Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,943)

Search Parameters:
Keywords = high-fat diet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4135 KiB  
Article
GPR40/GPR120 Agonist GW9508 Improves Metabolic Syndrome-Exacerbated Periodontitis in Mice
by Yanchun Li, Hong Yu, Maria F. Lopes-Virella and Yan Huang
Int. J. Mol. Sci. 2024, 25(17), 9622; https://doi.org/10.3390/ijms25179622 - 5 Sep 2024
Abstract
G protein-coupled receptor (GPR)40 and GPR120 are receptors for medium- and long-chain free fatty acids. It has been well documented that GPR40 and GPR120 activation improves metabolic syndrome (MetS) and exerts anti-inflammatory effects. Since chronic periodontitis is a common oral inflammatory disease initiated [...] Read more.
G protein-coupled receptor (GPR)40 and GPR120 are receptors for medium- and long-chain free fatty acids. It has been well documented that GPR40 and GPR120 activation improves metabolic syndrome (MetS) and exerts anti-inflammatory effects. Since chronic periodontitis is a common oral inflammatory disease initiated by periodontal pathogens and exacerbated by MetS, we determined if GPR40 and GPR120 activation with agonists improves MetS-associated periodontitis in animal models in this study. We induced MetS and periodontitis by high-fat diet feeding and periodontal injection of lipopolysaccharide, respectively, and treated mice with GW9508, a synthetic GPR40 and GPR120 dual agonist. We determined alveolar bone loss, osteoclast formation, and periodontal inflammation using micro-computed tomography, osteoclast staining, and histology. To understand the underlying mechanisms, we further performed studies to determine the effects of GW9508 on osteoclastogenesis and proinflammatory gene expression in vitro. Results showed that GW9508 improved metabolic parameters, including glucose, lipids, and insulin resistance. Results also showed that GW9508 improves periodontitis by reducing alveolar bone loss, osteoclastogenesis, and periodontal inflammation. Finally, in vitro studies showed that GW9508 inhibited osteoclast formation and proinflammatory gene secretion from macrophages. In conclusion, this study demonstrated for the first time that GPR40/GPR120 agonist GW9508 reduced alveolar bone loss and alleviated periodontal inflammation in mice with MetS-exacerbated periodontitis, suggesting that activating GPR40/GPR120 with agonist GW9508 is a potential anti-inflammatory approach for the treatment of MetS-associated periodontitis. Full article
Show Figures

Figure 1

14 pages, 2783 KiB  
Article
The Effects of Rice Bran on Neuroinflammation and Gut Microbiota in Ovariectomized Mice Fed a Drink with Fructose
by Yu-Wen Chao, Yu-Tang Tung, Suh-Ching Yang, Hitoshi Shirakawa, Li-Han Su, Pei-Yu Loe and Wan-Chun Chiu
Nutrients 2024, 16(17), 2980; https://doi.org/10.3390/nu16172980 - 4 Sep 2024
Viewed by 279
Abstract
Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation [...] Read more.
Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation in d-galactose-injected ovariectomized (OVX) old mice fed a fructose drink. The combination of d-galactose injection, ovariectomy, and fructose drink administration creates a comprehensive model that simulates aging in females under multiple metabolic stressors, including oxidative stress, estrogen deficiency, and high-sugar diets, and allows the study of their combined impact on metabolic disorders and related diseases. Eight-week-old and 6–8-month-old female C57BL/6 mice were used. The mice were divided into six groups: a sham + young mice, a sham + old mice, an OVX + soybean oil, an OVX + soybean oil with rice bran, an OVX + tea seed oil (TO), and an OVX + TO with rice bran diet group. The OVX groups were subcutaneously injected with d-galactose (100 mg/kg/day) and received a 15% (v/v) fructose drink. The rice bran and tea seed oil supplementation formed 10% of the diet (w/w). The results showed that the rice bran with TO diet increased the number of short-chain fatty acid (SCFA)-producing Clostridia and reduced the number of endotoxin-producing Tannerellaceae, which mitigated imbalances in the gut–liver–brain axis. Rice bran supplementation reduced the relative weight of the liver, levels of hepatic triglycerides and total cholesterol; aspartate transaminase and alanine aminotransferase activity; brain levels of proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α; and plasma 8-hydroxy-2-deoxyguanosine. This study concludes that rice bran inhibits hepatic fat accumulation, which mitigates peripheral metaflammation and oxidative damage and reduces neuroinflammation in the brain. Full article
(This article belongs to the Special Issue Dietary Fiber, Gut Microbiota and Metabolic Disorder)
Show Figures

