Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,762)

Search Parameters:
Keywords = induced pluripotent stem cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1976 KiB  
Communication
Efficient Production of Chondrocyte Particles from Human iPSC-Derived Chondroprogenitors Using a Plate-Based Cell Self-Aggregation Technique
by Shojiro Hanaki, Daisuke Yamada, Tomoka Takao, Ryosuke Iwai and Takeshi Takarada
Int. J. Mol. Sci. 2024, 25(22), 12063; https://doi.org/10.3390/ijms252212063 (registering DOI) - 10 Nov 2024
Viewed by 117
Abstract
The limited capacity of articular cartilage for self-repair is a critical challenge in orthopedic medicine. Here, we aimed to develop a simplified method of generating chondrocyte particles from human-induced pluripotent stem cell-derived expandable limb-bud mesenchymal cells (ExpLBM) using a cell self-aggregation technique (CAT). [...] Read more.
The limited capacity of articular cartilage for self-repair is a critical challenge in orthopedic medicine. Here, we aimed to develop a simplified method of generating chondrocyte particles from human-induced pluripotent stem cell-derived expandable limb-bud mesenchymal cells (ExpLBM) using a cell self-aggregation technique (CAT). ExpLBM cells were induced to form chondrocyte particles through a stepwise differentiation protocol performed on a CAT plate (prevelex-CAT®), which enables efficient and consistent production of an arbitrary number of uniformly sized particles. Histological and immunohistochemical analyses confirmed that the generated chondrocyte particles expressed key cartilage markers, such as type II collagen and aggrecan, but not hypertrophic markers, such as type X collagen. Additionally, when these particles were transplanted into osteochondral defects in rats with X-linked severe combined immunodeficiency, they demonstrated successful engraftment and extracellular matrix production, as evidenced by Safranin O and Toluidine Blue staining. These data suggest that the plate-based CAT system offers a robust and scalable approach to produce a large number of chondrocyte particles in a simplified and efficient manner, with potential application to cartilage regeneration. Future studies will focus on refining the system and exploring its clinical applications to the treatment of cartilage defects. Full article
(This article belongs to the Special Issue Molecular Metabolisms in Cartilage Health and Diseases: 3rd Edition)
Show Figures

