Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = lead zirconate titanate (PZT) ferroelectric films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2616 KiB  
Article
Enhancement of Ion-Sensitive Field-Effect Transistors through Sol-Gel Processed Lead Zirconate Titanate Ferroelectric Film Integration and Coplanar Gate Sensing Paradigm
by Dong-Gyun Mah, Seong-Moo Oh, Jongwan Jung and Won-Ju Cho
Chemosensors 2024, 12(7), 134; https://doi.org/10.3390/chemosensors12070134 - 9 Jul 2024
Viewed by 947
Abstract
To facilitate the utility of field effect transistor (FET)-type sensors, achieving sensitivity enhancement beyond the Nernst limit is crucial. Thus, this study proposed a novel approach for the development of ferroelectric FETs (FeFETs) using lead zirconate titanate (PZT) ferroelectric films integrated with indium–tungsten [...] Read more.
To facilitate the utility of field effect transistor (FET)-type sensors, achieving sensitivity enhancement beyond the Nernst limit is crucial. Thus, this study proposed a novel approach for the development of ferroelectric FETs (FeFETs) using lead zirconate titanate (PZT) ferroelectric films integrated with indium–tungsten oxide (IWO) channels synthesized via a cost-effective sol-gel process. The electrical properties of PZT-IWO FeFET devices were significantly enhanced through the strategic implementation of PZT film treatment by employing intentional annealing procedures. Consequently, key performance metrics, including the transfer curve on/off ratio and subthreshold swings, were improved. Moreover, unprecedented electrical stability was realized by eliminating the hysteresis effect during double sweeps. By leveraging a single-gate configuration as an FeFET transformation element, extended-gate (EG) detection methodologies for pH sensing were explored, thereby introducing a pioneering dimension to sensor architecture. A measurement paradigm inspired by plane gate work was adopted, and the proposed device exhibited significant resistive coupling, consequently surpassing the sensitivity thresholds of conventional ion-sensitive field-effect transistors. This achievement represents a substantial paradigm shift in the landscape of ion-sensing methodologies, surpassing the established Nernst limit (59.14 mV/pH). Furthermore, this study advances FeFET technology and paves the way for the realization of highly sensitive and reliable ion sensing modalities. Full article
(This article belongs to the Collection pH Sensors, Biosensors and Systems)
Show Figures

Figure 1

22 pages, 7437 KiB  
Article
Porous PZT Films: How Can We Tune Electrical Properties?
by Liubov Delimova, Dmitry Seregin, Georgy Orlov, Nina Zaitseva, Ekaterina Gushchina, Alexander Sigov and Konstantin Vorotilov
Materials 2023, 16(14), 5171; https://doi.org/10.3390/ma16145171 - 22 Jul 2023
Cited by 2 | Viewed by 1123
Abstract
Porous ferroelectric lead zirconate titanate (PZT) films are a promising material for various electronic applications. This study focuses on understanding how the structure-directing agent, polyvinylpyrrolidone, can alter the structure and electrical properties of porous PZT films prepared through chemical solution deposition. Films with [...] Read more.
Porous ferroelectric lead zirconate titanate (PZT) films are a promising material for various electronic applications. This study focuses on understanding how the structure-directing agent, polyvinylpyrrolidone, can alter the structure and electrical properties of porous PZT films prepared through chemical solution deposition. Films with various porosities of up to ~40 vol.% and pore connectivities from 3-0 to 3-3 were prepared and studied by capacitance–voltage, dielectric hysteresis, transient current, photocurrent, and local current techniques. We have found that a linear decrease in material volume in a porous film is not the only factor that determines film properties. The creation of new internal grain boundaries plays a key role in changing electrical properties. This research expands the understanding of physical phenomena in porous ferroelectric films and may facilitate the development of new materials and devices. Full article
Show Figures