Figure 1

20 pages, 3262 KiB  
Article
Investigating the Role of Cannabinoid Type 1 Receptors in Vascular Function and Remodeling in a Hypercholesterolemic Mouse Model with Low-Density Lipoprotein–Cannabinoid Type 1 Receptor Double Knockout Animals
by Zsolt Vass, Kinga Shenker-Horváth, Bálint Bányai, Kinga Nóra Vető, Viktória Török, Janka Borbála Gém, György L. Nádasy, Kinga Bernadett Kovács, Eszter Mária Horváth, Zoltán Jakus, László Hunyady, Mária Szekeres and Gabriella Dörnyei
Int. J. Mol. Sci. 2024, 25(17), 9537; https://doi.org/10.3390/ijms25179537 - 2 Sep 2024
Viewed by 442
Abstract
Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. [...] Read more.
Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. We aimed to reveal the effects of CB1Rs on vascular function and remodeling in hypercholesterolemic AS-prone LDLR-KO mice. Experiments were performed on a newly established LDLR and CB1R double-knockout (KO) mouse model, in which KO and wild-type (WT) mice were kept on an HFD or a control diet (CD) for 5 months. The vascular functions of abdominal aorta rings were tested with wire myography. The vasorelaxation effects of acetylcholine (Ach, 1 nM–1 µM) were obtained after phenylephrine precontraction, which was repeated with inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX), Nω-nitro-L-arginine (LNA), and indomethacin (INDO), respectively. Blood pressure was measured with the tail-cuff method. Immunostaining of endothelial NOS (eNOS) was carried out. An HFD significantly elevated the cholesterol levels in the LDLR-KO mice more than in the corresponding WT mice (mean values: 1039 ± 162 mg/dL vs. 91 ± 18 mg/dL), and they were not influenced by the presence of the CB1R gene. However, with the defect of the CB1R gene, damage to the Ach relaxation ability was moderated. The blood pressure was higher in the LDLR-KO mice compared to their WT counterparts (systolic/diastolic values: 110/84 ± 5.8/6.8 vs. 102/80 ± 3.3/2.5 mmHg), which was significantly elevated with an HFD (118/96 ± 1.9/2 vs. 100/77 ± 3.4/3.1 mmHg, p < 0.05) but attenuated in the CB1R-KO HFD mice. The expression of eNOS was depressed in the HFD WT mice compared to those on the CD, but it was augmented if CB1R was knocked out. This newly established double-knockout mouse model provides a tool for studying the involvement of CB1Rs in the development of hypercholesterolemia and atherosclerosis. Our results indicate that knocking out the CB1R gene significantly attenuates vascular damage in hypercholesterolemic mice. Full article
(This article belongs to the Special Issue Advances in Animal Models in Biomedical Research, 2nd Edition)
Show Figures

Figure 1

16 pages, 4116 KiB  
Article
Activation of G Protein-Coupled Estrogen Receptor 1 (GPER) Attenuates Obesity-Induced Asthma by Switching M1 Macrophages to M2 Macrophages
by So-Eun Son and Dong-Soon Im
Int. J. Mol. Sci. 2024, 25(17), 9532; https://doi.org/10.3390/ijms25179532 - 2 Sep 2024
Viewed by 225
Abstract
The prevalence of obesity-induced asthma increases in women after menopause. We hypothesized that the increase in obese asthma in middle-aged women results from estrogen loss. In particular, we focused on the acute action of estrogen through the G protein-coupled estrogen receptor 1 (GPER), [...] Read more.
The prevalence of obesity-induced asthma increases in women after menopause. We hypothesized that the increase in obese asthma in middle-aged women results from estrogen loss. In particular, we focused on the acute action of estrogen through the G protein-coupled estrogen receptor 1 (GPER), previously known as GPR30. We investigated whether GPER activation ameliorates obesity-induced asthma with a high-fat diet (HFD) using G-1, the GPER agonist, and G-36, the GPER antagonist. Administration of G-1 (0.5 mg/kg) suppressed HFD-induced airway hypersensitivity (AHR), and increased immune cell infiltration, whereas G-36 co-treatment blocked it. Histological analysis showed that G-1 treatment inhibited HFD-induced inflammation, fibrosis, and mucus hypersecretion in a GPER-dependent manner. G-1 inhibited the HFD-induced rise in the mRNA levels of pro-inflammatory cytokines in the gonadal white adipose tissue and lungs, whereas G-36 co-treatment reversed this effect. G-1 increased anti-inflammatory M2 macrophages and inhibited the HFD-induced rise in pro-inflammatory M1 macrophages in the lungs. In addition, G-1 treatment reversed the HFD-induced increase in leptin expression and decrease in adiponectin expression in the lungs and gonadal white adipose tissue. The results suggest that activation of GPER could be a therapeutic option for obesity-induced asthma. Full article
(This article belongs to the Special Issue Hormone Signaling in Human Health and Diseases, 2nd Edition)
Show Figures

