Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = marine waste valorization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2764 KiB  
Review
Enzymes from Fishery and Aquaculture Waste: Research Trends in the Era of Artificial Intelligence and Circular Bio-Economy
by Zied Khiari
Mar. Drugs 2024, 22(9), 411; https://doi.org/10.3390/md22090411 - 10 Sep 2024
Viewed by 3245
Abstract
In the era of the blue bio-economy, which promotes the sustainable utilization and exploitation of marine resources for economic growth and development, the fisheries and aquaculture industries still face huge sustainability issues. One of the major challenges of these industries is associated with [...] Read more.
In the era of the blue bio-economy, which promotes the sustainable utilization and exploitation of marine resources for economic growth and development, the fisheries and aquaculture industries still face huge sustainability issues. One of the major challenges of these industries is associated with the generation and management of wastes, which pose a serious threat to human health and the environment if not properly treated. In the best-case scenario, fishery and aquaculture waste is processed into low-value commodities such as fishmeal and fish oil. However, this renewable organic biomass contains a number of highly valuable bioproducts, including enzymes, bioactive peptides, as well as functional proteins and polysaccharides. Marine-derived enzymes are known to have unique physical, chemical and catalytic characteristics and are reported to be superior to those from plant and animal origins. Moreover, it has been established that enzymes from marine species possess cold-adapted properties, which makes them interesting from technological, economic and sustainability points of view. Therefore, this review centers around enzymes from fishery and aquaculture waste, with a special focus on proteases, lipases, carbohydrases, chitinases and transglutaminases. Additionally, the use of fishery and aquaculture waste as a substrate for the production of industrially relevant microbial enzymes is discussed. The application of emerging technologies (i.e., artificial intelligence and machine learning) in microbial enzyme production is also presented. Full article
(This article belongs to the Special Issue Enzymes from Marine By-Products and Wastes)
Show Figures

Figure 1

31 pages, 12098 KiB  
Article
Exploitation of Waste Algal Biomass in Northern Italy: A Cost–Benefit Analysis
by Andrea Baldi, Andrea Pronti, Massimiliano Mazzanti and Luisa Pasti
Pollutants 2024, 4(3), 393-423; https://doi.org/10.3390/pollutants4030027 - 6 Sep 2024
Viewed by 657
Abstract
Aquaculture and waste valorization have the potential to show solid achievements toward food security and improvements in the circularity of resources, which are crucial aspects of achieving a sustainable lifestyle in agreeance with Agenda 2030 goals. This study aims to optimize and simplify [...] Read more.
Aquaculture and waste valorization have the potential to show solid achievements toward food security and improvements in the circularity of resources, which are crucial aspects of achieving a sustainable lifestyle in agreeance with Agenda 2030 goals. This study aims to optimize and simplify the decision-making processes for the valorization of marine wastes (natural and from aquaculture) as secondary raw materials to produce high-value-added market goods. However, significant concentrations of pollutants may be present within wastes, compromising overall quality, and social dynamics can hinder their usage further. Goro’s lagoon was chosen as a case study, where the relations between the ecosystem services, a thriving bivalve economy, and social dynamics are deeply rooted and intertwined. Therefore, in the manuscript cost–benefit and foresight analyses are conducted to determine the best usage for algal biomass considering pollution, social acceptance, and profitability. These analyses are virtually conducted on bio-refineries that could be operating in the case study’s area: briefly, for a thirty-year running bio-plant, the CBA indicates the two best alternatives with an income of 5 billion euros (NPV, with a 5% discount rate) for a biofuel-only production facility, and a half for a multiproduct one, leading to the conclusion that the first is the best alternative. The foresight, instead, suggests a more cautious approach by considering external factors such as the environment and local inhabitants. Hence, the main innovation of this work consists of the decision-maker’s holistic enlightenment toward the complexities and the hidden threats bound to this kind of closed-loop efficiency-boosting process, which eventually leads to optimized decision-making processes. Full article
(This article belongs to the Section Environmental Systems and Management)
Show Figures

