Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,739)

Search Parameters:
Keywords = hardness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 986 KiB  
Article
Exopolysaccharide (EPS) Produced by Leuconostoc mesenteroides SJC113: Characterization of Functional and Technological Properties and Application in Fat-Free Cheese
by Dominika Jurášková, Susana C. Ribeiro, Rita Bastos, Elisabete Coelho, Manuel A. Coimbra and Célia C. G. Silva
Macromol 2024, 4(3), 680-696; https://doi.org/10.3390/macromol4030040 (registering DOI) - 18 Sep 2024
Abstract
A Leuconostoc mesenteroides strain (SJC113) isolated from cheese curd was found to produce large amounts of a mucoid exopolysaccharide (EPS). An analysis revealed the glucan nature of the EPS with 84.5% (1→6)-linked α-d-glucose units and 5.6% (1,3→6)-linked α-d-glucose units [...] Read more.
A Leuconostoc mesenteroides strain (SJC113) isolated from cheese curd was found to produce large amounts of a mucoid exopolysaccharide (EPS). An analysis revealed the glucan nature of the EPS with 84.5% (1→6)-linked α-d-glucose units and 5.6% (1,3→6)-linked α-d-glucose units as branching points. The EPS showed 52% dextranase resistance and a yield of 7.4 ± 0.9 g/L from MRS medium supplemented with 10% sucrose within 48 h. Ln. mesenteroides SJC113 was also characterized and tested for the production of EPS as a fat substitute in fresh cheese. Strain SJC113 showed high tolerance to a wide range of NaCl concentrations (2, 5 and 10%), high β-galactosidase activity (2368 ± 24 Miller units), cholesterol-reducing ability (14.8 ± 4.1%), free radical scavenging activity (11.7 ± 0.7%) and hydroxyl scavenging activity (15.7 ± 0.4%). The strain had no virulence genes and was sensitive to clinically important antibiotics such as ampicillin, tetracycline and chloramphenicol. Ln. mesenteroides SJC113 produced highly viscous EPS during storage at 8 °C in skim milk with 5% sucrose. Therefore, these conditions were used for EPS production in skim milk before incorporation into fresh cheese. Four types of fresh cheese were produced: full-fat cheese (FF) made from pasteurized whole milk, non-fat cheese (NF) made from pasteurized skim milk, non-fat cheese made from skim milk fermented with Ln. mesenteroides without added sugar (NFLn0) and non-fat cheese made from skim milk fermented with Ln. mesenteroides with 5% sucrose (NFLn5). While the NF cheeses had the highest viscosity and hardness, the NFLn5 cheeses showed lower firmness and viscosity, higher water-holding capacity and lower weight loss during storage. Overall, the NFLn5 cheeses had similar rheological properties to full-fat cheeses with a low degree of syneresis. It was thus shown that the glucan-type EPS produced by Ln. mesenteroides SJC113 can successfully replace fat without altering the texture of fresh cheese. Full article
Show Figures

Figure 1

15 pages, 3788 KiB  
Article
Experiments on High-Temperature Irradiation of Li2ZrO3/MgLi2ZrO4 Ceramics by He2+ Ions
by Dmitriy I. Shlimas, Ainagul A. Khametova, Artem L. Kozlovskiy and Maxim V. Zdorovets
Ceramics 2024, 7(3), 1260-1274; https://doi.org/10.3390/ceramics7030084 (registering DOI) - 18 Sep 2024
Abstract
The key objective of this study is to determine the effect of interphase boundaries, the formation of which is caused by the variation of Li2ZrO3/MgLi2ZrO4 phases in lithium-containing ceramics based on lithium metazirconate, on the resistance [...] Read more.
The key objective of this study is to determine the effect of interphase boundaries, the formation of which is caused by the variation of Li2ZrO3/MgLi2ZrO4 phases in lithium-containing ceramics based on lithium metazirconate, on the resistance to near-surface layer destruction processes associated with irradiation with He2+ ions. During the observation of the deformation effects that have an adverse impact on the volumetric swelling of the near-surface layers of ceramics, the thermal expansion factor caused by high-temperature irradiation was considered, simulating conditions as close as possible to the operating conditions of these materials as blankets for tritium propagation. During the studies conducted, it was established that an elevation in the contribution of MgLi2ZrO4 in the composition of ceramics leads to a rise in resistance to deformation swelling caused by structural distortions of the crystal lattice, due to a decrease in the effect of thermal expansion, alongside the presence of interphase boundaries. The established dependencies of the change in the hardness of the near-surface layer of the studied ceramics made it possible to establish the kinetics of softening caused by the deformation distortion of the crystalline structure, as well as to determine the relationship between volumetric swelling and softening (change in hardness) and a decrease in crack resistance (change in the value of resistance to single compression). Full article
Show Figures