Figure 1

20 pages, 3108 KiB  
Article
ACE2 Knockout Mice Are Resistant to High-Fat Diet-Induced Obesity in an Age-Dependent Manner
by Valéria Nunes-Souza, Natalia Alenina, Fatimunnisa Qadri, Valentina Mosienko, Robson Augusto Souza Santos, Michael Bader and Luiza Antas Rabelo
Int. J. Mol. Sci. 2024, 25(17), 9515; https://doi.org/10.3390/ijms25179515 - 1 Sep 2024
Viewed by 322
Abstract
Angiotensin converting enzyme 2 (ACE2) presents pleiotropic actions. It hydrolyzes angiotensin I (AngI) and angiotensin II (AngII) into angiotensin-(1-9) (Ang-(1-9)) and angiotensin-(1-7) (Ang-(1-7)), respectively, as well as participates in tryptophan uptake in the gut and in COVID-19 infection. Our aim was to investigate [...] Read more.
Angiotensin converting enzyme 2 (ACE2) presents pleiotropic actions. It hydrolyzes angiotensin I (AngI) and angiotensin II (AngII) into angiotensin-(1-9) (Ang-(1-9)) and angiotensin-(1-7) (Ang-(1-7)), respectively, as well as participates in tryptophan uptake in the gut and in COVID-19 infection. Our aim was to investigate the metabolic effect of ACE2 deletion in young adults and elderly mice under conditions of high calorie intake. Male C57Bl/6 (WT) and ACE2-deficient (ACE2-/y) mice were analyzed at the age of 6 and 12 months under standard diet (StD) and high-fat diet (HFD). Under StD, ACE2-/y showed lower body weight and fat depots, improved glucose tolerance, enhanced insulin sensitivity, higher adiponectin, and lower leptin levels compared to WT. This difference was even more pronounced after HFD in 6-month-old mice, but, interestingly, it was blunted at the age of 12 months. ACE2-/y presented a decrease in adipocyte diameter and lipolysis, which reflected in the upregulation of lipid metabolism in white adipose tissue through the increased expression of genes involved in lipid regulation. Under HFD, both food intake and total energy expenditure were decreased in 6-month-old ACE2-/y mice, accompanied by an increase in liquid intake, compared to WT mice, fed either StD or HFD. Thus, ACE2-/y mice are less susceptible to HFD-induced obesity in an age-dependent manner, as well as represent an excellent animal model of human lipodystrophy and a tool to investigate new treatments. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

14 pages, 6218 KiB  
Article
Sodium Houttuybonate Promotes the Browning of White Adipose Tissue by Inhibiting Ferroptosis via the AMPK-NRF2-HO1 Pathway
by Wenhui Liu, Huren Zou, Danming You, Huijie Zhang and Lingling Xu
Antioxidants 2024, 13(9), 1057; https://doi.org/10.3390/antiox13091057 - 30 Aug 2024
Viewed by 286
Abstract
The rising prevalence of obesity has resulted in an increased demand for innovative and effective treatment strategies. Houttuynia cordata Thunb. (H. cordata) has demonstrated promising potential in preventing obesity. However, the mechanism underlying the anti-obesity effects of H. cordata and its bioactive component, [...] Read more.
The rising prevalence of obesity has resulted in an increased demand for innovative and effective treatment strategies. Houttuynia cordata Thunb. (H. cordata) has demonstrated promising potential in preventing obesity. However, the mechanism underlying the anti-obesity effects of H. cordata and its bioactive component, sodium houttuybonate (SH), remains unclear. Our study reveals that SH treatment promotes the browning of inguinal white adipose tissue (iWAT) and prevents the obesity induced by a high-fat diet. SH significantly mitigates ferroptosis by upregulating glutathione peroxidase 4 (Gpx4) and decreasing malondialdehyde (MDA) levels, while also enhancing superoxide dismutase (SOD) levels. Furthermore, SH promotes the phosphorylation of AMP-activated protein kinase (AMPK), which subsequently increases the expression of nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) in the iWAT. However, the effects of SH were attenuated by ML385, an Nrf2 inhibitor. Collectively, our findings suggest that SH induces iWAT browning and prevents diet-induced obesity primarily through the AMPK/NRF2/HO-1 pathway by inhibiting ferroptosis. Full article
(This article belongs to the Special Issue Antioxidant Therapy for Obesity-Related Diseases)
Show Figures