Figure 1

19 pages, 3674 KiB  
Article
Application the Ion Beam Sputtering Deposition Technique for the Development of Spin-Wave Structures on Ferroelectric Substrates
by Sergei A. Sharko, Aleksandra I. Serokurova, Nikolay N. Novitskii, Valerii A. Ketsko and Alexandre I. Stognij
Ceramics 2023, 6(3), 1415-1433; https://doi.org/10.3390/ceramics6030087 - 5 Jul 2023
Cited by 2 | Viewed by 1285
Abstract
The microwave properties of structures in the form of the 2 μm iron-yttrium garnet (YIG) films, grown by the ion beam sputtering deposition method on epitaxially mismatched substrates of ferroelectric ceramics based on lead zirconate titanate (PZT, PbZr0.45Ti0.55O3 [...] Read more.
The microwave properties of structures in the form of the 2 μm iron-yttrium garnet (YIG) films, grown by the ion beam sputtering deposition method on epitaxially mismatched substrates of ferroelectric ceramics based on lead zirconate titanate (PZT, PbZr0.45Ti0.55O3), are discussed. The obtained structures were formed and pre-smoothed by the ion beam planarization substrates with the use of an anti-diffusion layer of titanium dioxide TiO2. The atomic force microscopy showed that the planarization of the substrates allows for reaching a nanoscale level of roughness (up to 10 nm). The presence of smooth plane–parallel interfaces of YIG/TiO2 and TiO2/PZT is evidenced by scanning electron microscopy performed in focused gallium ion beams. Ferromagnetic resonance spectroscopy revealed a broadening in the absorption line of the ferrite garnet layers in the resonance ≈ 100 Oe. This broadening is associated with the presence of defects caused by the of the ceramic substrate non-ideality. The estimated damping coefficient of spin waves turned out to be ~10−3, which is two orders of magnitude higher than in an ideal YIG single crystal. The YIG/TiO2/PZT structures obtained can be used for the study of spin waves. Full article
Show Figures

Figure 1

8 pages, 1821 KiB  
Communication
Excellent Uniformity and Properties of Micro-Meter Thick Lead Zirconate Titanate Coatings with Rapid Thermal Annealing
by Youcao Ma, Jian Song, Yuyao Zhao, Kiyotaka Tanaka, Shijunbo Wu, Chao Dong, Xubo Wang, Isaku Kanno, Jun Ouyang, Jia Zhou and Yue Liu
Materials 2023, 16(8), 3185; https://doi.org/10.3390/ma16083185 - 18 Apr 2023
Cited by 1 | Viewed by 1425
Abstract
Lead zirconate titanate (PZT) films have shown great potential in piezoelectric micro-electronic-mechanical system (piezo-MEMS) owing to their strong piezoelectric response. However, the fabrication of PZT films on wafer-level suffers with achieving excellent uniformity and properties. Here, we successfully prepared perovskite PZT films with [...] Read more.
Lead zirconate titanate (PZT) films have shown great potential in piezoelectric micro-electronic-mechanical system (piezo-MEMS) owing to their strong piezoelectric response. However, the fabrication of PZT films on wafer-level suffers with achieving excellent uniformity and properties. Here, we successfully prepared perovskite PZT films with similar epitaxial multilayered structure and crystallographic orientation on 3-inch silicon wafers, by introducing a rapid thermal annealing (RTA) process. Compared to films without RTA treatment, these films exhibit (001) crystallographic orientation at certain composition that expecting morphotropic phase boundary. Furthermore, dielectric, ferroelectric and piezoelectric properties on different positions only fluctuate within 5%. The relatively dielectric constant, loss, remnant polarization and transverse piezoelectric coefficient are 850, 0.1, 38 μC/cm2 and −10 C/m2, respectively. Both uniformity and properties have reached the requirement for the design and fabrication of piezo-MEMS devices. This broadens the design and fabrication criteria for piezo-MEMS, particularly for piezoelectric micromachined ultrasonic transducers. Full article
Show Figures