Figure 1

25 pages, 1431 KiB  
Review
The Role of Human-Induced Pluripotent Stem Cells in Studying Cardiac Channelopathies
by Merima Begovic, Luca Schneider, Xiaobo Zhou, Nazha Hamdani, Ibrahim Akin and Ibrahim El-Battrawy
Int. J. Mol. Sci. 2024, 25(22), 12034; https://doi.org/10.3390/ijms252212034 (registering DOI) - 8 Nov 2024
Viewed by 320
Abstract
Cardiac channelopathies are inherited diseases that increase the risk of sudden cardiac death. While different genes have been associated with inherited channelopathies, there are still subtypes, e.g., catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome, where the genetic cause remains unknown. Various models, including [...] Read more.
Cardiac channelopathies are inherited diseases that increase the risk of sudden cardiac death. While different genes have been associated with inherited channelopathies, there are still subtypes, e.g., catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome, where the genetic cause remains unknown. Various models, including animal models, heterologous expression systems, and the human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSCs-CMs) model, have been used to study the pathophysiological mechanisms of channelopathies. Recently, researchers have focused on using hiPSCs-CMs to understand the genotype–phenotype correlation and screen drugs. By combining innovative techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9)-mediated genome editing, and three-dimensional (3D) engineered heart tissues, we can gain new insights into the pathophysiological mechanisms of channelopathies. This approach holds promise for improving personalized drug treatment. This review highlights the role of hiPSCs-CMs in understanding the pathomechanism of Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia and how these models can be utilized for drug screening. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 8506 KiB  
Article
Gene Delivery via Octadecylamine-Based Nanoparticles for iPSC Generation from CCD1072-SK Fibroblast Cells
by Hanife Sevgi Varlı, Meryem Akkurt Yıldırım, Kadriye Kızılbey and Nelisa Türkoğlu
Curr. Issues Mol. Biol. 2024, 46(11), 12588-12607; https://doi.org/10.3390/cimb46110747 - 6 Nov 2024
Viewed by 302
Abstract
This study presents a novel biotechnological approach using octadecylamine-based solid lipid nanoparticles (OCTNPs) for the first-time reprogramming of human CCD1072-SK fibroblast cells into induced pluripotent stem cells (iPSCs). OCTNPs, with an average size of 178.9 nm and a positive zeta potential of 22.8 [...] Read more.
This study presents a novel biotechnological approach using octadecylamine-based solid lipid nanoparticles (OCTNPs) for the first-time reprogramming of human CCD1072-SK fibroblast cells into induced pluripotent stem cells (iPSCs). OCTNPs, with an average size of 178.9 nm and a positive zeta potential of 22.8 mV, were synthesized, thoroughly characterized, and utilized as a non-viral vector to efficiently deliver reprogramming factors, achieving a remarkable transfection efficiency of 82.0%. iPSCs were characterized through immunofluorescence, flow cytometry, and RT-qPCR, confirming the expression of key pluripotency markers such as OCT4, SOX2, and KLF4, with alkaline phosphatase activity further validating their pluripotent state. Following this comprehensive characterization, the iPSCs were successfully differentiated into cardiomyocyte-like cells using 5-azacytidine. Our research highlights the innovative application of OCTNPs as a safe and effective alternative to viral vectors, addressing key limitations of iPSC reprogramming. The novel application of OCTNPs for efficient gene delivery demonstrates a powerful tool for advancing stem cell technologies, minimizing risks associated with viral vectors. These findings pave the way for further innovations in biotechnological applications, particularly in tissue engineering and personalized medicine. Full article
(This article belongs to the Special Issue Effects of Nanoparticles on Living Organisms 2.0)
Show Figures

Figure 1

26 pages, 13906 KiB  
Article
In Vitro Gene Therapy Using Human iPS-Derived Mesoangioblast-Like Cells (HIDEMs) Combined with Microdystrophin (μDys) Expression as the New Strategy for Duchenne Muscular Dystrophy (DMD) Experimental Treatment
by Marta Budzińska, Agnieszka Malcher, Agnieszka Zimna and Maciej Kurpisz
Int. J. Mol. Sci. 2024, 25(22), 11869; https://doi.org/10.3390/ijms252211869 - 5 Nov 2024
Viewed by 304
Abstract
Duchenne Muscular Dystrophy (DMD) is a genetic disorder characterized by disruptions in the dystrophin gene. This study aims to investigate potential a therapeutic approach using genetically modified human iPS-derived mesoangioblast-like cells (HIDEMs) in mdx mouse model. This study utilizes patient-specific myoblasts reprogrammed to [...] Read more.
Duchenne Muscular Dystrophy (DMD) is a genetic disorder characterized by disruptions in the dystrophin gene. This study aims to investigate potential a therapeutic approach using genetically modified human iPS-derived mesoangioblast-like cells (HIDEMs) in mdx mouse model. This study utilizes patient-specific myoblasts reprogrammed to human induced pluripotent stem cells (iPSCs) and then differentiated into HIDEMs. Lentiviral vectors carrying microdystrophin sequences have been employed to deliver the genetic construct to express a shortened, functional dystrophin protein in HIDEMs. The study indicated significant changes within redox potential between healthy and pathological HIDEM cells derived from DMD patients studied by catalase and superoxide dismutase activities. Microdystrophin expressing HIDEMs also improved expression of genes involved in STARS (striated muscle activator of Rho signaling) pathway albeit in selective DMD patients (with mild phenotype). Although in vivo observations did not bring progress in the mobility of mdx mice with HIDEMs, microdystrophin interventions this may argue against “treadmill test” as suitable for assessment of mdx mice recovery. Low-level signaling of the Rho pathway and inflammation-related factors in DMD myogenic cells can also contribute to the lack of success in a functional study. Overall, this research contributes to the understanding of DMD pathogenesis and provides insights into potential novel therapeutic strategy, highlighting the importance of personalized gene therapy. Full article
(This article belongs to the Special Issue Advanced Research in Stem Cell and Exosome-Based Therapy)
Show Figures