Figure 1

15 pages, 2199 KiB  
Article
Effects of High-Grain Diet on Performance, Ruminal Fermentation, and Rumen Microbial Flora of Lactating Holstein Dairy Cows
by Kexin Wang, Damin Song, Xuelei Zhang, Osmond Datsomor, Maocheng Jiang and Guoqi Zhao
Animals 2024, 14(17), 2522; https://doi.org/10.3390/ani14172522 - 30 Aug 2024
Viewed by 438
Abstract
The objectives of the current study were to evaluate the fluctuations in production performance, rumen fermentation, and microbial community in lactating dairy cows fed a high-grain diet (HG). In this study, 16 healthy Holstein lactating dairy cattle with similar milk yields of 16.80 [...] Read more.
The objectives of the current study were to evaluate the fluctuations in production performance, rumen fermentation, and microbial community in lactating dairy cows fed a high-grain diet (HG). In this study, 16 healthy Holstein lactating dairy cattle with similar milk yields of 16.80 ± 4.30 kg/d, days in milk 171.44 ± 23.25 days, and parity 2.2 ± 1.5 times were selected and randomly allocated into two groups. One group was fed a low-grain diet (LG; 40% concentrate, DM basis; n = 8), and the other group was fed a high-grain diet (HG; 60% concentrate, DM basis; n = 8). The experiment lasted 6 weeks, including 1 week for adaptation. The experimental results showed that the milk fat content in the milk of lactating cows in the HG group was significantly reduced (p < 0.05), and the milk urea nitrogen (MUN) content showed an increasing trend (0.05 < p < 0.10) compared with the LG group. Compared with the LG group, rumen fluid pH was significantly decreased after feeding a high-grain diet, and contents of total volatile fatty acids (TVFA), acetate, propionate, and butyrate were significantly increased (p < 0.05). The acetate/propionate significantly decreased (p < 0.05). HG group significantly increased the abundance of Prevotella and Bacteroides in rumen fluid while significantly reducing the abundance of Methanobrevibacter and Lachnospiraceae ND3007_group (p < 0.05). Microorganisms with LDA scores > 2 were defined as unique, with the bacterial genus Anaerorhabdus_furcosa_group identified as a biomarker for the LG group, and the unique bacterial genus in the HG group were Prevotella, Stenotrophomonas, and Xanthomonadaceae. The prediction results of microbial function showed that a total of 18 KEGG differential pathways were generated between the two treatment groups, mainly manifested in metabolic pathways, signal transduction, and the immune system. In conclusion, the HG group promoted rumen fermentation by altering the microbial composition of lactating cows. Our findings provide a theoretical basis for the rational use of high-grain diets to achieve high yields in intensive dairy farming. Full article
Show Figures

Figure 1

39 pages, 1630 KiB  
Review
A Comprehensive Review of the Triangular Relationship among Diet–Gut Microbiota–Inflammation
by Nidesha Randeni, Matteo Bordiga and Baojun Xu
Int. J. Mol. Sci. 2024, 25(17), 9366; https://doi.org/10.3390/ijms25179366 - 29 Aug 2024
Viewed by 410
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the [...] Read more.
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food. Full article
Show Figures