Figure 1

28 pages, 1702 KiB  
Review
An Overview of the Current Trends in Marine Plastic Litter Management for a Sustainable Development
by Maria Râpă, Elfrida M. Cârstea, Anca A. Șăulean, Cristina L. Popa, Ecaterina Matei, Andra M. Predescu, Cristian Predescu, Simona I. Donțu and Alexandra G. Dincă
Cited by 2 | Viewed by 3513
Abstract
This review summarizes recent data related to the management of marine plastic litter to promote sustainable development. It discusses the distribution and identification of marine plastic litter, assesses the potential socio-economic and environmental impacts of these pollutants, and explores their recovery strategies, from [...] Read more.
This review summarizes recent data related to the management of marine plastic litter to promote sustainable development. It discusses the distribution and identification of marine plastic litter, assesses the potential socio-economic and environmental impacts of these pollutants, and explores their recovery strategies, from a circular economy perspective. The main findings indicate that the majority of marine plastic litter originates from land-based sources. Current technologies and approaches for valorizing marine plastic litter include mechanical and chemical recycling, blockchain technologies by providing traceability, verification, efficiency and transparency throughout the recycling process, and public awareness programs and education. The developed policies to prevent marine plastic litter emphasize regulations and initiatives focused toward reducing plastic use and improving plastic waste management. By adopting a holistic and sustainable approach, it is possible to mitigate the environmental impact of marine plastic debris while simultaneously creating economic opportunities. Full article
Show Figures

Graphical abstract

17 pages, 2054 KiB  
Article
Blue Circular Economy—Reuse and Valorization of Bivalve Shells: The Case of Algarve, Portugal
by Fernanda Caroline Magalhães, Poliana Bellei, Inês Flores-Colen and Eduarda Marques da Costa
Recycling 2024, 9(2), 27; https://doi.org/10.3390/recycling9020027 - 30 Mar 2024
Viewed by 1779
Abstract
The Circular Economy emerges as an alternative to reinvent the linear production model (take–make–waste), focusing on reintegrating waste into the production cycle, and aiming to minimize both environmental disposal and the unrestrained extraction of raw materials. In this context, the concept of Blue [...] Read more.
The Circular Economy emerges as an alternative to reinvent the linear production model (take–make–waste), focusing on reintegrating waste into the production cycle, and aiming to minimize both environmental disposal and the unrestrained extraction of raw materials. In this context, the concept of Blue Economy arises, an approach centered on preserving and valorizing marine and coastal resources. This article aims to develop a model for the circuit of bivalve shells, emphasizing the transformation of the residues into new products and identifying how these processes affect sociocultural, economic, and environmental dimensions. The methodology involved the surveying of local stakeholders directly involved in bivalve production and consumption to identify the relationship of these stakeholders with the production, marketing, and disposal of bivalves. It is concluded that biowaste has potential, and there is interest among local stakeholders in reusing it, but a lack of knowledge and connection among stakeholders ultimately leads to the devaluation of the product. The circuit of bivalves is necessary to identify value, propose correct collection, and stimulate interest in their reuse, both by other industries and by the aquaculture industry itself. Exploring the potential for reusing bivalves and mitigating their waste, as well as preventing improper disposal, could drive the development of the Blue Circular Economy in coastal regions. Full article
Show Figures