Figure 1

10 pages, 16490 KiB  
Article
Microstructure Evolution with Rapid Thermal Annealing Time in (001)-Oriented Piezoelectric PZT Films Integrated on (111) Si
by Yingying Wang, Hanfei Zhu, Yinxiu Xue, Peng Yan and Jun Ouyang
Materials 2023, 16(5), 2068; https://doi.org/10.3390/ma16052068 - 2 Mar 2023
Cited by 4 | Viewed by 1600
Abstract
In our recently published paper (Y.-Y. Wang et al., High performance LaNiO3-buffered, (001)-oriented PZT piezoelectric films integrated on (111) Si, Appl. Phys. Lett. 121, 182902, 2022), highly (001)-oriented PZT films with a large transverse piezoelectric coefficient e31,f prepared on (111) [...] Read more.
In our recently published paper (Y.-Y. Wang et al., High performance LaNiO3-buffered, (001)-oriented PZT piezoelectric films integrated on (111) Si, Appl. Phys. Lett. 121, 182902, 2022), highly (001)-oriented PZT films with a large transverse piezoelectric coefficient e31,f prepared on (111) Si substrates were reported. This work is beneficial for the development of piezoelectric micro-electro-mechanical systems (Piezo-MEMS) because of (111) Si’s isotropic mechanical properties and desirable etching characteristics. However, the underlying mechanism for the achievement of a high piezoelectric performance in these PZT films going through a rapid thermal annealing process has not been thoroughly analyzed. In this work, we present complete sets of data in microstructure (XRD, SEM and TEM) and electrical properties (ferroelectric, dielectric and piezoelectric) for these films with typical annealing times of 2, 5, 10 and 15 min. Through data analyses, we revealed competing effects in tuning the electrical properties of these PZT films, i.e., the removal of residual PbO and proliferation of nanopores with an increasing annealing time. The latter turned out to be the dominating factor for a deteriorated piezoelectric performance. Therefore, the PZT film with the shortest annealing time of 2 min showed the largest e31,f piezoelectric coefficient. Furthermore, the performance degradation occurred in the PZT film annealed for 10 min can be explained by a film morphology change, which involved not only the change in grain shape, but also the generation of a large amount of nanopores near its bottom interface. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

24 pages, 17870 KiB  
Article
Control of Columnar Grain Microstructure in CSD LaNiO3 Films
by Aleksandra V. Atanova, Dmitry S. Seregin, Olga M. Zhigalina, Dmitry N. Khmelenin, Georgy A. Orlov, Daria I. Turkina, Alexander S. Sigov and Konstantin A. Vorotilov
Molecules 2023, 28(4), 1938; https://doi.org/10.3390/molecules28041938 - 17 Feb 2023
Cited by 1 | Viewed by 2088
Abstract
Conductive LaNiO3 (LNO) films with an ABO3 perovskite structure deposited on silicon wafers are a promising material for various electronics applications. The creation of a well-defined columnar grain structure in CSD (Chemical Solution Deposition) LNO films is challenging to achieve on [...] Read more.
Conductive LaNiO3 (LNO) films with an ABO3 perovskite structure deposited on silicon wafers are a promising material for various electronics applications. The creation of a well-defined columnar grain structure in CSD (Chemical Solution Deposition) LNO films is challenging to achieve on an amorphous substrate. Here, we report the formation of columnar grain structure in LNO films deposited on the Si-SiO2 substrate via layer-by-layer deposition with the control of soft-baking temperature and high temperature annealing time of each deposited layer. The columnar structure is controlled not by typical heterogeneous nucleation on the film/substrate interface, but by the crystallites’ coalescence during the successive layers’ deposition and annealing. The columnar structure of LNO film provides the low resistivity value ρ~700 µOhm·cm and is well suited to lead zirconate-titanate (PZT) film growth with perfect crystalline structure and ferroelectric performance. These results extend the understanding of columnar grain growth via CSD techniques and may enable the development of new materials and devices for distinct applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

