Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,050)

Search Parameters:
Keywords = innate immunity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4383 KiB  
Article
Apo-Lactoferrin Inhibits the Proteolytic Activity of the 110 kDa Zn Metalloprotease Produced by Mannheimia haemolytica A2
by Gerardo Ramírez-Rico, Lucero Ruiz-Mazón, Magda Reyes-López, Lina Rivillas Acevedo, Jesús Serrano-Luna and Mireya de la Garza
Int. J. Mol. Sci. 2024, 25(15), 8232; https://doi.org/10.3390/ijms25158232 (registering DOI) - 28 Jul 2024
Viewed by 316
Abstract
Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase [...] Read more.
Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity. Full article
(This article belongs to the Special Issue New Insights into Lactoferrin)
Show Figures

Figure 1

14 pages, 1572 KiB  
Review
Understanding the Role of Toll-Like Receptors 9 in Breast Cancer
by Umaima Al-alem, Alaa Al-Saruri, Hasan Bamahros, Abeer M. Mahmoud, Emily Sible and Uzma A. Hasan
Cancers 2024, 16(15), 2679; https://doi.org/10.3390/cancers16152679 - 27 Jul 2024
Viewed by 180
Abstract
Breast cancer is a significant global issue, ranking as the second most common cancer among women worldwide and a leading cause of cancer-related deaths. Although the exact causes of this increase remain unclear, factors such as genetics, epigenetics, obesity, sedentary lifestyle, tobacco use, [...] Read more.
Breast cancer is a significant global issue, ranking as the second most common cancer among women worldwide and a leading cause of cancer-related deaths. Although the exact causes of this increase remain unclear, factors such as genetics, epigenetics, obesity, sedentary lifestyle, tobacco use, and vitamin D deficiency have been implicated. The Toll-like receptor 9 (TLR9) is recognized for its role in inflammation and innate immunity; however, its specific involvement in breast cancer pathogenesis requires further investigation. This study aims to systematically review the existing literature on TLR9 expression in normal and cancerous breast tissue, providing current knowledge and identifying gaps. Relevant articles in English were from PubMed, Scopus, and Google Scholar, with the inclusion criteria focusing on studies evaluating TLR9 mRNA and protein expression. The review found that TLR9 mRNA and protein exhibit variable expressions in both normal and cancerous breast tissue, highlighting the need for further research to clarify TLR9’s role in breast cancer. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
47 pages, 2241 KiB  
Review
MiR-223-3p in Cancer Development and Cancer Drug Resistance: Same Coin, Different Faces
by Davide Barbagallo, Donatella Ponti, Barbara Bassani, Antonino Bruno, Laura Pulze, Shreya A. Akkihal, Jonahunnatha N. George-William, Rohit Gundamaraju and Paola Campomenosi
Int. J. Mol. Sci. 2024, 25(15), 8191; https://doi.org/10.3390/ijms25158191 - 26 Jul 2024
Viewed by 384
Abstract
MicroRNAs (miRNAs) are mighty post-transcriptional regulators in cell physiology and pathophysiology. In this review, we focus on the role of miR-223-3p (henceforth miR-223) in various cancer types. MiR-223 has established roles in hematopoiesis, inflammation, and most cancers, where it can act as either [...] Read more.
MicroRNAs (miRNAs) are mighty post-transcriptional regulators in cell physiology and pathophysiology. In this review, we focus on the role of miR-223-3p (henceforth miR-223) in various cancer types. MiR-223 has established roles in hematopoiesis, inflammation, and most cancers, where it can act as either an oncogenic or oncosuppressive miRNA, depending on specific molecular landscapes. MiR-223 has also been linked to either the sensitivity or resistance of cancer cells to treatments in a context-dependent way. Through this detailed review, we highlight that for some cancers (i.e., breast, non-small cell lung carcinoma, and glioblastoma), the oncosuppressive role of miR-223 is consistently reported in the literature, while for others (i.e., colorectal, ovarian, and pancreatic cancers, and acute lymphocytic leukemia), an oncogenic role prevails. In prostate cancer and other hematological malignancies, although an oncosuppressive role is frequently described, there is less of a consensus. Intriguingly, NLRP3 and FBXW7 are consistently identified as miR-223 targets when the miRNA acts as an oncosuppressor or an oncogene, respectively, in different cancers. Our review also describes that miR-223 was increased in biological fluids or their extracellular vesicles in most of the cancers analyzed, as compared to healthy or lower-risk conditions, confirming the potential application of this miRNA as a diagnostic and prognostic biomarker in the clinic. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