Figure 1

37 pages, 11615 KiB  
Article
Optimizing the Die-Sink EDM Machinability of AISI 316L Using Ti-6Al-4V-SiCp Electrodes: A Computational Approach
by Adithya Hegde, Raviraj Shetty, Rajesh Nayak, Sawan Shetty and Uday Kumar Shetty SV
J. Manuf. Mater. Process. 2024, 8(5), 202; https://doi.org/10.3390/jmmp8050202 (registering DOI) - 18 Sep 2024
Abstract
Die-sink electric discharge machining (EDM) is essential for shaping complex geometries in hard-to-machine materials. This study aimed to optimize key input parameters, such as the discharge current, gap voltage, pulse-on time, and pulse-off time, to enhance the EDM performance by maximizing the material [...] Read more.
Die-sink electric discharge machining (EDM) is essential for shaping complex geometries in hard-to-machine materials. This study aimed to optimize key input parameters, such as the discharge current, gap voltage, pulse-on time, and pulse-off time, to enhance the EDM performance by maximizing the material removal rate while minimizing the surface roughness, residual stress, microhardness, and recast layer thickness. AISI 316L stainless steel was chosen due to its industrial relevance and machining challenges, while a Ti-6Al-4V-SiCp composite electrode was selected for its thermal resistance and low wear. Using Taguchi’s L27 orthogonal array, this study minimized the trial numbers, with analysis of the variance-quantifying parameter contributions. The results showed a maximum material removal rate of 0.405 g/min and minimal values for the surface roughness (1.95 µm), residual stress (1063.74 MPa), microhardness (244.8 Hv), and recast layer thickness (0.47 µm). A second-order model, developed through a response surface methodology, and a feed-forward artificial neural network enhanced the prediction accuracy. Multi-response optimization using desirability function analysis yielded an optimal set of conditions: discharge current of 5.78 amperes, gap voltage of 90 volts, pulse-on time of 100 microseconds, and pulse-off time of 15 microseconds. This setup achieved a material removal rate of 0.13 g/min, with reduced surface roughness (2.46 µm), residual stress (1518.46 MPa), microhardness (259.01 Hv), and recast layer thickness (0.87 µm). Scanning electron microscopy further analyzed the surface morphology and recast layer characteristics, providing insights into the material behavior under EDM. These findings enhance the understanding and optimization of the EDM processes for challenging materials, offering valuable guidance for future research and industrial use. Full article
Show Figures

Figure 1

23 pages, 1939 KiB  
Article
Entrepreneurial Leadership and Green Innovative Work Behavior: The Role of Green Soft and Hard Talent Management with a Dual Theoretical Lens
by Li Yan, Zeeshan Ahmed, Mishal Khosa, Abdulaziz Fahmi Omar Faqera, Afeez Kayode Ibikunle and Ayesha Rashid Khan
Sustainability 2024, 16(18), 8136; https://doi.org/10.3390/su16188136 (registering DOI) - 18 Sep 2024
Abstract
The implementation of green initiatives by hospitality employees can significantly enhance the environmental sustainability of hospitality firms. However, there is a lack of research exploring the mechanisms influencing hospitality employees’ green innovative work behavior (GIWB). Through the mediation paths of green soft talent [...] Read more.
The implementation of green initiatives by hospitality employees can significantly enhance the environmental sustainability of hospitality firms. However, there is a lack of research exploring the mechanisms influencing hospitality employees’ green innovative work behavior (GIWB). Through the mediation paths of green soft talent management (GSTM) and green hard talent management (GHTM), this study seeks to investigate how entrepreneurial leadership promotes GIWB. The data from 366 employees and managers in Pakistan’s hospitality industry were collected through a survey method using partial least squares structural equation modeling (PLS-SEM). The findings reveal that the effects of entrepreneurial leadership on GIWB, the direct effects of GSTM and GHTM, and the interaction effects between entrepreneurial leadership and GIWB are substantial. Based on the upper echelons theory and the resource-based view concept, this study extends research on the leadership–GIWB macro nexus and increases our understanding of the mechanisms behind employee GIWB, particularly in the hospitality setting. Full article
(This article belongs to the Special Issue Digital Transformation and Sustainable Business Management in Tourism)
Show Figures