10 pages, 3848 KiB  
Article
Structural, Morphologic, and Ferroelectric Properties of PZT Films Deposited through Layer-by-Layer Reactive DC Magnetron Sputtering
by Benas Beklešovas, Aleksandras Iljinas, Vytautas Stankus, Jurgita Čyvienė, Mindaugas Andrulevičius, Maksim Ivanov and Jūras Banys
Coatings 2022, 12(6), 717; https://doi.org/10.3390/coatings12060717 - 24 May 2022
Cited by 6 | Viewed by 3111
Abstract
Lead zirconate titanate (PZT) is a widely used material with applications ranging from piezoelectric sensors to developing non-volatile memory devices. Pb(ZrxTi1−x)O3 films were deposited by DC reactive magnetron sputtering at a temperature range of (500–600) °C. X-ray diffraction [...] Read more.
Lead zirconate titanate (PZT) is a widely used material with applications ranging from piezoelectric sensors to developing non-volatile memory devices. Pb(ZrxTi1−x)O3 films were deposited by DC reactive magnetron sputtering at a temperature range of (500–600) °C. X-ray diffraction (XRD) indicated the perovskite phase formation in samples synthesized at 550 °C, which agrees with Raman data analysis. Scanning electron microscopy (SEM) measurements supplemented XRD data and showed the formation of dense PZT microstructures. Further X-ray photoelectron spectroscopy (XPS) analysis confirmed that the Zr/Ti ratio corresponds to the Pb(Zr0.58Ti0.42)O3 content. Dielectric measurement of the same sample indicated dielectric permittivity to be around 150 at room temperature, possibly due to the defects in the structure. P-E measurements show ferroelectric behavior at a temperature range of (50–180) °C. It was found that the remnant polarization increased with temperature, and at the same time, coercive field values decreased. Such behavior can be attributed to energetically deep defects. Full article
(This article belongs to the Topic Inorganic Thin Film Materials)
Show Figures

Figure 1

16 pages, 7090 KiB  
Article
Strain-Mediated Magneto-Electric Effects in Coaxial Nanofibers of Y/W-Type Hexagonal Ferrites and Ferroelectrics
by Ying Liu, Peng Zhou, Bingfeng Ge, Jiahui Liu, Jitao Zhang, Wei Zhang, Tianjing Zhang and Gopalan Srinivasan
J. Compos. Sci. 2021, 5(10), 268; https://doi.org/10.3390/jcs5100268 - 13 Oct 2021
Cited by 5 | Viewed by 1887
Abstract
Nanofibers of Y- or W-type hexagonal ferrites and core–shell fibers of hexagonal ferrites and ferroelectric lead zirconate titanate (PZT) or barium titanate (BTO) were synthesized by electrospinning. The fibers were found to be free of impurity phases, and the core–shell structure was confirmed [...] Read more.
Nanofibers of Y- or W-type hexagonal ferrites and core–shell fibers of hexagonal ferrites and ferroelectric lead zirconate titanate (PZT) or barium titanate (BTO) were synthesized by electrospinning. The fibers were found to be free of impurity phases, and the core–shell structure was confirmed by electron and scanning probe microscopy. The values of magnetization of pure hexagonal ferrite fibers compared well with bulk ferrite values. The coaxial fibers showed good ferroelectric polarization, with a maximum value of 0.85 μC/cm2 and 2.44 μC/cm2 for fibers with BTO core–Co2W shell and PZT core–Ni2Y shell structures, respectively. The magnetization, however, was much smaller than that for bulk hexaferrites. Magneto-electric (ME) coupling strength was characterized by measuring the ME voltage coefficient (MEVC) for magnetic field-assembled films of coaxial fibers. Among the fibers with Y-type, films with Zn2Y showed a higher MEVC than films with Ni2Y, and fibers with Co2W had a higher MEVC than that of those with Zn2W. The highest MEVC of 20.3 mV/cm Oe was measured for Co2W–PZT fibers. A very large ME response was measured in all of the films, even in the absence of an external magnetic bias field. The fibers studied here have the potential for use in magnetic sensors and high-frequency device applications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2021)
Show Figures

Figure 1

22 pages, 3743 KiB  
Review
Synthesis, Microstructure and Properties of Magnetron Sputtered Lead Zirconate Titanate (PZT) Thin Film Coatings
by Youcao Ma, Jian Song, Xubo Wang, Yue Liu and Jia Zhou
Coatings 2021, 11(8), 944; https://doi.org/10.3390/coatings11080944 - 7 Aug 2021
Cited by 26 | Viewed by 5559
Abstract
Compared to aluminum nitride (AlN) with simple stoichiometry, lead zirconate titanate thin films (PZT) are the other promising candidate in advanced micro-electro-mechanical system (MEMS) devices due to their excellent piezoelectric and dielectric properties. The fabrication of PZT thin films with a large area [...] Read more.
Compared to aluminum nitride (AlN) with simple stoichiometry, lead zirconate titanate thin films (PZT) are the other promising candidate in advanced micro-electro-mechanical system (MEMS) devices due to their excellent piezoelectric and dielectric properties. The fabrication of PZT thin films with a large area is challenging but in urgent demand. Therefore, it is necessary to establish the relationships between synthesis parameters and specific properties. Compared to sol-gel and pulsed laser deposition techniques, this review highlights a magnetron sputtering technique owing to its high feasibility and controllability. In this review, we survey the microstructural characteristics of PZT thin films, as well as synthesis parameters (such as substrate, deposition temperature, gas atmosphere, and annealing temperature, etc.) and functional proper-ties (such as dielectric, piezoelectric, and ferroelectric, etc). The dependence of these influential factors is particularly emphasized in this review, which could provide experimental guidance for researchers to acquire PZT thin films with expected properties by a magnetron sputtering technique. Full article
(This article belongs to the Special Issue Nanocomposite Thin Film and Multilayers)
Show Figures