28 pages, 2436 KiB  
Review
Epstein–Barr Viruses: Their Immune Evasion Strategies and Implications for Autoimmune Diseases
by Yuehong Zhao, Qi Zhang, Botian Zhang, Yihao Dai, Yifei Gao, Chenzhong Li, Yijing Yu and Conglei Li
Int. J. Mol. Sci. 2024, 25(15), 8160; https://doi.org/10.3390/ijms25158160 - 26 Jul 2024
Viewed by 493
Abstract
Epstein–Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV’s life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting [...] Read more.
Epstein–Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV’s life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting B cells and epithelial cells. This virus has evolved sophisticated strategies to evade both innate and adaptive immune responses, thereby maintaining a lifelong presence within the host. This persistence is facilitated by the expression of latent genes such as EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), which play crucial roles in viral latency and oncogenesis. In addition to their well-known roles in several types of cancer, including nasopharyngeal carcinoma and B-cell lymphomas, recent studies have identified the pathogenic roles of EBV in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review highlights the intricate interactions between EBV and the host immune system, underscoring the need for further research to develop effective therapeutic and preventive strategies against EBV-associated diseases. Full article
(This article belongs to the Special Issue Molecular Research on Viral Infection and Host Immunity)
Show Figures

Figure 1

20 pages, 1142 KiB  
Review
Focus on Pancreatic Cancer Microenvironment
by Fabiana Pratticò and Ingrid Garajová
Curr. Oncol. 2024, 31(8), 4241-4260; https://doi.org/10.3390/curroncol31080316 - 26 Jul 2024
Viewed by 352
Abstract
Pancreatic ductal adenocarcinoma remains one of the most lethal solid tumors due to its local aggressiveness and metastatic potential, with a 5-year survival rate of only 13%. A robust connection between pancreatic cancer microenvironment and tumor progression exists, as well as resistance to [...] Read more.
Pancreatic ductal adenocarcinoma remains one of the most lethal solid tumors due to its local aggressiveness and metastatic potential, with a 5-year survival rate of only 13%. A robust connection between pancreatic cancer microenvironment and tumor progression exists, as well as resistance to current anticancer treatments. Pancreatic cancer has a complex tumor microenvironment, characterized by an intricate crosstalk between cancer cells, cancer-associated fibroblasts and immune cells. The complex composition of the tumor microenvironment is also reflected in the diversity of its acellular components, such as the extracellular matrix, cytokines, growth factors and secreted ligands involved in signaling pathways. Desmoplasia, the hallmark of the pancreatic cancer microenvironment, contributes by creating a dense and hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance and suppresses anti-tumor immune invasion. We discuss the complex crosstalk among tumor microenvironment components and explore therapeutic strategies and opportunities in pancreatic cancer research. Better understanding of the tumor microenvironment and its influence on pancreatic cancer progression could lead to potential novel therapeutic options, such as integration of immunotherapy and cytokine-targeted treatments. Full article
(This article belongs to the Special Issue The Role of Tumor Microenvironment in Pancreatic Cancer Treatment)
Show Figures