Figure 1

18 pages, 1849 KiB  
Article
Biosorption of Technologically Valuable Metal Ions on Algae Wastes: Laboratory Studies and Applicability
by Alina-Roxana Lucaci and Laura Bulgariu
Water 2024, 16(4), 512; https://doi.org/10.3390/w16040512 - 6 Feb 2024
Cited by 6 | Viewed by 1464
Abstract
In the context of a circular economy that recommends the most efficient use of wastes, algae wastes have a huge potential for valorization. In this study, algae wastes obtained after the alkaline extraction of active compounds from two types of marine algae (green [...] Read more.
In the context of a circular economy that recommends the most efficient use of wastes, algae wastes have a huge potential for valorization. In this study, algae wastes obtained after the alkaline extraction of active compounds from two types of marine algae (green algae—Ulva sp. and red algae—Callithamnion sp.) were used as biosorbents to remove metal ions from aqueous effluents. The efficiency of these biosorbents was tested for Zn(II), Cu(II), and Co(II) ions, considered technologically valuable metal ions. The batch monocomponent experiments performed under optimal conditions (pH = 5.0; 4.0 g biosorbent/L; 22 ± 1 °C) showed that more than 75% of the metal ions were removed when their initial concentration was less than 1.25 mmol/L. The experimental data were well described by the pseudo-second-order kinetic model and Langmuir isotherm model. The high values obtained for the maximum biosorption capacity (qmax: Cu(II) (0.52 mmol/g) > Zn(II) (0.41 mmol/g) > Co(II) (0.39 mmol/g) for G-AWB, and qmax: Cu(II) (1.78 mmol/g) > Zn(II) (1.72 mmol/g) > Co(II) (1.66 mmol/g) for R-AWB) show the potential use of these biosorbents to remove such technologically valuable metal ions from industrial wastewater. This possibility was tested using industrial wastewater samples obtained from the metal coating industry. The quantitative removal (>91%) of Zn(II), Cu(II), and Co(II) ions was obtained when their initial concentration was adjusted to 50 mg/L. In addition, the rapid and efficient desorption of these metal ions from loaded biosorbents by simple treatment with small volumes of HNO3 (10−1 mol/L) further emphasizes the possibility of their recovery and reuse in the technological circuit. The results included in this study indicate that algae wastes have the potential to be used in industrial effluent decontamination processes and open new perspectives for the implementation of circular economy principles. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 8961 KiB  
Article
Characterization and Thermal Evaluation of a Novel Bio-Based Natural Insulation Material from Posidonia oceanica Waste: A Sustainable Solution for Building Insulation in Algeria
by Dhouha Ben Hadj Tahar, Zakaria Triki, Mohamed Guendouz, Hichem Tahraoui, Meriem Zamouche, Mohammed Kebir, Jie Zhang and Abdeltif Amrane
ChemEngineering 2024, 8(1), 18; https://doi.org/10.3390/chemengineering8010018 - 2 Feb 2024
Cited by 5 | Viewed by 2490
Abstract
Natural bio-based insulation materials have been the most interesting products for good performance and low carbon emissions, becoming widely recognized for their sustainability in the context of climate change and the environmental impact of the building industry. The main objective of this study [...] Read more.
Natural bio-based insulation materials have been the most interesting products for good performance and low carbon emissions, becoming widely recognized for their sustainability in the context of climate change and the environmental impact of the building industry. The main objective of this study is to characterize a new bio-sourced insulation material composed of fibers and an adhesive based on cornstarch. This innovative material is developed from waste of the marine plant called Posidonia oceanica (PO), abundantly found along the Algerian coastline. The research aims to valorize this PO waste by using it as raw material to create this novel material. Four samples with different volumetric adhesive fractions (15%, 20%, 25%, and 30%) were prepared and tested. The collected fractions underwent a series of characterizations to evaluate their properties. The key characteristics studied include density, thermal conductivity, and specific heat. The results obtained for the thermal conductivity of the different composites range between 0.052 and 0.067 W.m−1.K−1. In addition, the findings for thermal diffusivity and specific heat are similar to those reported in the scientific literature. However, the capillary absorption of the material is slightly lower, which indicates that the developed bio-sourced material exhibits interesting thermal performance, justifying its suitability for use in building insulation in Algeria. Full article
Show Figures

