and BR23 scales). A multivariate regression model analysis identified marital status (being married) (95% CI: 1.728–131.615, p = 0.014), and percentage of attendance at health education sessions (95% CI: 1.010–1.211, p = 0.029) as positive predictive variables of improvement in MS. Conclusions: The implementation of multimodal, community-based programs of physical exercise and health education improve the prevalence of MS and specific criteria of MS and QoL in postmenopausal women with breast cancer receiving AI treatment. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

18 pages, 600 KiB  
Review
Proposed Mechanisms of Cell Therapy for Alzheimer’s Disease
by Ekaterina Belousova, Diana Salikhova, Yaroslav Maksimov, Vladimir Nebogatikov, Anastasiya Sudina, Dmitry Goldshtein and Aleksey Ustyugov
Int. J. Mol. Sci. 2024, 25(22), 12378; https://doi.org/10.3390/ijms252212378 (registering DOI) - 18 Nov 2024
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells [...] Read more.
Alzheimer’s disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis. Full article
(This article belongs to the Special Issue From Molecular Insights to Novel Therapies: Neurological Diseases)
23 pages, 7007 KiB  
Article
Amelioration of Toll-like Receptor-4 Signaling and Promotion of Mitochondrial Function by Mature Silkworm Extracts in Ex Vivo and in Vitro Macrophages
by Trinh Yen Binh Phan, Byungki Jang, Sang-Kuk Kang, Jongbok Seo, Seong-Ryul Kim, Kee-Young Kim and Young Ho Koh
Nutrients 2024, 16(22), 3932; https://doi.org/10.3390/nu16223932 (registering DOI) - 18 Nov 2024
Abstract
Objectives: The unknown immune-enhancing effects of steamed mature silkworms (Bombyx mori L.), known as HongJam (HJ), were investigated. Methods: Supercritical fluid extracts from the White Jade variety of HJ (WJ-SCEs) were applied to in vitro RAW264.7 macrophages (RAWMs) and ex vivo bone [...] Read more.
Objectives: The unknown immune-enhancing effects of steamed mature silkworms (Bombyx mori L.), known as HongJam (HJ), were investigated. Methods: Supercritical fluid extracts from the White Jade variety of HJ (WJ-SCEs) were applied to in vitro RAW264.7 macrophages (RAWMs) and ex vivo bone marrow-derived macrophages (BMDMs). Results: WJ-SCE enhanced the proliferation and viability of both RAWMs and BMDMs. Supplementation with WJ-SCE significantly reduced the lipopolysaccharide (LPS)-induced expression of iNOS mRNA and protein, resulting in decreased nitric oxide (NO) production. Additionally, WJ-SCE lowered the mRNA and protein expression of COX-2 and reduced the levels of pro-inflammatory cytokines. The mitochondrial function, ATP levels, and reactive oxygen species levels in LPS-treated macrophages were restored following WJ-SCE treatment. WJ-SCE modulated LPS-Toll-like receptor-4 (TLR-4) signaling by reducing the levels of phosphorylated (p)-p38, p-ERK1/2, and p-p65. WJ-SCE also restored gene expression related to cytokines, chemokines, glucose transport, mitochondrial metabolism, and TLR-4 signaling, suggesting the inhibition of pro-inflammatory M1 macrophage polarization. Furthermore, WJ-SCE enhanced macrophage phagocytic and pinocytotic activity. Conclusions: WJ-SCE demonstrated anti-inflammatory effects by inhibiting LPS-induced M1 polarization in both macrophage types, potentially suppressing chronic inflammation while enhancing phagocytosis and pinocytosis. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