Figure 1

19 pages, 920 KiB  
Article
Comparison of Post-Vaccination Cellular Immune Response in Patients with Common Variable Immune Deficiency
by Aristitsa Mikhailovna Kostinova, Elena Alexandrovna Latysheva, Mikhail Petrovich Kostinov, Nelly Kimovna Akhmatova, Svetlana Anatolyevna Skhodova, Anna Egorovna Vlasenko, Alexander Petrovich Cherdantsev, Irina Leonidovna Solovеva, Isabella Abramovna Khrapunova, Marina Nikolaevna Loktionova, Ekaterina Alexandrovna Khromova and Arseniy Alexandrovich Poddubikov
Vaccines 2024, 12(8), 843; https://doi.org/10.3390/vaccines12080843 - 25 Jul 2024
Viewed by 313
Abstract
Background: The problem of identifying vaccine-specific T-cell responses is still a matter of debate. Currently, there are no universal, clearly defined, agreed upon criteria for assessing the effectiveness of vaccinations and their immunogenicity for the cellular component of immunity, even for healthy [...] Read more.
Background: The problem of identifying vaccine-specific T-cell responses is still a matter of debate. Currently, there are no universal, clearly defined, agreed upon criteria for assessing the effectiveness of vaccinations and their immunogenicity for the cellular component of immunity, even for healthy people. But for patients with inborn errors of immunity (IEI), especially those with antibody deficiencies, evaluating cellular immunity holds significant importance. Aim: To examine the effect of one and two doses of inactivated adjuvanted subunit influenza vaccines on the expression of endosomal Toll-like receptors (TLRs) on the immune cells and the primary lymphocyte subpopulations in patients with common variable immunodeficiency (CVID). Materials and methods: During 2018–2019, six CVID patients received one dose of a quadrivalent adjuvanted influenza vaccine; in 2019–2020, nine patients were vaccinated with two doses of a trivalent inactivated influenza vaccine. The proportion of key lymphocyte subpopulations and expression levels of TLRs were analyzed using flow cytometry with monoclonal antibodies. Results: No statistically significant alterations in the absolute values of the main lymphocyte subpopulations were observed in CVID patients before or after vaccination with the different immunization protocols. However, after vaccination, a higher expression of TLR3 and TLR9 in granulocytes, monocytes, and lymphocytes was found in those patients who received two vaccine doses rather than one single dose. Conclusion: This study marks the first instance of using a simultaneous two-dose vaccination, which is associated with an elevated level of TLR expression in the immune cells. Administration of the adjuvanted vaccines in CVID patients appears promising. Further research into their impact on innate immunity and the development of more effective vaccination regimens is warranted. Full article
11 pages, 1990 KiB  
Article
The Interplay of TLR-NFκB Signalling Pathway and Functional Immune-Related Enzymes in the Inflammatory Response of Ciona robusta
by Luca Bisanti, Claudia La Corte, Mariano Dara, Federica Bertini, Jacopo Vizioli, Maria Giovanna Parisi, Matteo Cammarata and Daniela Parrinello
Animals 2024, 14(15), 2169; https://doi.org/10.3390/ani14152169 - 25 Jul 2024
Viewed by 287
Abstract
The close phylogenetic relationship between ascidians (Tunicata) and vertebrates makes them a powerful model for studying the innate immune system. To better understand the nature and dynamics of immune responses and the mechanisms through which bacterial infections are detected and translated into inflammation [...] Read more.
The close phylogenetic relationship between ascidians (Tunicata) and vertebrates makes them a powerful model for studying the innate immune system. To better understand the nature and dynamics of immune responses and the mechanisms through which bacterial infections are detected and translated into inflammation in Ciona robusta, we applied an approach combining in vivo lipopolysaccharide (LPS) stimulation, immune-labelling techniques and functional enzymatic analyses. The immunohistochemistry showed that Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NFκB) were expressed during the inflammatory pharynx response 4 h post-LPS, with the formation of nodules in pharynx vessel lumen. Also, the endothelium vessels were involved in the inflammatory response. Observations of histological sections from naive and buffer-inoculated ascidians confirmed an immuno-positive response. Enzyme immune parameters—which included the activity of phenoloxidase, glutathione peroxidase, lysozyme, alkaline phosphatase and esterase—showed up-modulation 4 h after LPS injection, confirming their participation during ascidian inflammatory response. These findings provide new insights into the mechanisms underlying the LPS-induced C. robusta response and suggest that a broad innate immune mechanism, as in vertebrates, is involved in the regulation of inflammatory responses. Further findings in this direction are needed to cover knowledge gaps regarding the organized set of molecular and cellular networks involved in universal immune interactions with pathogens. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