Figure 1

18 pages, 4551 KiB  
Article
Nexus Advances Using Marine Biopolymeric Gel Material as a Photocatalyst for the Oxidation of Agricultural Wastewater Containing Insecticides
by Ehssan Ahmed Hassan and Maha A. Tony
Gels 2023, 9(11), 864; https://doi.org/10.3390/gels9110864 - 30 Oct 2023
Viewed by 1257
Abstract
The attention of the research community is focused not only on waste elimination, but also on waste valorization. The natural marine biopolymer gel substance chitosan, which can be derived from the waste substances of marine life, is a polymer-matrix-based nanocomposite. Chitosan attracts special [...] Read more.
The attention of the research community is focused not only on waste elimination, but also on waste valorization. The natural marine biopolymer gel substance chitosan, which can be derived from the waste substances of marine life, is a polymer-matrix-based nanocomposite. Chitosan attracts special attention due to its potential applications, especially in wastewater treatment. In this regard, magnetite-incorporated chitosan powders of nanometer scale were synthesized by a simple co-precipitation method to attain the dual functions of chitosan gel and magnetite. The synthesized magnetite-incorporated chitosan nanopowders were verified using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, a vibrating-sample magnetometer (VSM), a scanning electron microscope (SEM), and transmission electron microscopy (TEM) images, which showed that the synthesized magnetite-incorporated chitosan was nanosized. The superior application of such a material to offset the deterioration of the environment caused by insecticides is attained through a photocatalytic reaction. The experimental results verified the function of magnetite-incorporated chitosan, since it increased the composite-specific surface area, resulting in high methomyl molecule oxidation. Methomyl oxidation reached almost complete insecticide removal (99%) within only one hour of irradiance time. The optimal operational conditions were investigated, and the maximal removal rate occurred when the aqueous solution was at an acidic pH of 3.0. The reaction was affected by differing hydrogen peroxide and catalyst doses, and the optimized reagent was recorded at the levels of 40 and 400 mg/L of catalyst and hydrogen peroxide, respectively. Also, catalyst reusability was attained, confirming its sustainability, since it could be used for successive cycles. From the current investigation, it is proposed that magnetite–chitosan nanoparticles could serve as a promising photocatalyst for the elimination of insecticides from wastewater in a green manner. Full article
Show Figures

Figure 1

23 pages, 986 KiB  
Review
Value Addition Employing Waste Bio-Materials in Environmental Remedies and Food Sector
by Akriti Taneja, Ruchi Sharma, Shreya Khetrapal, Avinash Sharma, Rupak Nagraik, Baskar Venkidasamy, Manju Nath Ghate, Shavkatjon Azizov, Somesh Sharma and Deepak Kumar
Metabolites 2023, 13(5), 624; https://doi.org/10.3390/metabo13050624 - 1 May 2023
Cited by 12 | Viewed by 4892
Abstract
Overall, combating food waste necessitates a multifaceted approach that includes education, infrastructure, and policy change. By working together to implement these strategies, we can help reduce the negative impacts of food waste and create a more sustainable and equitable food system. The sustained [...] Read more.
Overall, combating food waste necessitates a multifaceted approach that includes education, infrastructure, and policy change. By working together to implement these strategies, we can help reduce the negative impacts of food waste and create a more sustainable and equitable food system. The sustained supply of nutrient-rich agrifood commodities is seriously threatened by inefficiencies caused by agricultural losses, which must be addressed. As per the statistical data given by the Food and Agriculture Organisation (FAO) of the United Nations, nearly 33.33% of the food that is produced for utilization is wasted and frittered away on a global level, which can be estimated as a loss of 1.3 billion metric tons per annum, which includes 30% cereals, 20% dairy products 35% seafood and fish, 45% fruits and vegetables, and 20% of meat. This review summarizes the various types of waste originating from various segments of the food industry, such as fruits and vegetables, dairy, marine, and brewery, also focusing on their potential for developing commercially available value-added products such as bioplastics, bio-fertilizers, food additives, antioxidants, antibiotics, biochar, organic acids, and enzymes. The paramount highlights include food waste valorization, which is a sustainable yet profitable alternative to waste management, and harnessing Machine Learning and Artificial Intelligence technology to minimize food waste. Detail of sustainability and feasibility of food waste-derived metabolic chemical compounds, along with the market outlook and recycling of food wastes, have been elucidated in this review. Full article
(This article belongs to the Section Environmental Metabolomics)
Show Figures