Figure 1

23 pages, 7411 KiB  
Review
Improvement of High Temperature Wear Resistance of Laser-Cladding High-Entropy Alloy Coatings: A Review
by Yantao Han and Hanguang Fu
Metals 2024, 14(9), 1065; https://doi.org/10.3390/met14091065 (registering DOI) - 18 Sep 2024
Abstract
As a novel type of metal material emerging in recent years, high-entropy alloy boasts properties such as a simplified microstructure, high strength, high hardness and wear resistance. High-entropy alloys can use laser cladding to produce coatings that exhibit excellent metallurgical bonding with the [...] Read more.
As a novel type of metal material emerging in recent years, high-entropy alloy boasts properties such as a simplified microstructure, high strength, high hardness and wear resistance. High-entropy alloys can use laser cladding to produce coatings that exhibit excellent metallurgical bonding with the substrate, thereby significantly improvement of the wear resistance of the material surface. In this paper, the research progress on improving the high-temperature wear resistance of high entropy alloy coatings (LC-HEACs) was mainly analyzed based on the effect of some added alloying elements and the presence of hard ceramic phases. Building on this foundation, the study primarily examines the impact of adding elements such as aluminum, titanium, copper, silicon, and molybdenum, along with hard ceramic particles like TiC, WC, and NbC, on the phase structure of coatings, high-temperature mechanisms, and the synergistic interactions between these elements. Additionally, it explores the potential of promising lubricating particles and introduces an innovative, highly efficient additive manufacturing technology known as extreme high-speed laser metal deposition (EHLMD). Finally, this paper summarizes the main difficulties involved in increasing the high-temperature wear resistance of LC-HEACs and some problems worthy of attention in the future development. Full article
(This article belongs to the Special Issue Surface Engineering and Coating Tribology—2nd Edition)
Show Figures

Figure 1

11 pages, 3307 KiB  
Article
Influence of Oxygen and Nitrogen Flow Ratios on the Microstructure Evolution in AlCrTaTiZr High-Entropy Oxynitride Films
by Yung-Chu Liang, Ching-Yin Lee, Miao-I Lin, Ting-En Shen, Jung-Fan Hung, Jien-Wei Yeh and Che-Wei Tsai
Coatings 2024, 14(9), 1199; https://doi.org/10.3390/coatings14091199 (registering DOI) - 18 Sep 2024
Abstract
This study explores the influence of oxygen and nitrogen flow ratios on the microstructure and mechanical properties of AlCrTaTiZr high-entropy oxynitride films. Oxygen flow rates (0%–0.75%) were adjusted while maintaining a fixed nitrogen flow ratio (RN = 15%) to fabricate films with [...] Read more.
This study explores the influence of oxygen and nitrogen flow ratios on the microstructure and mechanical properties of AlCrTaTiZr high-entropy oxynitride films. Oxygen flow rates (0%–0.75%) were adjusted while maintaining a fixed nitrogen flow ratio (RN = 15%) to fabricate films with similar compositions. The results show that increasing oxygen flow enhanced hardness through solid solution strengthening and grain refinement, though excessive oxygen caused an amorphous structure and reduced hardness. After annealing at 900 °C, the hardness of all films was further increased. The film with a nitrogen flow ratio 40 times higher than oxygen exhibited the highest hardness of 21.8 GPa, along with superior mechanical performance. These findings highlight the potential of high-entropy oxynitride films for applications requiring high wear resistance and adhesion. Full article
(This article belongs to the Special Issue High Entropy Alloy Films)
Show Figures