38 pages, 29521 KiB  
Article
Bioinformatics-Driven mRNA-Based Vaccine Design for Controlling Tinea Cruris Induced by Trichophyton rubrum
by Amir Elalouf, Hanan Maoz and Amit Yaniv Rosenfeld
Pharmaceutics 2024, 16(8), 983; https://doi.org/10.3390/pharmaceutics16080983 - 25 Jul 2024
Viewed by 314
Abstract
Tinea cruris, a dermatophyte fungal infection predominantly caused by Trichophyton rubrum and Epidermophyton floccosum, primarily affects the groin, pubic region, and adjacent thigh. Its recurrence is frequent, attributable to repeated fungal infections in susceptible individuals, especially those with onychomycosis or tinea pedis, [...] Read more.
Tinea cruris, a dermatophyte fungal infection predominantly caused by Trichophyton rubrum and Epidermophyton floccosum, primarily affects the groin, pubic region, and adjacent thigh. Its recurrence is frequent, attributable to repeated fungal infections in susceptible individuals, especially those with onychomycosis or tinea pedis, which act as reservoirs for dermatophytes. Given the persistent nature of tinea cruris, vaccination emerges as a promising strategy for fungal infection management, offering targeted, durable protection against various fungal species. Vaccines stimulate both humoral and cell-mediated immunity and are administered prophylactically to prevent infections while minimizing the risk of antifungal resistance development. Developing fungal vaccines is challenging due to the thick fungal cell wall, similarities between fungal and human cells, antigenic variation, and evolutionary resemblance to animals, complicating non-toxic target identification and T-cell response variability. No prior research has shown an mRNA vaccine for T. rubrum. Hence, this study proposes a novel mRNA-based vaccine for tinea cruris, potentially offering long-term immunity and reducing reliance on antifungal medications. This study explores the complete proteome of T. rubrum, identifying potential protein candidates for vaccine development through reverse vaccinology. Immunogenic epitopes from these candidates were mapped and integrated into multitope vaccines and reverse translated to construct mRNA vaccines. Then, the mRNA was translated and computationally assessed for physicochemical, chemical, and immunological attributes. Notably, 1,3-beta-glucanosyltransferase, CFEM domain-containing protein, cell wall galactomannoprotein, and LysM domain-containing protein emerged as promising vaccine targets. Antigenic, immunogenic, non-toxic, and non-allergenic cytotoxic T lymphocyte, helper T lymphocyte, and B lymphocyte epitopes were selected and linked with appropriate linkers and Toll-like receptor (TLR) agonist adjuvants to formulate vaccine candidates targeting T. rubrum. The protein-based vaccines underwent reverse translation to construct the mRNA vaccines, which, after inoculation, were translated again by host ribosomes to work as potential components for triggering the immune response. After that, molecular docking, normal mode analysis, and molecular dynamic simulation confirmed strong binding affinities and stable complexes between vaccines and TLR receptors. Furthermore, immune simulations of vaccines with and without adjuvant demonstrated activation of immune responses, evidenced by elevated levels of IgG1, IgG2, IgM antibodies, cytokines, and interleukins. There was no significant change in antibody production between vaccines with and without adjuvants, but adjuvants are crucial for activating the innate immune response via TLRs. Although mRNA vaccines hold promise against fungal infections, further research is essential to assess their safety and efficacy. Experimental validation is crucial for evaluating their immunogenicity, effectiveness, and safety. Full article
(This article belongs to the Special Issue Trends in mRNA Vaccine Development and Applications)
Show Figures

Figure 1

13 pages, 1755 KiB  
Article
Human Defensin 5 Inhibits Plasmodium yoelii Development in Anopheles stephensi by Promoting Innate Immune Response
by Tingting Liu, Jing Wang, Xin Li, Shasha Yu, Dan Zheng, Zhilong Liu, Xuesen Yang and Ying Wang
Trop. Med. Infect. Dis. 2024, 9(8), 169; https://doi.org/10.3390/tropicalmed9080169 - 25 Jul 2024
Viewed by 253
Abstract
Malaria poses a serious threat to human health. Existing vector-based interventions have shortcomings, such as environmental pollution, strong resistance to chemical insecticides, and the slow effects of biological insecticides. Therefore, the need to develop novel strategies for controlling malaria, such as reducing mosquito [...] Read more.
Malaria poses a serious threat to human health. Existing vector-based interventions have shortcomings, such as environmental pollution, strong resistance to chemical insecticides, and the slow effects of biological insecticides. Therefore, the need to develop novel strategies for controlling malaria, such as reducing mosquito vector competence, is escalating. Human defensin 5 (HD5) has broad-spectrum antimicrobial activity. To determine its effect on Plasmodium development in mosquitoes, HD5 was injected into Anopheles stephensi at various time points. The infection density of Plasmodium yoelii in An. stephensi was substantially reduced by HD5 treatment administered 24 h prior to infection or 6, 12, or 24 h post-infection (hpi). We found that HD5 treatment upregulated the expression of the innate immune effectors TEP1, MyD88, and Rel1 at 24 and 72 hpi. Furthermore, the RNA interference of MyD88, a key upstream molecule in the Toll signaling pathway, decreased the HD5-induced resistance of mosquitoes against Plasmodium infection. These results suggest that HD5 microinjection inhibits the development of malaria parasites in An. stephensi by activating the Toll signaling pathway. Full article
(This article belongs to the Special Issue Epidemiology, Detection and Treatment of Malaria)
Show Figures