Figure 1

22 pages, 5494 KiB  
Article
Earth-Based Building Incorporating Sargassum muticum Seaweed: Mechanical and Hygrothermal Performances
by Houssam Affan, Karim Touati, Mohammed-Hichem Benzaama, Daniel Chateigner and Yassine El Mendili
Buildings 2023, 13(4), 932; https://doi.org/10.3390/buildings13040932 - 31 Mar 2023
Cited by 7 | Viewed by 5123
Abstract
Once the tide recedes and leaves a significant amount of stranded seaweed on the coast, marine macroalgae pose a serious threat to the surrounding area. Through this work, we considered a large-scale application of stranded macroalgae in building construction. For the first time [...] Read more.
Once the tide recedes and leaves a significant amount of stranded seaweed on the coast, marine macroalgae pose a serious threat to the surrounding area. Through this work, we considered a large-scale application of stranded macroalgae in building construction. For the first time we studied the impact of incorporating Sargassum mitucum seaweed fiber in replacement of flax fiber used for a standard structural cob. Thus, cob specimens were elaborated and analyzed to evaluate their compressive and hygrothermal performances. It was found that the compressive strength and water vapor resistance factors of cob decreased with the algae content. Additionally, the obtained results showed that a cob made with Sargassum muticum algae presented better thermal (insulation and inertia) and hygroscopic properties than those of a cob made with a flax fiber. Indeed, the replacement of flax straw by algae lead to a reduction in the thermal conductivity by 38% when compared to the standard cob with 2.5% of flax straw fiber. Consequently, numerical simulation showed a reduction in the energy needs in buildings made with an algae-based cob when compared to those made with a flax-based cob. This study can contribute to a global environmental and economic issue, i.e., the valorization of brown algae on a large scale. Indeed, the worldwide knows the largest sea of sargassum algae extent measures over 8850 km2. This huge mass of brownish algae is expanding every year, which now covers an area from Africa to the Caribbean. It weighs more than 20 million tons and extends from the Gulf of Mexico to the west coast of Africa. We show that stranded algae, which are considered as wastes, have the ability to improve the mechanical and hygrothermal performance of cob-based material. Full article
(This article belongs to the Special Issue Multiphysics Analysis of Construction Materials)
Show Figures

Figure 1

19 pages, 2517 KiB  
Article
Technoeconomic Assessment of Biopolymer Production from Crustacean Waste with the UK as a Case Study
by Oseweuba Valentine Okoro, Lei Nie, Oguzhan Gunduz, Songul Ulag, Masoud Hamidi and Amin Shavandi
Sustainability 2023, 15(3), 2280; https://doi.org/10.3390/su15032280 - 26 Jan 2023
Cited by 6 | Viewed by 1770
Abstract
Marine pollution has increased in recent decades, largely due to the proliferation of seafood processing plants and the improper disposal of their associated waste streams. The waste streams consist mainly of shells that are composed of chitin, which is the most abundant aminopolysaccharide [...] Read more.
Marine pollution has increased in recent decades, largely due to the proliferation of seafood processing plants and the improper disposal of their associated waste streams. The waste streams consist mainly of shells that are composed of chitin, which is the most abundant aminopolysaccharide biopolymer in nature. Recognizing the value of chitin, the potential for the valorization of crustacean waste for chitin production was explored. In this regard, biogenic crab waste was subjected to chemical-only, enzymatic–chemical, and microbial treatments for chitin production. The results were employed as inputs for process simulation as a precursor to undertaking performance assessments. This study subsequently showed that the net present values (NPVs) of the chemical-only, enzyme–chemical, and microbial chitin production pathways were GBP 118.63 million, GBP 115.67 million, and GBP 132.34 million, respectively, indicating that the microbial chitin production pathway constituted the most appropriate technology for future investment. Employing a cost–benefit (CB) analysis, the CB ratios for the chemical-only, enzymatic–chemical, and microbial approaches were determined to be 7.31, 0.45, and 0.23, respectively. These results reinforced the dominant status of the microbial approach for chitin production from crab waste as the preferred valorization strategy. This study was able to provide information regarding the implications of executing alternative scenarios for crustacean waste. Full article
(This article belongs to the Special Issue Advances in Biomass Valorization Approaches for the Circular Economy)
Show Figures