Figure 1

16 pages, 10537 KiB  
Article
Widely Targeted Lipidomics and Microbiomics Perspectives Reveal the Mechanism of Auricularia auricula Polysaccharide’s Effect of Regulating Glucolipid Metabolism in High-Fat-Diet Mice
by Li Wu, Yibin Li, Shouhui Chen, Yanrong Yang, Baosha Tang, Minjie Weng, Hengsheng Shen, Junchen Chen and Pufu Lai
Foods 2024, 13(17), 2743; https://doi.org/10.3390/foods13172743 - 29 Aug 2024
Viewed by 368
Abstract
The role of Auricularia auricula polysaccharide (AP) in the regulation of glycolipid metabolism was investigated using a high-fat-diet-induced hyperlipidemic mouse model. In a further step, its potential mechanism of action was investigated using microbiome analysis and widely targeted lipidomics. Compared to high-fat mice, [...] Read more.
The role of Auricularia auricula polysaccharide (AP) in the regulation of glycolipid metabolism was investigated using a high-fat-diet-induced hyperlipidemic mouse model. In a further step, its potential mechanism of action was investigated using microbiome analysis and widely targeted lipidomics. Compared to high-fat mice, dietary AP supplementation reduced body weight by 13.44%, liver index by 21.30%, epididymal fat index by 50.68%, fasting blood glucose (FBG) by 14.27%, serum total cholesterol (TC) by 20.30%, serum total triglycerides (TGs) by 23.81%, liver non-esterified fatty acid (NEFA) by 20.83%, liver TGs by 20.00%, and liver malondialdehyde (MDA) by 21.05%, and increased liver glutathione oxidase (GSH-PX) activity by 52.24%, total fecal bile acid (TBA) by 46.21%, and fecal TG by 27.16%, which significantly regulated glucose and lipid metabolism. Microbiome analysis showed that AP significantly downregulated the abundance of the Desulfobacterota phylum, as well as the genii Desulfovibrio, Bilophila, and Oscillbacter in the cecum of hyperlipidemic mice, which are positively correlated with high lipid indexes, while it upregulated the abundance of the families Eubacterium_coprostanoligenes_group and Ruminococcaceae, as well as the genii Eubacterum_xylanophilum_group, Lachnospiraceae_NK4A136_group, Eubacterium_siraeum_group, and Parasutterella, which were negatively correlated with high lipid indexes. In addition, AP promoted the formation of SCFAs by 119.38%. Widely targeted lipidomics analysis showed that AP intervention regulated 44 biomarkers in metabolic pathways such as sphingolipid metabolism and the AGE-RAGE signaling pathway in the hyperlipidemic mice (of which 15 metabolites such as unsaturated fatty acids, phosphatidylserine, and phosphatidylethanolamine were upregulated, and 29 metabolites such as phosphatidylcholine, ceramide, carnitine, and phosphatidylinositol were downregulated), thereby correcting glucose and lipid metabolism disorders. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

19 pages, 3094 KiB  
Article
Diet-Induced Obesity Induces Transcriptomic Changes in Neuroimmunometabolic-Related Genes in the Striatum and Olfactory Bulb
by Rosario B. Jaime-Lara, Claudia Colina-Prisco, Marcel De Jesus Vega, Sarah Williams, Ted Usdin, Bridget Matikainen-Ankney, Alayna Kinkead, Brianna Brooks, Yupeng Wang, Alexis T. Franks, Alexxai Kravitz and Paule V. Joseph
Int. J. Mol. Sci. 2024, 25(17), 9330; https://doi.org/10.3390/ijms25179330 - 28 Aug 2024
Viewed by 302
Abstract
The incidence of obesity has markedly increased globally over the last several decades and is believed to be associated with the easier availability of energy-dense foods, including high-fat foods. The reinforcing hedonic properties of high-fat foods, including olfactory cues, activate reward centers in [...] Read more.
The incidence of obesity has markedly increased globally over the last several decades and is believed to be associated with the easier availability of energy-dense foods, including high-fat foods. The reinforcing hedonic properties of high-fat foods, including olfactory cues, activate reward centers in the brain, motivating eating behavior. Thus, there is a growing interest in the understanding of the genetic changes that occur in the brain that are associated with obesity and eating behavior. This growing interest has paralleled advances in genomic methods that enable transcriptomic-wide analyses. Here, we examined the transcriptomic-level differences in the olfactory bulb and striatum, regions of the brain associated with olfaction and hedonic food-seeking, respectively, in high-fat-diet (HFD)-fed obese mice. To isolate the dietary effects from obesity, we also examined transcriptomic changes in normal-chow-fed and limited-HFD-fed groups, with the latter being pair-fed with an HFD isocaloric to the consumption of the normal-chow-fed mice. Using RNA sequencing, we identified 274 differentially expressed genes (DEGs) in the striatum and 11 in the olfactory bulb of ad libitum HFD-fed mice compared to the chow-fed group, and thirty-eight DEGs in the striatum between the ad libitum HFD and limited-HFD-fed groups. The DEGs in both tissues were associated with inflammation and immune-related pathways, including oxidative stress and immune function, and with mitochondrial dysfunction and reward pathways in the striatum. These results shed light on potential obesity-associated genes in these regions of the brain. Full article
Show Figures