Figure 1

15 pages, 945 KiB  
Article
Elucidating the Immune Response to SARS-CoV-2: Natural Infection versus Covaxin/Covishield Vaccination in a South Indian Population
by Agalya Vanamudhu, Renuka Devi Arumugam, Arul Nancy, Nandhini Selvaraj, Kadar Moiden, Syed Hissar, Uma Devi Ranganathan, Ramalingam Bethunaickan, Subash Babu and Nathella Pavan Kumar
Viruses 2024, 16(8), 1178; https://doi.org/10.3390/v16081178 - 23 Jul 2024
Viewed by 321
Abstract
A natural infection or a vaccination can initially prime the immune system to form immunological memory. The immunity engendered by vaccination against COVID-19 versus natural infection with SARS-CoV-2 has not been well studied in the Indian population. In this study, we compared the [...] Read more.
A natural infection or a vaccination can initially prime the immune system to form immunological memory. The immunity engendered by vaccination against COVID-19 versus natural infection with SARS-CoV-2 has not been well studied in the Indian population. In this study, we compared the immunity conferred by COVID-19 vaccines to naturally acquired immunity to SARS-CoV-2 in a South Indian population. We examined binding and neutralizing antibody (NAb) levels against the ancestral and variant lineages and assessed the ex vivo cellular parameters of memory T cells, memory B cells, and monocytes and finally measured the circulating cytokine response. COVID-19 vaccination stimulates heightened levels of IgG antibodies against the original strain of SARS-CoV-2, as well as increased binding to the spike protein and neutralizing antibody levels. This enhanced response extends to variant lineages such as B.1.617.2 (Delta, India), B.1.1.529 (Omicron, India), B.1.351 (Beta, South Africa), and B.1.1.7 (Alpha, UK). COVID-19 vaccination differs from SARS-CoV-2 infection by having increased frequencies of classical memory B cells, activated memory B and plasma cells, CD4/CD8 T cells of effector memory, effector cells, stem cell-like memory T cells, and classical and intermediate monocytes and diminished frequencies of CD4/CD8 T cells of central memory and non-classical monocytes in vaccinated individuals in comparison to those with natural infection. Thus, COVID-19 vaccination is characterized by enhanced humoral responses and robust activation of innate and memory T cell responses in comparison to natural infection in a South Indian population. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals)
Show Figures

Figure 1

18 pages, 11542 KiB  
Article
Gold Nanoparticle Virus-like Particles Presenting SARS-CoV-2 Spike Protein: Synthesis, Biophysical Properties and Immunogenicity in BALB/c Mice
by Vivian A. Salazar, Joan Comenge, Rosa Suárez-López, Judith A. Burger, Rogier W. Sanders, Neus G. Bastús, Carlos Jaime, Joan Joseph-Munne and Victor Puntes
Vaccines 2024, 12(8), 829; https://doi.org/10.3390/vaccines12080829 - 23 Jul 2024
Viewed by 473
Abstract
Gold nanoparticles (AuNPs) decorated with antigens have recently emerged as promising tools for vaccine development due to their innate ability to provide stability to antigens and modulate immune responses. In this study, we have engineered deactivated virus-like particles (VLPs) by precisely functionalizing gold [...] Read more.
Gold nanoparticles (AuNPs) decorated with antigens have recently emerged as promising tools for vaccine development due to their innate ability to provide stability to antigens and modulate immune responses. In this study, we have engineered deactivated virus-like particles (VLPs) by precisely functionalizing gold cores with coronas comprising the full SARS-CoV-2 spike protein (S). Using BALB/c mice as a model, we investigated the immunogenicity of these S-AuNPs-VLPs. Our results demonstrate that S-AuNPs-VLPs consistently enhanced antigen-specific antibody responses compared to the S protein free in solution. This enhancement included higher binding antibody titers, higher neutralizing capacity of antibodies, and stronger T-cell responses. Compared to the mRNA COVID-19 vaccine, where the S protein is synthesized in situ, S-AuNPs-VLPs induced comparable binding and neutralizing antibody responses, but substantially superior T-cell responses. In conclusion, our study highlights the potential of conjugated AuNPs as an effective antigen-delivery system for protein-based vaccines targeting a broad spectrum of infectious diseases and other emergent viruses. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