Figure 1

24 pages, 12607 KiB  
Article
Initial WNT/β-Catenin or BMP Activation Modulates Inflammatory Response of Mesodermal Progenitors Derived from Human Induced Pluripotent Stem Cells
by Yulia Suzdaltseva, Anastasia Selezneva, Nikita Sergeev and Sergey L. Kiselev
Cells 2024, 13(21), 1820; https://doi.org/10.3390/cells13211820 - 4 Nov 2024
Viewed by 398
Abstract
Wound healing in adults largely depends on the functional state of multipotent mesenchymal stromal cells (MSCs). Human fetal tissues at the early stages of development are known to heal quickly with a full-quality restoration of the original structure. The differences in the molecular [...] Read more.
Wound healing in adults largely depends on the functional state of multipotent mesenchymal stromal cells (MSCs). Human fetal tissues at the early stages of development are known to heal quickly with a full-quality restoration of the original structure. The differences in the molecular mechanisms that determine the functional activity of mesodermal cells in fetuses and adults remain virtually unknown. Using two independent human induced pluripotent stem cell (iPSC) lines, we examined the effects of the initial WNT and BMP activation on the differentiation of iPSCs via mesodermal progenitors into MSCs and highlighted the functions of these cells that are altered by the proinflammatory microenvironment. The WNT-induced mesoderm commitment of the iPSCs enhanced the expression of paraxial mesoderm (PM)-specific markers, while the BMP4-primed iPSCs exhibited increased levels of lateral mesoderm (LM)-specific genes. The inflammatory status and migration rate of the isogenic iPSC-derived mesoderm cells were assessed via gene expression analysis and scratch assay under the receptor-dependent activation of the proinflammatory IFN-γ or TNF-α signaling pathway. Reduced IDO1 and ICAM1 expression levels were detected in the WNT- and BMP-induced MSC progenitors compared to the isogenic MSCs in response to stimulation with IFN-γ and TNF-α. The WNT- and BMP-induced MSC progenitors exhibited a higher migration rate than isogenic MSCs upon IFN-γ exposure. The established isogenic cellular model will provide new opportunities to elucidate the mechanisms of regeneration and novel therapeutics for wound healing. Full article
Show Figures