Figure 1

18 pages, 3359 KiB  
Article
Assessment of the Antibiofilm Performance of Chitosan-Based Surfaces in Marine Environments
by Marta Lima, Luciana C. Gomes, Rita Teixeira-Santos, Maria J. Romeu, Jesus Valcarcel, José Antonio Vázquez, Miguel A. Cerqueira, Lorenzo Pastrana, Ana I. Bourbon, Ed D. de Jong, Jelmer Sjollema and Filipe J. Mergulhão
Int. J. Mol. Sci. 2022, 23(23), 14647; https://doi.org/10.3390/ijms232314647 - 24 Nov 2022
Cited by 5 | Viewed by 3267
Abstract
Marine biofouling is a natural process often associated with biofilm formation on submerged surfaces, creating a massive economic and ecological burden. Although several antifouling paints have been used to prevent biofouling, growing ecological concerns emphasize the need to develop new and environmentally friendly [...] Read more.
Marine biofouling is a natural process often associated with biofilm formation on submerged surfaces, creating a massive economic and ecological burden. Although several antifouling paints have been used to prevent biofouling, growing ecological concerns emphasize the need to develop new and environmentally friendly antifouling approaches such as bio-based coatings. Chitosan (CS) is a natural polymer that has been widely used due to its outstanding biological properties, including non-toxicity and antimicrobial activity. This work aims to produce and characterize poly (lactic acid) (PLA)-CS surfaces with CS of different molecular weight (Mw) at different concentrations for application in marine paints. Loligo opalescens pens, a waste from the fishery industry, were used as a CS source. The antimicrobial activity of the CS and CS-functionalized surfaces was assessed against Cobetia marina, a model proteobacterium for marine biofouling. Results demonstrate that CS targets the bacterial cell membrane, and PLA-CS surfaces were able to reduce the number of culturable cells up to 68% compared to control, with this activity dependent on CS Mw. The antifouling performance was corroborated by Optical Coherence Tomography since PLA-CS surfaces reduced the biofilm thickness by up to 36%, as well as the percentage and size of biofilm empty spaces. Overall, CS coatings showed to be a promising approach to reducing biofouling in marine environments mimicked in this work, contributing to the valorization of fishing waste and encouraging further research on this topic. Full article
(This article belongs to the Special Issue Mechanisms in Biofilm Formation, Tolerance and Control)
Show Figures