12 pages, 1970 KiB  
Article
Comparison of Antiviral Immune Responses in Healthy Cats Induced by Two Immune Therapeutics
by Petra Cerna, Steven Dow, William Wheat, Lyndah Chow, Jennifer Hawley and Michael R. Lappin
Pathogens 2024, 13(7), 602; https://doi.org/10.3390/pathogens13070602 - 22 Jul 2024
Viewed by 470
Abstract
Background: Effective immunotherapeutic agents for use in cats are needed to aid in the management of intractable viral diseases, including feline infectious peritonitis (FIP) infection. The objectives of this study were to compare two different immune stimulants for antiviral activity in cats: (1) [...] Read more.
Background: Effective immunotherapeutic agents for use in cats are needed to aid in the management of intractable viral diseases, including feline infectious peritonitis (FIP) infection. The objectives of this study were to compare two different immune stimulants for antiviral activity in cats: (1) TLR 2/6-activating compound polyprenyl immunostimulant; (PI) and (2) liposome Toll-like receptor 3/9 agonist complexes (LTCs) to determine relative abilities to stimulate the induction of type I (IFN-α, IFN-β) and type II (IFN-γ) interferon immune responses in vitro and to study the effects of treatment on immune responses in healthy cats. Methods: Cytokine and cellular immune responses to PI and LTC were evaluated using peripheral blood mononuclear cells (PBMCs) from healthy cats incubated with LTC and PI at indicated concentrations using reverse transcriptase polymerase chain reaction assays and ELISA assays. The effects of the immune stimulants on inhibiting FIPV replication were assessed using a feline macrophage cell line (fcwf-4). Cytokine and cellular immune responses to PI and LTC were evaluated in blood samples from healthy cats treated with PI and LTC, using reverse transcriptase polymerase chain reaction (RT-PCR) and ELISA assays. Results: In the in vitro studies, both compounds triggered the upregulated expression of IFN-α, IFN-γ, and IL-1β genes in cat PBMC, whereas treatment with LTC induced significantly greater expression of IFN-α and IFN-γ on Day 1 and IL-1b on Day 3. There was significant protection from FIPV-induced cytopathic effects when fcwf-4 cells were treated with conditioned medium from LTC-activated leukocytes. In the healthy cat study (in vivo), both PI and LTC increased the mRNA signal for IFN-α, IFN-γ, and IL-1β above baseline at multiple time points with statistically greater increases in the LTC group on either Day 1 (IFN-α, IFN-γ) or Day 3 (IL-1β). In addition, RANTES increased over time in cats treated with the LTC. Conclusions: Both LTC and PI protocols induced immune-enhancing effects, suggesting a possible clinical use for the management of chronic infectious diseases like FIP. Activating the TLR 3 and 9 pathways (LTC) induced superior broad interferon production in vitro than the activation of the TLR 2 and 6 pathways (PI). Full article
(This article belongs to the Section Immunological Responses and Immune Defense Mechanisms)
Show Figures

Figure 1

10 pages, 1411 KiB  
Communication
The Activin Branch Ligand Daw Regulates the Drosophila melanogaster Immune Response and Lipid Metabolism against the Heterorhabditis bacteriophora Serine Carboxypeptidase
by Sreeradha Mallick, Eric Kenney and Ioannis Eleftherianos
Int. J. Mol. Sci. 2024, 25(14), 7970; https://doi.org/10.3390/ijms25147970 - 21 Jul 2024
Viewed by 452
Abstract
Despite impressive advances in the broad field of innate immunity, our understanding of the molecules and signaling pathways that control the host immune response to nematode infection remains incomplete. We have shown recently that Transforming Growth Factor-β (TGF-β) signaling in the fruit fly [...] Read more.
Despite impressive advances in the broad field of innate immunity, our understanding of the molecules and signaling pathways that control the host immune response to nematode infection remains incomplete. We have shown recently that Transforming Growth Factor-β (TGF-β) signaling in the fruit fly Drosophila melanogaster is activated by nematode infection and certain TGF-β superfamily members regulate the D. melanogaster anti-nematode immune response. Here, we investigate the effect of an entomopathogenic nematode infection factor on host TGF-β pathway regulation and immune function. We find that Heterorhabditis bacteriophora serine carboxypeptidase activates the Activin branch in D. melanogaster adults and the immune deficiency pathway in Activin-deficient flies, it affects hemocyte numbers and survival in flies deficient for Activin signaling, and causes increased intestinal steatosis in Activin-deficient flies. Thus, insights into the D. melanogaster signaling pathways and metabolic processes interacting with H. bacteriophora pathogenicity factors will be applicable to entomopathogenic nematode infection of important agricultural insect pests and vectors of disease. Full article
(This article belongs to the Special Issue Innate Immunity: New Insights into Genetic and Signaling Networks)
Show Figures