Figure 1

17 pages, 3953 KiB  
Article
Human Pluripotent Stem Cell Colony Migration Is Related to Culture Environment and Morphological Phenotype
by Vitaly V. Gursky, Alina S. Chabina, Olga A. Krasnova, Anastasiia A. Kovaleva, Daria V. Kriger, Michail S. Zadorsky, Konstantin N. Kozlov and Irina E. Neganova
Life 2024, 14(11), 1402; https://doi.org/10.3390/life14111402 - 31 Oct 2024
Viewed by 402
Abstract
Human pluripotent stem cells (hPSCs) are an important tool in the field of regenerative medicine due to their ability to differentiate towards all tissues of the adult organism. An important task in the study of hPSCs is to understand the factors that influence [...] Read more.
Human pluripotent stem cells (hPSCs) are an important tool in the field of regenerative medicine due to their ability to differentiate towards all tissues of the adult organism. An important task in the study of hPSCs is to understand the factors that influence the maintenance of pluripotent and clonal characteristics of colonies represented by their morphological phenotype. Such factors include the ability of colonies to migrate during growth. In this work, we measured and analyzed the migration trajectories of hPSC colonies obtained from bright-field images of three cell lines, including induced hPSC lines AD3 and HPCASRi002-A (CaSR) and human embryonic stem cell line H9. To represent the pluripotent status, the colonies were visually phenotyped into two classes having a “good” or “bad” morphological phenotype. As for the migration characteristics, we calculated the colony speed and distance traveled (mobility measures), meandering index (motion persistence measures), outreach ratio (trajectory tortuosity characteristic), as well as the velocity autocorrelation function. The analysis revealed that the discrimination of phenotypes by the migration characteristics depended on both the cell line and growth environment. In particular, when the mTESR1/Matrigel culture environment was used, “good” AD3 colonies demonstrated a higher average migration speed than the “bad” ones. The reverse relationship between average speeds of “good” and “bad” colonies was found for the H9 line. The CaSR cell line did not show significant differences in the migration speed between the “good” and “bad” phenotypes. We investigated the type of motion exhibited by the colonies by applying two diffusion models to the mean squared displacement dynamics, one model corresponding to normal and the other to anomalous diffusion. The type of diffusion and diffusion parameter values resulting from the model fitting to data demonstrated a similar cell line, environment, and phenotype dependency. Colonies mainly showed a superdiffusive behavior for the mTESR1/Matrigel culture conditions, characterized by longer migration steps compared to the normal random walk. The specific properties of migration features and the patterns of their variation demonstrated in our work can be useful for the development and/or improvement of automated solutions for quality control of hPSCs. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

9 pages, 5650 KiB  
Article
Effects of Clump Size on the Pluripotency and Proliferation in the Passaging Process of Mouse Induced Pluripotent Stem Cells
by Koji Ishii, Koki Abe, Teiji Sakamoto, Hisashi Hasebe and Shogo Miyata
Processes 2024, 12(11), 2387; https://doi.org/10.3390/pr12112387 - 30 Oct 2024
Viewed by 437
Abstract
Induced pluripotent stem cells (iPSCs) are a promising cell source because of their pluripotency and self-renewal abilities. However, there is a risk of pluripotency loss during cell expansion. Particularly, cell passaging is associated with a higher risk of decreasing cell quality. There are [...] Read more.
Induced pluripotent stem cells (iPSCs) are a promising cell source because of their pluripotency and self-renewal abilities. However, there is a risk of pluripotency loss during cell expansion. Particularly, cell passaging is associated with a higher risk of decreasing cell quality. There are two iPSC passaging methods: single-cell and clump passaging. Single-cell passaging is a rapid and simple method for cell manipulation, whereas clump passaging is superior for maintaining iPSC pluripotency. Therefore, clump passaging is a robust method for expanding iPSCs while maintaining their pluripotency. However, clump size control during clump passaging is difficult because colony fragmentation is performed manually by pipetting the colonies detached from the cell culture substrates. In this study, the effect of pipetting on iPSC colony fragmentation was evaluated and the relationship between iPSC clump size and pluripotency was clarified. An automated pipetting device was developed to standardize the clump passage process. The effect of clump size on the pluripotency and proliferative capacity of mouse iPSCs was investigated. Clump size was controlled by varying the number of pipetting cycles, and pluripotency and proliferation were assessed via alkaline phosphatase staining and flow cytometry. Our results revealed that a decrease in clump size corresponded to an increase in cell proliferation, while pluripotency maintenance was optimized under specific clump sizes. These results underscore the significance of clump size for stem cell quality, emphasizing the need for a balanced approach to maintain pluripotency while fostering proliferation in the cell expansion culture for iPSCs. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