Figure 1

11 pages, 682 KiB  
Article
Fermentation Wastes from Chrypthecodinium cohnii Lipid Production for Energy Recovery by Anaerobic Digestion
by Ana Eusébio, Patrícia Moniz, Teresa Lopes da Silva and Isabel Paula Marques
Processes 2022, 10(11), 2463; https://doi.org/10.3390/pr10112463 - 21 Nov 2022
Cited by 1 | Viewed by 1435
Abstract
Wastes generated during the cultivation of marine microalga Crypthecodinium cohnii and after the lipid extraction process, were energetically valorized into biogas production through anaerobic digestion (AD). The tested wastes were extracted microalgae (Ae) with hexane (AeH) using supercritical extraction methods (AeS) and the [...] Read more.
Wastes generated during the cultivation of marine microalga Crypthecodinium cohnii and after the lipid extraction process, were energetically valorized into biogas production through anaerobic digestion (AD). The tested wastes were extracted microalgae (Ae) with hexane (AeH) using supercritical extraction methods (AeS) and the supernatant obtained after culture medium centrifugation (M). The digestion of the algae biomass in the admixture with the supernatant medium (AeH+M+I and AeS+M+I) provided a higher methane content and a higher methane yield (582 and 440 L CH4/kg VS) than the substrates Ae and M, individually digested (155 and 96 L CH4/kg VS, respectively). Flow cytometry monitoring processes during AD indicated that the yield of the accumulated biogas was influenced by the operating conditions. The mixture of AeH+M+I was the only assay with a proportion of cells with less damaged membranes after AD, providing the highest methane yield and productivity (582 L CH4/kg VS and 31 L CH4/kg VS.d, respectively) and the highest energetic potential of 5.8 KWh/kg VS of all the substrates. From the results, AD integration to lipid production by C. cohnii to recover energy from the generated wastes enhanced the sustainability of the entire process and promoted the practice of zero waste. Full article
Show Figures

Figure 1

14 pages, 1862 KiB  
Article
Lactic Acid-Based Natural Deep Eutectic Solvents to Extract Bioactives from Marine By-Products
by Maha M. Abdallah, Martim Cardeira, Ana A. Matias, Maria Rosário Bronze and Naiara Fernández
Molecules 2022, 27(14), 4356; https://doi.org/10.3390/molecules27144356 - 7 Jul 2022
Cited by 10 | Viewed by 3105
Abstract
Natural deep eutectic solvents (NaDES) were used to extract bioactive compounds from marine by-products: codfish bones, mussel meat, and tuna vitreous humor. NaDES were prepared using natural compounds, including lactic acid (Lac), fructose (Fru), and urea (Ur), and were characterized to define their [...] Read more.
Natural deep eutectic solvents (NaDES) were used to extract bioactive compounds from marine by-products: codfish bones, mussel meat, and tuna vitreous humor. NaDES were prepared using natural compounds, including lactic acid (Lac), fructose (Fru), and urea (Ur), and were characterized to define their physicochemical properties, including the viscosity, density, surface tension, and refractive index. FTIR and NMR analysis confirmed the presence of intermolecular hydrogen bonding in NaDES. The extracts obtained using these NaDES were characterized to define their composition. Results demonstrated that the extract’s composition differed highly, depending not only on the DES used, but also on the structure and composition of the raw material. Proteins and lipids were mainly present in extracts obtained from mussels, while ash content was highest in the extracts obtained from codfish bones. The biocompatibility of NaDES and the soluble fractions (SF) of the raw materials in NaDES was evaluated, and it was possible to conclude that the soluble ingredients obtained from the raw materials improved the biocompatibility of NaDES. Full article
(This article belongs to the Special Issue Deep Eutectic Solvents: Properties and Applications as Green Solvents)
Show Figures