Figure 1

17 pages, 1643 KiB  
Article
Salvia elegans Vahl Counteracting Metabolic Syndrome and Depression in Mice on a High-Fat Diet
by Gabriela Belen Martínez-Hernández, Enrique Jiménez-Ferrer, Manases González-Cortazar, Zamilpa Alejandro, Nayeli Monterrosas-Brisson and Maribel Herrera-Ruiz
Molecules 2024, 29(17), 4070; https://doi.org/10.3390/molecules29174070 - 28 Aug 2024
Viewed by 351
Abstract
Salvia elegans Vahl is a plant commonly used in Mexico as a remedy for nervous disorders, inflammatory diseases, and “ringing in the ears”; the latter can be associated with arteriosclerotic conditions and arterial hypertension. Therefore, based on medicinal use, this work aimed to [...] Read more.
Salvia elegans Vahl is a plant commonly used in Mexico as a remedy for nervous disorders, inflammatory diseases, and “ringing in the ears”; the latter can be associated with arteriosclerotic conditions and arterial hypertension. Therefore, based on medicinal use, this work aimed to evaluate the hydroalcoholic extract (SeHA, 100 mg/kg) of this plant and two fractions, ethyl acetate (SeFAc, 50 mg/kg), and obtained from SeFAc fractionation denominated SeF3 (10 mg/kg), on several alterations derived from metabolic syndrome (MetS) derived from the ingestion of a high-calorie diet (high-fat diet), in ICR (Institute of Cancer Research) mice, leading to chronic inflammation that results in neurological damage such as depression. Therefore, several MetS-related parameters, such as forced swim tests, hypertension, serum corticosterone levels, glucose, triglycerides, cholesterol, adiposity index, and insulin resistance, will be evaluated. Additionally, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 levels were measured in kidneys, fat tissue, brains, and spleens. It was proven that all those S. elegans-derived treatments reversed the damage, showing antidepressant, antihypertensive, antihyperglycemic, and antidyslipidemic effects and decreased adiposity, insulin resistance, and serum corticosterone. They induced a modulatory response by modifying the levels of TNF-α, IL-1β, IL-6, and IL-10 in different organs. High-performance liquid chromatography (HPLC) analysis of the acetate of ethyl fraction from S. elegans (SeFAc) fraction revealed the presence of rosmarinic and caffeic acids as well as flavonoids, while the fraction from SeFAc called SeF3 Was identified by gas mass as methyl glucose, glycerol, and known sterols, among others. Thus, it was concluded that S. elegans protects against the harmful effects of MetS. Full article
Show Figures

Figure 1

20 pages, 4304 KiB  
Article
Cordycepin Ameliorates High Fat Diet-Induced Obesity by Modulating Endogenous Metabolism and Gut Microbiota Dysbiosis
by Yifeng Fu, Qiangfeng Wang, Zihan Tang, Gang Liu, Guiping Guan and Jin Lyu
Nutrients 2024, 16(17), 2859; https://doi.org/10.3390/nu16172859 - 27 Aug 2024
Viewed by 614
Abstract
Background: Numerous metabolic illnesses have obesity as a risk factor. The composition of the gut microbiota and endogenous metabolism are important factors in the onset and progression of obesity. Recent research indicates that cordycepin (CRD), derived from fungi, exhibits anti-inflammatory and antioxidant properties, [...] Read more.
Background: Numerous metabolic illnesses have obesity as a risk factor. The composition of the gut microbiota and endogenous metabolism are important factors in the onset and progression of obesity. Recent research indicates that cordycepin (CRD), derived from fungi, exhibits anti-inflammatory and antioxidant properties, showing potential in combating obesity. However, further investigation is required to delineate its precise impacts on endogenous metabolism and gut microbiota. Methods: In this work, male C57BL/6J mice were used as models of obesity caused by a high-fat diet (HFD) and given CRD. Mice’s colon, liver, and adipose tissues were stained with H&E. Serum metabolome analysis and 16S rRNA sequencing elucidated the effects of CRD on HFD-induced obese mice and identified potential mediators for its anti-obesity effects. Results: CRD intervention alleviated HFD-induced intestinal inflammation, improved blood glucose levels, and reduced fat accumulation. Furthermore, CRD supplementation demonstrated the ability to modulate endogenous metabolic disorders by regulating the levels of key metabolites, including DL-2-aminooctanoic acid, inositol, and 6-deoxyfagomine. CRD influenced the abundance of important microbiota such as Parasutterella, Alloprevotella, Prevotellaceae_NK3B31_group, Alistipes, unclassified_Clostridia_vadinBB60_group, and unclassified_Muribaculaceae, ultimately leading to the modulation of endogenous metabolism and the amelioration of gut microbiota disorders. Conclusions: According to our research, CRD therapies show promise in regulating fat accumulation and stabilizing blood glucose levels. Furthermore, through the modulation of gut microbiota composition and key metabolites, CRD interventions have the dual capacity to prevent and ameliorate obesity. Full article
(This article belongs to the Special Issue Prebiotics and Probiotics in Metabolism Disorder)
Show Figures