16 pages, 2581 KiB  
Review
Applications, Limitations, and Considerations of Clinical Trials in a Dish
by Amatullah Mir, Angie Zhu, Rico Lau, Nicolás Barr, Zyva Sheikh, Diana Acuna, Anuhya Dayal and Narutoshi Hibino
Bioengineering 2024, 11(11), 1096; https://doi.org/10.3390/bioengineering11111096 - 30 Oct 2024
Viewed by 697
Abstract
Recent advancements in biotechnology forged the path for clinical trials in dish (CTiDs) to advance as a popular method of experimentation in biomedicine. CTiDs play a fundamental role in translational research through technologies such as induced pluripotent stem cells, whole genome sequencing, and [...] Read more.
Recent advancements in biotechnology forged the path for clinical trials in dish (CTiDs) to advance as a popular method of experimentation in biomedicine. CTiDs play a fundamental role in translational research through technologies such as induced pluripotent stem cells, whole genome sequencing, and organs-on-a-chip. In this review, we explore advancements that enable these CTiD biotechnologies and their applications in animal testing, disease modeling, and space radiation technologies. Furthermore, this review dissects the advantages and disadvantages of CTiDs, as well as their regulatory considerations. Lastly, we evaluate the challenges that CTiDs pose and the role of CTiDs in future experimentation. Full article
Show Figures

Graphical abstract

19 pages, 314 KiB  
Review
Investigating Inherited Heart Diseases Using Human Induced Pluripotent Stem Cell-Based Models
by Brian Xiangzhi Wang
Life 2024, 14(11), 1370; https://doi.org/10.3390/life14111370 - 25 Oct 2024
Viewed by 623
Abstract
Inherited heart diseases (IHDs) are caused by genetic mutations that disrupt the physiological structure and function of the heart. Understanding the mechanisms behind these diseases is crucial for developing personalised interventions in cardiovascular medicine. Development of induced pluripotent stem cells, which can then [...] Read more.
Inherited heart diseases (IHDs) are caused by genetic mutations that disrupt the physiological structure and function of the heart. Understanding the mechanisms behind these diseases is crucial for developing personalised interventions in cardiovascular medicine. Development of induced pluripotent stem cells, which can then be differentiated to any nucleated adult cell type, has enabled the creation of personalised single-cell and multicellular models, providing unprecedented insights into the pathophysiology of IHDs. This review provides a comprehensive overview of recent advancements in human iPSC models used to dissect the molecular and genetic underpinnings of common IHDs. We examine multicellular models and tissue engineering approaches, such as cardiac organoids, engineered heart tissue, and multicellular co-culture systems, which simulate complex intercellular interactions within heart tissue. Recent advancements in stem cell models offer a more physiologically relevant platform to study disease mechanisms, enabling researchers to observe cellular interactions, study disease progression, and identify therapeutic strategies. By leveraging these innovative models, we can gain deeper insights into the molecular and cellular mechanisms underlying IHDs, ultimately paving the way for more effective diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Precision Medicine in Cardiovascular Diseases)
16 pages, 3522 KiB  
Article
RNAi Knockdown of EHMT2 in Maternal Expression of Prader–Willi Syndrome Genes
by Violeta Zaric, Hye Ri Kang, Volodymyr Rybalchenko, Jeffrey M. Zigman, Steven J. Gray and Ryan K. Butler
Genes 2024, 15(11), 1366; https://doi.org/10.3390/genes15111366 - 24 Oct 2024
Viewed by 465
Abstract
Background/objectives: Euchromatic histone lysine methyltransferase 2 (EHMT2, also known as G9a) is a mammalian histone methyltransferase that catalyzes the dimethylation of histone 3 lysine 9 (H3K9). On human chromosome 15, the parental-specific expression of Prader–Willi Syndrome (PWS)-related genes, such as SNRPN and SNORD116 [...] Read more.
Background/objectives: Euchromatic histone lysine methyltransferase 2 (EHMT2, also known as G9a) is a mammalian histone methyltransferase that catalyzes the dimethylation of histone 3 lysine 9 (H3K9). On human chromosome 15, the parental-specific expression of Prader–Willi Syndrome (PWS)-related genes, such as SNRPN and SNORD116, are regulated through the genetic imprinting of the PWS imprinting center (PWS-IC). On the paternal allele, PWS genes are expressed whereas the epigenetic maternal silencing of PWS genes is controlled by the EHMT2-mediated methylation of H3K9 in PWS-IC. Here, we measured the effects of RNA interference of EHMT2 on the maternal expression of genes deficient in PWS in mouse model and patient iPSC-derived cells. Methods: We used small interfering RNA (siRNA) oligonucleotides and lentiviral short harpin RNA (shRNA) to reduce Ehtm2/EHMT2 expression in mouse Snord116 deletion primary neurons, PWS patient-derived induced pluripotent stem cell (iPSC) line and PWS iPSC-derived neurons. We then measured the expression of transcript or protein (if relevant) of PWS genes normally silenced on the maternal allele. Results: With an approximate reduction of 90% in EHMT2 mRNA and more than 80% of the EHMT2 protein, we demonstrated close to a 2-fold increase in the expression of maternal transcripts for SNRPN and SNORD116 in PWS iPSCs treated with siEHMT2 compared to PWS iPSC siControl. A similar increase in SNORD116 and SNRPN RNA expression was observed in PWS iPSC-derived neurons treated with shEHMT2. Conclusions: RNAi reduction in EHMT2 activates maternally silenced PWS genes. Further studies are needed to determine whether the increase is therapeutically relevant. This study confirms the role of EHMT2 in the epigenetic regulation of PWS genes. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