Graphical abstract

29 pages, 1378 KiB  
Review
From Organic Wastes and Hydrocarbons Pollutants to Polyhydroxyalkanoates: Bioconversion by Terrestrial and Marine Bacteria
by Francesca Crisafi, Francesco Valentino, Federico Micolucci and Renata Denaro
Sustainability 2022, 14(14), 8241; https://doi.org/10.3390/su14148241 - 6 Jul 2022
Cited by 11 | Viewed by 2931
Abstract
The use of fossil-based plastics has become unsustainable because of the polluting production processes, difficulties for waste management sectors, and high environmental impact. Polyhydroxyalkanoates (PHA) are bio-based biodegradable polymers derived from renewable resources and synthesized by bacteria as intracellular energy and carbon storage [...] Read more.
The use of fossil-based plastics has become unsustainable because of the polluting production processes, difficulties for waste management sectors, and high environmental impact. Polyhydroxyalkanoates (PHA) are bio-based biodegradable polymers derived from renewable resources and synthesized by bacteria as intracellular energy and carbon storage materials under nutrients or oxygen limitation and through the optimization of cultivation conditions with both pure and mixed culture systems. The PHA properties are affected by the same principles of oil-derived polyolefins, with a broad range of compositions, due to the incorporation of different monomers into the polymer matrix. As a consequence, the properties of such materials are represented by a broad range depending on tunable PHA composition. Producing waste-derived PHA is technically feasible with mixed microbial cultures (MMC), since no sterilization is required; this technology may represent a solution for waste treatment and valorization, and it has recently been developed at the pilot scale level with different process configurations where aerobic microorganisms are usually subjected to a dynamic feeding regime for their selection and to a high organic load for the intracellular accumulation of PHA. In this review, we report on studies on terrestrial and marine bacteria PHA-producers. The available knowledge on PHA production from the use of different kinds of organic wastes, and otherwise, petroleum-polluted natural matrices coupling bioremediation treatment has been explored. The advancements in these areas have been significant; they generally concern the terrestrial environment, where pilot and industrial processes are already established. Recently, marine bacteria have also offered interesting perspectives due to their advantageous effects on production practices, which they can relieve several constraints. Studies on the use of hydrocarbons as carbon sources offer evidence for the feasibility of the bioconversion of fossil-derived plastics into bioplastics. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

16 pages, 2723 KiB  
Article
Marine and Agro-Industrial By-Products Valorization Intended for Topical Formulations in Wound Healing Applications
by Ana-Maria Prelipcean, Andreea Iosageanu, Alexandra Gaspar-Pintiliescu, Lucia Moldovan, Oana Craciunescu, Ticuta Negreanu-Pirjol, Bogdan Negreanu-Pirjol, Raul-Augustin Mitran, Mariana Marin and Ugo D’Amora
Materials 2022, 15(10), 3507; https://doi.org/10.3390/ma15103507 - 13 May 2022
Cited by 12 | Viewed by 2535
Abstract
Over the past years, research attention has been focusing more on waste-derived, naturally derived, and renewable materials, in the view of a more sustainable economy. In this work, different topical formulations were obtained from the valorization of marine and agro-industrial by-products and the [...] Read more.
Over the past years, research attention has been focusing more on waste-derived, naturally derived, and renewable materials, in the view of a more sustainable economy. In this work, different topical formulations were obtained from the valorization of marine and agro-industrial by-products and the use of Carbopol 940 as gelling agent. In particular, the combination of extracts obtained from the marine snail, Rapanosa venosa, with Cladophora vagabunda and grape pomace extracts, was investigated for wound healing purposes. Rapana venosa has demonstrated wound healing properties and antioxidant activity. Similarly, grape pomace extracts have been shown to accelerate the healing process. However, their synergic use has not been explored yet. To this aim, four different formulations were produced. Three formulations differed for the presence of a different extract of Rapana venosa: marine collagen, marine gelatin, and collagen hydrolysate, while another formulation used mammalian gelatin as further control. Physico-chemical properties of the extracts as well as of the formulations were analyzed. Furthermore, thermal stability was evaluated by thermogravimetric analysis. Antioxidant capacity and biological behavior, in terms of cytocompatibility, wound healing, and antimicrobial potential, were assessed. The results highlighted for all the formulations (i) a good conservation and thermal stability in time, (ii) a neutralizing activity against free radicals, (iii) and high degree of cytocompatibility and tissue regeneration potential. In particular, collagen, gelatin, and collagen hydrolysate obtained from the Rapana venosa marine snail represent an important, valuable alternative to mammalian products. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

Back to TopTop