Figure 1

12 pages, 5200 KiB  
Article
Palmitic Acid Induces Oxidative Stress and Senescence in Human Brainstem Astrocytes, Downregulating Glutamate Reuptake Transporters—Implications for Obesity-Related Sympathoexcitation
by Mahesh Kumar Sivasubramanian, Raisa Monteiro, Manoj Jagadeesh, Priya Balasubramanian and Madhan Subramanian
Nutrients 2024, 16(17), 2852; https://doi.org/10.3390/nu16172852 - 26 Aug 2024
Viewed by 630
Abstract
Obesity has been associated with a chronic increase in sympathetic nerve activity, which can lead to hypertension and other cardiovascular diseases. Preliminary studies from our lab found that oxidative stress and neuroinflammation in the brainstem contribute to sympathetic overactivity in high-fat-diet-induced obese mice. [...] Read more.
Obesity has been associated with a chronic increase in sympathetic nerve activity, which can lead to hypertension and other cardiovascular diseases. Preliminary studies from our lab found that oxidative stress and neuroinflammation in the brainstem contribute to sympathetic overactivity in high-fat-diet-induced obese mice. However, with glial cells emerging as significant contributors to various physiological processes, their role in causing these changes in obesity remains unknown. In this study, we wanted to determine the role of palmitic acid, a major form of saturated fatty acid in the high-fat diet, in regulating sympathetic outflow. Human brainstem astrocytes (HBAs) were used as a cell culture model since astrocytes are the most abundant glial cells and are more closely associated with the regulation of neurons and, hence, sympathetic nerve activity. In the current study, we hypothesized that palmitic acid-mediated oxidative stress induces senescence and downregulates glutamate reuptake transporters in HBAs. HBAs were treated with palmitic acid (25 μM for 24 h) in three separate experiments. After the treatment period, the cells were collected for gene expression and protein analysis. Our results showed that palmitic acid treatment led to a significant increase in the mRNA expression of oxidative stress markers (NQO1, SOD2, and CAT), cellular senescence markers (p21 and p53), SASP factors (TNFα, IL-6, MCP-1, and CXCL10), and a downregulation in the expression of glutamate reuptake transporters (EAAT1 and EAAT2) in the HBAs. Protein levels of Gamma H2AX, p16, and p21 were also significantly upregulated in the treatment group compared to the control. Our results showed that palmitic acid increased oxidative stress, DNA damage, cellular senescence, and SASP factors, and downregulated the expression of glutamate reuptake transporters in HBAs. These findings suggest the possibility of excitotoxicity in the neurons of the brainstem, sympathoexcitation, and increased risk for cardiovascular diseases in obesity. Full article
(This article belongs to the Special Issue Hot Topics in Nutrition and Obesity 2024)
Show Figures