Figure 1

17 pages, 1001 KiB  
Review
The Interactions of the Complement System with Human Cytomegalovirus
by Eduardo Lujan, Isadora Zhang, Andrea Canto Garon and Fenyong Liu
Viruses 2024, 16(7), 1171; https://doi.org/10.3390/v16071171 - 20 Jul 2024
Viewed by 416
Abstract
The complement system is an evolutionarily ancient component of innate immunity that serves as an important first line of defense against pathogens, including viruses. In response to infection, the complement system can be activated by three distinct yet converging pathways (classical, lectin, and [...] Read more.
The complement system is an evolutionarily ancient component of innate immunity that serves as an important first line of defense against pathogens, including viruses. In response to infection, the complement system can be activated by three distinct yet converging pathways (classical, lectin, and alternative) capable of engaging multiple antiviral host responses to confront acute, chronic, and recurrent viral infections. Complement can exert profound antiviral effects via multiple mechanisms including the induction of inflammation and chemotaxis to sites of infection, neutralization/opsonization of viruses and virally infected cells, and it can even shape adaptive immune responses. With millions of years of co-evolution and the ability to establish life-long infections, herpesviruses have evolved unique mechanisms to counter complement-mediated antiviral defenses, thus enabling their survival and replication within humans. This review aims to comprehensively summarize how human herpesviruses engage with the complement system and highlight our understanding of the role of complement in human cytomegalovirus (HCMV) infection, immunity, and viral replication. Herein we describe the novel and unorthodox roles of complement proteins beyond their roles in innate immunity and discuss gaps in knowledge and future directions of complement and HCMV research. Full article
(This article belongs to the Special Issue 65-Year Anniversary of the Discovery of Cytomegalovirus)
Show Figures

Figure 1

14 pages, 1835 KiB  
Protocol
An Adaptable Protocol to Generate a Murine Enteroid–Macrophage Co-Culture System
by Viktoria Hentschel, Deepalakshmi Govindarajan, Thomas Seufferlein and Milena Armacki
Int. J. Mol. Sci. 2024, 25(14), 7944; https://doi.org/10.3390/ijms25147944 - 20 Jul 2024
Viewed by 363
Abstract
Impairment of the intestinal epithelial barrier is frequently seen as collateral damage in various local and systemic inflammatory conditions. The inflammatory process is characterized by reciprocal interactions between the host intestinal epithelium and mucosal innate immune cells, e.g., macrophages. This article provides step-by-step [...] Read more.
Impairment of the intestinal epithelial barrier is frequently seen as collateral damage in various local and systemic inflammatory conditions. The inflammatory process is characterized by reciprocal interactions between the host intestinal epithelium and mucosal innate immune cells, e.g., macrophages. This article provides step-by-step instructions on how to set up a murine enteroid–macrophage co-culture by culturing cellular elements in proximity separated by a porous membrane. Unlike previously published co-culture systems, we have combined enteroids grown from C57BL6j mice with syngeneic bone marrow-derived macrophages to preclude potential allo-reactions between immune cells and epithelium. Transformation of intestinal crypts into proliferative enteroids was achieved by cultivation in Wnt3a-Noggin-R-Spondin-conditioned medium supplemented with ROCK inhibitor Y-27632. The differentiated phenotype was promoted by the use of the Wnt3-deprived EGF-Noggin-R-Spondin medium. The resulting co-culture of primary cells can be employed as a basic model to better understand the reciprocal relationship between intestinal epithelium and macrophages. It can be used for in vitro modelling of mucosal inflammation, mimicked by stimulation of macrophages either while being in co-culture or before being introduced into co-culture, to simulate enterogenic sepsis or systemic conditions affecting the intestinal tract. Full article
(This article belongs to the Special Issue Recent Research in Stem Cells to Organoids)
Show Figures

Figure 1

Back to TopTop