Figure 1

1 pages, 172 KiB  
Abstract
Hafnium Zirconium Oxide Thin Films for CMOS Compatible Pyroelectric Infrared Sensors
by Clemens Mart, Malte Czernohorsky, Kati Kühnel and Wenke Weinreich
Cited by 2 | Viewed by 1026
Abstract
Pyroelectric infrared sensors are often based on lead-containing materials, which are harmful to the environment and subject to governmental restrictions. Ferroelectric Hf1−xZrxO2 thin films offer an environmentally friendly alternative. Additionally, CMOS integration allows for integrated sensor circuits, [...] Read more.
Pyroelectric infrared sensors are often based on lead-containing materials, which are harmful to the environment and subject to governmental restrictions. Ferroelectric Hf1−xZrxO2 thin films offer an environmentally friendly alternative. Additionally, CMOS integration allows for integrated sensor circuits, enabling scalable and cost-effective applications. In this work, we demonstrate the deposition of pyroelectric thin films on area-enhanced structured substrates via thermal atomic layer deposition. Scanning electron microscopy indicates a conformal deposition of the pyroelectric film in the holes with a diameter of 500 nm and a depth of 8 μm. By using TiN electrodes and photolithography, capacitor structures are formed, which are contacted via the electrically conductive substrate. Ferroelectric hysteresis measurements indicate a sizable remanent polarization of up to 331 μC cm−2, which corresponds to an area increase of up to 15 by the nanostructured substrate. For pyroelectric analysis, a sinusoidal temperature oscillation is applied to the sample. Simultaneously, the pyroelectric current is monitored. By assessing the phase of the measured current profile, the pyroelectric origin of the signal is confirmed. The devices show sizable pyroelectric coefficients of −475 μC m−2 K−1, which is larger than that of lead zirconate titanate (PZT). Based on the experimental evidence, we propose Hf1−xZrxO2 as a promising material for future pyroelectric applications. Full article
(This article belongs to the Proceedings of The 8th International Symposium on Sensor Science)
22 pages, 10672 KiB  
Article
Biologically Compatible Lead-Free Piezoelectric Composite for Acoustophoresis Based Particle Manipulation Techniques
by Tomas Janusas, Sigita Urbaite, Arvydas Palevicius, Sohrab Nasiri and Giedrius Janusas
Sensors 2021, 21(2), 483; https://doi.org/10.3390/s21020483 - 12 Jan 2021
Cited by 10 | Viewed by 2949
Abstract
This research paper is concentrated on the design of biologically compatible lead-free piezoelectric composites which may eventually replace traditional lead zirconium titanate (PZT) in micromechanical fluidics, the predominantly used ferroelectric material today. Thus, a lead-free barium–calcium zirconate titanate (BCZT) composite was synthesized, its [...] Read more.
This research paper is concentrated on the design of biologically compatible lead-free piezoelectric composites which may eventually replace traditional lead zirconium titanate (PZT) in micromechanical fluidics, the predominantly used ferroelectric material today. Thus, a lead-free barium–calcium zirconate titanate (BCZT) composite was synthesized, its crystalline structure and size, surface morphology, chemical, and piezoelectric properties were analyzed, together with the investigations done in variation of composite thin film thickness and its effect on the element properties. Four elements with different thicknesses of BCZT layers were fabricated and investigated in order to design a functional acoustophoresis micromechanical fluidic element, based on bulk acoustic generation for particle control technologies. Main methods used in this research were as follows: FTIR and XRD for evaluation of chemical and phase composition; SEM—for surface morphology; wettability measurements were used for surface free energy evaluation; a laser triangular sensing system—for evaluation of piezoelectric properties. XRD results allowed calculating the average crystallite size, which was 65.68 Å3 confirming the formation of BCZT nanoparticles. SEM micrographs results showed that BCZT thin films have some porosities on the surface with grain size ranging from 0.2 to 7.2 µm. Measurements of wettability showed that thin film surfaces are partially wetting and hydrophilic, with high degree of wettability and strong solid/liquid interactions for liquids. The critical surface tension was calculated in the range from 20.05 to 27.20 mN/m. Finally, investigations of piezoelectric properties showed significant results of lead-free piezoelectric composite, i.e., under 5 N force impulse thin films generated from 76 mV up to 782 mV voltages. Moreover, an experimental analysis showed that a designed lead-free BCZT element creates bulk acoustic waves and allows manipulating bio particles in this fluidic system. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