15 pages, 2823 KiB  
Article
Proliferative Diabetic Retinopathy Microenvironment Drives Microglial Polarization and Promotes Angiogenesis and Fibrosis via Cyclooxygenase-2/Prostaglandin E2 Signaling
by Shuta Kishishita, Ayumi Usui-Ouchi, Yasuo Ouchi, Yuiko Hata, Nobuyuki Ebihara and Shintaro Nakao
Int. J. Mol. Sci. 2024, 25(20), 11307; https://doi.org/10.3390/ijms252011307 - 21 Oct 2024
Viewed by 611
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment, particularly in the proliferative form (proliferative DR [PDR]). The impact of the PDR microenvironment on microglia, which are the resident immune cells in the central nervous system, and the specific pathological changes it [...] Read more.
Diabetic retinopathy (DR) is the leading cause of visual impairment, particularly in the proliferative form (proliferative DR [PDR]). The impact of the PDR microenvironment on microglia, which are the resident immune cells in the central nervous system, and the specific pathological changes it may induce remain unclear. This study aimed to investigate the role of microglia in the progression of PDR under hypoxic and inflammatory conditions. We performed a comprehensive gene expression analysis using human-induced pluripotent stem cell-derived microglia under different stimuli (dimethyloxalylglycine (DMOG), lipopolysaccharide (LPS), and DMOG + LPS) to mimic the hypoxic inflammatory environment characteristic of PDR. Principal component analysis revealed distinct gene expression profiles, with 76 genes synergistically upregulated under combined stimulation. Notably, prostaglandin-endoperoxide synthase 2 (encoding cyclooxygenase (COX)-2) exhibited the most pronounced increase, leading to elevated prostaglandin E2 (PGE2) levels and driving pathological angiogenesis and inflammation via the COX-2/PGE2/PGE receptor 2 signaling axis. Additionally, the upregulation of the fibrogenic genes snail family transcriptional repressor 1 and collagen type I alpha 1 chain suggested a role for microglia in fibrosis. These findings underscore the critical involvement of microglia in PDR and suggest that targeting both the angiogenic and fibrotic pathways may present new therapeutic strategies for managing this condition. Full article
(This article belongs to the Special Issue Molecular Pathogenesis and Therapeutics in Retinopathy)
Show Figures