Graphical abstract

11 pages, 2994 KiB  
Article
Effects of Soybean Isoflavones on the Growth Performance and Lipid Metabolism of the Juvenile Chinese Mitten Crab Eriocheir sinensis
by Mengyu Shi, Yisong He, Jiajun Zheng, Yang Xu, Yue Tan, Li Jia, Liqiao Chen, Jinyun Ye and Changle Qi
Fishes 2024, 9(9), 335; https://doi.org/10.3390/fishes9090335 - 26 Aug 2024
Viewed by 277
Abstract
In order to study the effects of soybean isoflavones on the growth performance and lipid metabolism of juvenile Chinese mitten crabs, six experimental diets were formulated by gradient supplementation with 0%, 0.004% and 0.008% soybean isoflavones at different dietary lipid levels (10% and [...] Read more.
In order to study the effects of soybean isoflavones on the growth performance and lipid metabolism of juvenile Chinese mitten crabs, six experimental diets were formulated by gradient supplementation with 0%, 0.004% and 0.008% soybean isoflavones at different dietary lipid levels (10% and 15%). The groups were named as follows: NF-0 group (10% fat and 0% SIFs), NF-0.004 group (10% fat and 0.004% SIFs), NF-0.008 group (10% fat and 0.008% SIFs), HF-0 group (15% fat and 0% SIFs), HF-0.004 group (15% fat and 0.004% SIFs) and HF-0.008 group (15% fat and 0.008% SIFs). All crabs with an initial weight of 0.4 ± 0.03 g were fed for 8 weeks. The results showed that dietary supplementation with 0.004% or 0.008% SIFs significantly increased the weight gain and specific growth rate of crabs. Diets supplemented with 0.004% or 0.008% SIFs significantly reduced the content of non-esterified free fatty acids and triglycerides in the hepatopancreas of crabs at the 10% dietary lipid level. Dietary SIFs significantly decreased the relative mRNA expressions of elongase of very-long-chain fatty acids 6 (elovl6), triglyceride lipase (tgl), sterol regulatory element-binding protein 1 (srebp-1), carnitine palmitoyltransferase-1a (cpt-1a), fatty acid transporter protein 4 (fatp4), carnitine palmitoyltransferase-2 (cpt-2), Δ9 fatty acyl desaturase (Δ9 fad), carnitine palmitoyltransferase-1b (cpt-1b), fatty acid-binding protein 10 (fabp10) and microsomal triglyceride transfer protein (mttp) in the hepatopancreas of crabs. At the 15% dietary lipid level, 0.008% SIFs significantly increased the relative mRNA expressions of fatty acid-binding protein 3 (fabp3), carnitine acetyltransferase (caat), fatp4, fabp10, tgl, cpt-1a, cpt-1b and cpt-2 and significantly down-regulated the relative mRNA expressions of Δ9 fad and srebp-1. In conclusion, SIFs can improve the growth and utilization of a high-fat diet by inhibiting genes related to lipid synthesis and promoting lipid decomposition in juvenile Chinese mitten crabs. Full article
Show Figures

Figure 1

15 pages, 4523 KiB  
Article
Structural and Functional Differences in Small Intestinal and Fecal Microbiota: 16S rRNA Gene Investigation in Rats
by Xiao-Wei Sun, Hong-Rui Li, Xiao-Lei Jin, Xiao Tang, Da-Wen Wang, Xiao Zhang and Jian-Gang Zhang
Microorganisms 2024, 12(9), 1764; https://doi.org/10.3390/microorganisms12091764 - 25 Aug 2024
Viewed by 552
Abstract
To compare the differences in floral composition and functions between the two types of microbiota, ileal contents and feces were collected from Sprague Dawley (SD) rats fed in a conventional or specific-pathogen free (SPF) environment and rats fed a high-fat diet (HFD), and [...] Read more.
To compare the differences in floral composition and functions between the two types of microbiota, ileal contents and feces were collected from Sprague Dawley (SD) rats fed in a conventional or specific-pathogen free (SPF) environment and rats fed a high-fat diet (HFD), and the V3–V4 region of the 16S ribosomal ribonucleic acid (rRNA) gene in these rats was then amplified and sequenced. Compared with feces, about 60% of the bacterial genera in the ileum were exclusive, with low abundance (operational taxonomic units (OTUs) < 1000). Of bacteria shared between the ileum and feces, a few genera were highly abundant (dominant), whereas most had low abundance (less dominant). The dominant bacteria differed between the ileum and feces. Ileal bacteria showed greater β-diversity, and the distance between in-group samples was nearer than that between paired ileum–feces samples. Moreover, the ileum shared various biomarkers and functions with feces (p < 0.05). The HFD and SPF conditions had a profound influence on α-diversity and abundance but not on the exclusive/shared features or β-diversity of samples. The present findings suggested that, under conventional circumstances, fecal bacteria can represent approximately 40% of the low abundant ileal bacterial genera and that dominant fecal bacteria failed to represent the ileal dominant flora. Moreover, fecal flora diversity does not reflect β-diversity in the ileum. Full article
(This article belongs to the Special Issue Gut Microbiota: Metagenomics to Study Ecology)
Show Figures

Figure 1

Back to TopTop