14 pages, 3491 KiB  
Article
Microstructure and Properties of PZT Films with Different PbO Content—Ionic Mechanism of Built-In Fields Formation
by Nikolay Mukhin, Dmitry Chigirev, Liubov Bakhchova and Andrey Tumarkin
Materials 2019, 12(18), 2926; https://doi.org/10.3390/ma12182926 - 10 Sep 2019
Cited by 12 | Viewed by 3572
Abstract
Experimental studies were conducted on the effects of lead oxide on the microstructure and the ferroelectric properties of lead zirconate-titanate (PZT) films obtained by the method of radio frequency (RF) magnetron sputtering of a ceramic PZT target and PbO2 powder with subsequent [...] Read more.
Experimental studies were conducted on the effects of lead oxide on the microstructure and the ferroelectric properties of lead zirconate-titanate (PZT) films obtained by the method of radio frequency (RF) magnetron sputtering of a ceramic PZT target and PbO2 powder with subsequent heat treatment. It is shown that the change in ferroelectric properties of polycrystalline PZT films is attributable to their heterophase structure with impurities of lead oxide. It is also shown that, even in the original stoichiometric PZT film, under certain conditions (temperature above 580 °C, duration greater than 70 min), impurities of lead oxide may be formed. The presence of a sublayer of lead oxide leads to a denser formation of crystallization centers of the perovskite phase, resulting in a reduction of the grain size as well as the emergence of a charge on the lower interface. The formation of the perovskite structure under high-temperature annealing is accompanied by the diffusion of lead into the surface of the film. Also shown is the effect of the lead ions segregation on the formation of the self-polarized state of thin PZT films. Full article
Show Figures

Graphical abstract

16 pages, 4460 KiB  
Article
PZT/PZT and PZT/BiT Composite Piezo-Sensors in Aerospace SHM Applications: Photochemical Metal Organic + Infiltration Deposition and Characterization
by Hamidreza Hoshyarmanesh, Nafiseh Ebrahimi, Amir Jafari, Parisa Hoshyarmanesh, Minjae Kim and Hyung-Ho Park
Sensors 2019, 19(1), 13; https://doi.org/10.3390/s19010013 - 20 Dec 2018
Cited by 22 | Viewed by 6492
Abstract
The composition of fine-ground lead zirconate-titanate powder Pb(Zr0.52Ti0.48)O3, suspended in PZT and bismuth titanate (BiT) solutions, is deposited on the curved surface of IN718 and IN738 nickel-based supper alloy substrates up to 100 µm thickness. Photochemical metal [...] Read more.
The composition of fine-ground lead zirconate-titanate powder Pb(Zr0.52Ti0.48)O3, suspended in PZT and bismuth titanate (BiT) solutions, is deposited on the curved surface of IN718 and IN738 nickel-based supper alloy substrates up to 100 µm thickness. Photochemical metal organic and infiltration techniques are implemented to produce smooth, semi-dense, and crack-free random orientated thick piezoelectric films as piezo-sensors, free of any dopants or thickening polymers. Every single layer of the deposited films is heated at 200 °C with 10 wt.% excess PbO, irradiated by ultraviolet lamp (365 nm, 6 watt) for 10 min, pyrolyzed at 400 °C, and subsequently annealed at 700 °C for one hour. This process is repeated successively until reaching the desired thickness. Au and Pt thin films are deposited as the bottom and top electrodes using evaporation and sputtering methods, respectively. PZT/PZT and PZT/BiT composite films are then characterized and compared to similar PZT and BiT thick films deposited on the similar substrates. The effect of the composition and deposition process is also investigated on the crystalline phase development and microstructure morphology as well as the dielectric, ferroelectric, and piezoelectric properties of piezo-films. The maximum remnant polarization of Pr = 22.37 ± 0.01, 30.01 ± 0.01 µC/cm2, the permittivity of εr = 298 ± 3, 566 ± 5, and piezoelectric charge coefficient of d33 = 126, 148 m/V were measured versus the minimum coercive field of Ec = 50, 20 kV/cm for the PZT/PZT and PZT/BiT thick films, respectively. The thick film piezo-sensors are developed to be potentially used at frequency bandwidth of 1–5 MHz for rotary structural health monitoring and also in other industrial or medical applications as a transceiver. Full article
(This article belongs to the Special Issue Intelligent Sensors Applications in Aerospace)
Show Figures