Figure 1

19 pages, 1524 KiB  
Review
Dermal Papilla Cells: From Basic Research to Translational Applications
by He-Li Zhang, Xi-Xi Qiu and Xin-Hua Liao
Biology 2024, 13(10), 842; https://doi.org/10.3390/biology13100842 - 20 Oct 2024
Viewed by 850
Abstract
As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual’s health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for [...] Read more.
As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual’s health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people. Hair is produced from hair follicles, which are exclusively controlled by the dermal papilla (DP) at their base. The dermal papilla cells (DPCs) comprise a cluster of specialized mesenchymal cells that induce the formation of hair follicles during early embryonic development through interaction with epithelial precursor cells. They continue to regulate the growth cycle, color, size, and type of hair after the hair follicle matures by secreting various factors. DPCs possess stem cell characteristics and can be cultured and expanded in vitro. DPCs express numerous stemness-related factors, enabling them to be reprogrammed into induced pluripotent stem cells (iPSCs) using only two, or even one, Yamanaka factor. DPCs are an important source of skin-derived precursors (SKPs). When combined with epithelial stem cells, they can reconstitute skin and hair follicles, participating in the regeneration of the dermis, including the DP and dermal sheath. When implanted between the epidermis and dermis, DPCs can induce the formation of new hair follicles on hairless skin. Subcutaneous injection of DPCs and their exosomes can promote hair growth. This review summarizes the in vivo functions of the DP; highlights the potential of DPCs in cell therapy, particularly for the treatment of hair loss; and discusses the challenges and recent advances in the field, from basic research to translational applications. Full article
(This article belongs to the Special Issue Stem Cells in Experimental Medicine)
Show Figures

Figure 1

13 pages, 1316 KiB  
Article
Human iPSCs from Aged Donors Retain Their Mitochondrial Aging Signature
by Imane Lejri, Zameel Cader, Amandine Grimm and Anne Eckert
Int. J. Mol. Sci. 2024, 25(20), 11199; https://doi.org/10.3390/ijms252011199 - 18 Oct 2024
Viewed by 1500
Abstract
Aging represents the leading risk factor for developing neurodegenerative disorders. One of the nine hallmarks of aging is mitochondrial dysfunction. Age-related mitochondrial alterations have been shown to affect mitochondrial energy metabolism, reduction-oxidation homeostasis, and mitochondrial dynamics. Previous reports have shown that induced pluripotent [...] Read more.
Aging represents the leading risk factor for developing neurodegenerative disorders. One of the nine hallmarks of aging is mitochondrial dysfunction. Age-related mitochondrial alterations have been shown to affect mitochondrial energy metabolism, reduction-oxidation homeostasis, and mitochondrial dynamics. Previous reports have shown that induced pluripotent stem cells (iPSCs) from aged donors do not keep the aging signature at the transcriptomic level. However, not all aspects of aging have been investigated, and especially not the mitochondria-related aging signature. Therefore, the present study compared the mitochondrial function in iPSCs from healthy aged donors compared to those of young donors. We addressed whether aged iPSCs may be used as drug-screening models of “aging in a dish” to identify therapies alleviating mitochondria aging. Compared to iPSCs from young donors, we demonstrate that iPSCs from aged donors show impaired mitochondrial bioenergetics and exhibit a rise in reactive oxygen species generation. Furthermore, aged iPSCs present a lower mitochondrial mass and alterations in the morphology of the mitochondrial network when compared to iPSCs from young donors. This study provides the first evidence that the aging phenotype is present at the mitochondrial level in iPSCs from aged donors, ranging from bioenergetics to mitochondrial network morphology. This model might be used to screen mitochondria-targeting drugs to promote healthy aging at the mitochondrial level. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