20 pages, 5599 KiB  
Article
Transcriptomic and Metabolomics Joint Analyses Reveal the Influence of Gene and Metabolite Expression in Blood on the Lactation Performance of Dual-Purpose Cattle (Bos taurus)
by Shengchao Ma, Dan Wang, Menghua Zhang, Lei Xu, Xuefeng Fu, Tao Zhang, Mengjie Yan and Xixia Huang
Int. J. Mol. Sci. 2024, 25(22), 12375; https://doi.org/10.3390/ijms252212375 (registering DOI) - 18 Nov 2024
Abstract
Blood is an important component for maintaining animal lives and synthesizing sugars, lipids, and proteins in organs. Revealing the relationship between genes and metabolite expression and milk somatic cell count (SCC), milk fat percentage, milk protein percentage, and lactose percentage in blood is [...] Read more.
Blood is an important component for maintaining animal lives and synthesizing sugars, lipids, and proteins in organs. Revealing the relationship between genes and metabolite expression and milk somatic cell count (SCC), milk fat percentage, milk protein percentage, and lactose percentage in blood is helpful for understanding the molecular regulation mechanism of milk formation. Therefore, we separated the buffy coat and plasma from the blood of Xinjiang Brown cattle (XJBC) and Chinese Simmental cattle (CSC), which exhibit high and low SCC/milk fat percentage/milk protein percentage/lactose percentages, respectively. The expression of genes in blood and the metabolites in plasma was detected via RNA-Seq and LC-MS/MS, respectively. Based on the weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis of differentially expressed genes (DEGs), we further found that the expression of genes in the blood mainly affected the SCC and milk fat percentage. Immune or inflammatory-response-related pathways were involved in the regulation of SCC, milk fat percentage, milk protein percentage, and lactose percentage. The joint analysis of the metabolome and transcriptome further indicated that, in blood, the metabolism pathways of purine, glutathione, glycerophospholipid, glycine, arginine, and proline are also associated with SCC, while lipid metabolism and amino-acid-related metabolism pathways are associated with milk fat percentage and milk protein percentage, respectively. Finally, related SCC, milk fat percentage, and milk protein percentage DEGs and DEMs were mainly identified in the blood. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 3968 KiB  
Article
Comparative and Spatial Transcriptome Analysis of Rhododendron decorum Franch. During the Flowering Period and Revelation of the Plant Defense Mechanism
by Weiwei Liu, Chenghua Yu, Kaiye Yang, Ling Wang, Zhongyu Fan and Xinchun Mo
Genes 2024, 15(11), 1482; https://doi.org/10.3390/genes15111482 (registering DOI) - 18 Nov 2024
Abstract
Background: Rhododendron is a globally distributed and extensive genus, comprising over 1000 species. In the southwestern mountains of China, there exists a remarkable diversity of Rhododendron, with Yunnan Province alone harboring more than 600 species. R. decorum Franch. has long been utilized [...] Read more.
Background: Rhododendron is a globally distributed and extensive genus, comprising over 1000 species. In the southwestern mountains of China, there exists a remarkable diversity of Rhododendron, with Yunnan Province alone harboring more than 600 species. R. decorum Franch. has long been utilized by local communities for its medicinal and edible properties. However, the transcriptional regulation function, medicinal properties, and edibility characteristics of R. decorum Franch. currently lack a solid theoretical basis. Methods: Total RNA was extracted from leaves, corollas and androecium/gynoecium of R. decorum Franch. in Heqing county, followed by the construction of cDNA libraries and the de novo assembly of transcriptomes. Results: A total of 63,050 unigenes were extracted from the flowers and leaf organs of R. decorum Franch. Among these unigenes, 43,517 were predicted to be coding sequences, with 32,690 being effectively annotated. Differential gene expression enrichment was observed among different organs within their respective transcriptomes; notably floral organs exhibited significant defense against plant diseases along with signal transduction functions. Furthermore, during the flower harvesting period, all floral organs exhibited gene enrichment pathways associated with carbohydrate metabolism. Additionally, the stamen and pistil displayed flavonoid metabolism pathways, suggesting their potential applications as functional food or medicine. Conclusions: Our results shed light on plant–pathogen defense mechanisms and the molecular bias of flavonoids biosynthesis on flower organs during the flowering period, which might help to understand the consumption of R. decorum Franch. corollas by the Bai nationality of Heqing county. Full article
(This article belongs to the Special Issue Molecular Genetics and Multi-omics in Medicinal Plants)
Show Figures

Figure 1

Back to TopTop