Graphical abstract

2126 KiB  
Article
Transparent Ferroelectric Capacitors on Glass
by Daniele Sette, Stéphanie Girod, Renaud Leturcq, Sebastjan Glinsek and Emmanuel Defay
Micromachines 2017, 8(10), 313; https://doi.org/10.3390/mi8100313 - 20 Oct 2017
Cited by 11 | Viewed by 4834
Abstract
We deposited transparent ferroelectric lead zirconate titanate thin films on fused silica and contacted them via Al-doped zinc oxide (AZO) transparent electrodes with an interdigitated electrode (IDE) design. These layers, together with a TiO2 buffer layer on the fused silica substrate, are [...] Read more.
We deposited transparent ferroelectric lead zirconate titanate thin films on fused silica and contacted them via Al-doped zinc oxide (AZO) transparent electrodes with an interdigitated electrode (IDE) design. These layers, together with a TiO2 buffer layer on the fused silica substrate, are highly transparent (>60% in the visible optical range). Fully crystallized Pb(Zr0.52Ti0.48)O3 (PZT) films are dielectrically functional and exhibit a typical ferroelectric polarization loop with a remanent polarization of 15 μC/cm2. The permittivity value of 650, obtained with IDE AZO electrodes is equivalent to the one measured with Pt electrodes patterned with the same design, which proves the high quality of the developed transparent structures. Full article
(This article belongs to the Special Issue Piezoelectric MEMS)
Show Figures

Figure 1

526 KiB  
Review
Piezoelectric Materials Synthesized by the Hydrothermal Method and Their Applications
by Takeshi Morita
Materials 2010, 3(12), 5236-5245; https://doi.org/10.3390/ma3125236 - 9 Dec 2010
Cited by 34 | Viewed by 12199
Abstract
Synthesis by the hydrothermal method has various advantages, including low reaction temperature, three-dimensional substrate availability, and automatic polarization alignment during the process. In this review, powder synthesis, the fabrication of piezoelectric thin films, and their applications are introduced. A polycrystalline lead zirconate titanate [...] Read more.
Synthesis by the hydrothermal method has various advantages, including low reaction temperature, three-dimensional substrate availability, and automatic polarization alignment during the process. In this review, powder synthesis, the fabrication of piezoelectric thin films, and their applications are introduced. A polycrystalline lead zirconate titanate (PZT) thin film was applied to a micro ultrasonic motor, and an epitaxial lead titanate (PbTiO3) thin film was estimated as a ferroelectric data storage medium. Ferroelectric and piezoelectric properties were successfully obtained for epitaxial PbTiO3 films. As lead-free piezoelectric powders, KNbO3 and NaNbO3 powders were synthesized by the hydrothermal method and sintered together to form (K,Na)NbO3 ceramics, from which reasonable piezoelectric performance was achieved. Full article
(This article belongs to the Special Issue Advances in Ferroelectric & Piezoelectric Materials)
Show Figures

Figure 1

Back to TopTop