15 pages, 2090 KiB  
Article
Mechanosensitive Differentiation of Human iPS Cell-Derived Podocytes
by Yize Zhang and Samira Musah
Bioengineering 2024, 11(10), 1038; https://doi.org/10.3390/bioengineering11101038 - 17 Oct 2024
Viewed by 864
Abstract
Stem cell fate decisions, including proliferation, differentiation, morphological changes, and viability, are impacted by microenvironmental cues such as physical and biochemical signals. However, the specific impact of matrix elasticity on kidney cell development and function remains less understood due to the lack of [...] Read more.
Stem cell fate decisions, including proliferation, differentiation, morphological changes, and viability, are impacted by microenvironmental cues such as physical and biochemical signals. However, the specific impact of matrix elasticity on kidney cell development and function remains less understood due to the lack of models that can closely recapitulate human kidney biology. An established protocol to differentiate podocytes from human-induced pluripotent stem (iPS) cells provides a promising avenue to elucidate the role of matrix elasticity in kidney tissue development and lineage determination. In this study, we synthesized polyacrylamide hydrogels with different stiffnesses and investigated their ability to promote podocyte differentiation and biomolecular characteristics. We found that 3 kPa and 10 kPa hydrogels significantly support the adhesion, differentiation, and viability of podocytes. Differentiating podocytes on a more compliant (0.7 kPa) hydrogel resulted in significant cell loss and detachment. Further investigation of the mechanosensitive proteins yes-associated protein (YAP) and synaptopodin revealed nuanced molecular distinctions in cellular responses to matrix elasticity that may otherwise be overlooked if morphology and cell spreading alone were used as the primary metric for selecting matrices for podocyte differentiation. Specifically, hydrogels with kidney-like rigidities outperformed traditional tissue culture plates at modulating the molecular-level expression of active mechanosensitive proteins critical for podocyte health and function. These findings could guide the development of physiologically relevant platforms for kidney tissue engineering, disease modeling, and mechanistic studies of organ physiology and pathophysiology. Such advances are critical for realizing the full potential of in vitro platforms in accurately predicting human biological responses. Full article
Show Figures

Figure 1

28 pages, 7608 KiB  
Article
Machine Learning Analysis of RNA-Seq Data Identifies Key Gene Signatures and Pathways in Mpox Virus-Induced Gastrointestinal Complications Using Colon Organoid Models
by Mostafa Rezapour, Aarthi Narayanan and Metin Nafi Gurcan
Int. J. Mol. Sci. 2024, 25(20), 11142; https://doi.org/10.3390/ijms252011142 - 17 Oct 2024
Viewed by 918
Abstract
Mpox, caused by the Mpox virus (MPXV), emerged globally in 2022 with the Clade IIb strain, presenting a critical public health challenge. While MPXV is primarily characterized by fever and rash, gastrointestinal (GI) complications, such as diarrhea and proctitis, have also been observed. [...] Read more.
Mpox, caused by the Mpox virus (MPXV), emerged globally in 2022 with the Clade IIb strain, presenting a critical public health challenge. While MPXV is primarily characterized by fever and rash, gastrointestinal (GI) complications, such as diarrhea and proctitis, have also been observed. This study is a reanalysis of GSE219036 without own data and focuses on the impact of MPXV infection on the colon, using human-induced pluripotent stem cell-derived colon organoids as a model. We applied a tailored statistical framework for RNA-seq data, Generalized Linear Models with Quasi-Likelihood F-tests and Relaxed Magnitude–Altitude Scoring (GLMQL-RMAS), to identify differentially expressed genes (DEGs) across MPXV clades: MPXV I (Zr-599 Congo Basin), MPXV IIa (Liberia), and MPXV IIb (2022 MPXV). Through a novel methodology called Cross-RMAS, we ranked genes by integrating statistical significance and biological relevance across all clades. Machine learning analysis using the genes identified by Cross-RMAS, demonstrated 100% accuracy in differentiating between the different MPXV strains and mock samples. Furthermore, our findings reveal that MPXV Clade I induces the most extensive alterations in gene expression, with significant upregulation of stress response genes, such as HSPA6 and FOS, and downregulation of genes involved in cytoskeletal organization and vesicular trafficking, such as PSAP and CFL1. In contrast, Clade IIb shows the least impact on gene expression. Through Gene Ontology (GO) analysis, we identified pathways involved in protein folding, immune response, and epithelial integrity that are disrupted in infected cells, suggesting mechanisms by which MPXV may contribute to GI symptoms. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

Back to TopTop