Figure 1

27 pages, 5710 KiB  
Article
A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem
by Shuai Xu, Yanwu Li and Qiuyang Li
Electronics 2024, 13(18), 3696; https://doi.org/10.3390/electronics13183696 (registering DOI) - 18 Sep 2024
Abstract
The flexible job shop scheduling problem (FJSSP), which can significantly enhance production efficiency, is a mathematical optimization problem widely applied in modern manufacturing industries. However, due to its NP-hard nature, finding an optimal solution for all scenarios within a reasonable time frame faces [...] Read more.
The flexible job shop scheduling problem (FJSSP), which can significantly enhance production efficiency, is a mathematical optimization problem widely applied in modern manufacturing industries. However, due to its NP-hard nature, finding an optimal solution for all scenarios within a reasonable time frame faces serious challenges. This paper proposes a solution that transforms the FJSSP into a Markov Decision Process (MDP) and employs deep reinforcement learning (DRL) techniques for resolution. First, we represent the state features of the scheduling environment using seven feature vectors and utilize a transformer encoder as a feature extraction module to effectively capture the relationships between state features and enhance representation capability. Second, based on the features of the jobs and machines, we design 16 composite dispatching rules from multiple dimensions, including the job completion rate, processing time, waiting time, and manufacturing resource utilization, to achieve flexible and efficient scheduling decisions. Furthermore, we project an intuitive and dense reward function with the objective of minimizing the total idle time of machines. Finally, to verify the performance and feasibility of the algorithm, we evaluate the proposed policy model on the Brandimarte, Hurink, and Dauzere datasets. Our experimental results demonstrate that the proposed framework consistently outperforms traditional dispatching rules, surpasses metaheuristic methods on larger-scale instances, and exceeds the performance of existing DRL-based scheduling methods across most datasets. Full article
(This article belongs to the Special Issue Advanced Intelligent Control and Automation in Industrial 4.0 Era)
Show Figures

Figure 1

15 pages, 6999 KiB  
Article
Heterogeneous Morphologies and Hardness of Co-Sputtered Thin Films of Concentrated Cu-Mo-W Alloys
by Forrest Wissuchek, Benjamin K. Derby and Amit Misra
Nanomaterials 2024, 14(18), 1513; https://doi.org/10.3390/nano14181513 (registering DOI) - 18 Sep 2024
Viewed by 44
Abstract
Heterogeneous microstructures in Cu-Mo-W alloy thin films formed by magnetron co-sputtering immiscible elements with concentrated compositions are characterized using scanning transmission electron microscopy (STEM) and nanoindentation. In this work, we modified the phase separated structure of a Cu-Mo immiscible system by adding W, [...] Read more.
Heterogeneous microstructures in Cu-Mo-W alloy thin films formed by magnetron co-sputtering immiscible elements with concentrated compositions are characterized using scanning transmission electron microscopy (STEM) and nanoindentation. In this work, we modified the phase separated structure of a Cu-Mo immiscible system by adding W, which impedes surface diffusion during film growth. The heterogeneous microstructures in the Cu-Mo-W ternary system exhibited bicontinuous matrices and agglomerates composed of Mo(W)-rich phase. This is unique, as these are the slower-diffusing species, contrasting past reports of binary Cu-Mo thin films that exhibited Cu-rich agglomerates. The bicontinuous matrices comprised of Cu-rich and Mo(W)-rich phases exhibited bilayer thicknesses of less than 5 nm. The hardness of these thin films measured using nanoindentation is reported and compared to similar multilayers and nanocomposites in binary systems. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

19 pages, 2705 KiB  
Article
Natural Rubber Latex Wastes from Balloon Production as Valuable Source of Raw Material: Processing, Physico-Mechanical Properties, and Structure
by Jacek Kędzia, Józef Haponiuk and Krzysztof Formela
J. Compos. Sci. 2024, 8(9), 365; https://doi.org/10.3390/jcs8090365 (registering DOI) - 18 Sep 2024
Viewed by 91
Abstract
This study explores the potential for recycling natural rubber (NR) latex waste from balloon production through the devulcanization and revulcanization processes. The mechanical devulcanization of colored latex balloon waste was conducted, followed by revulcanization using a sulfur-based system. The reclaimed rubber’s properties, including [...] Read more.
This study explores the potential for recycling natural rubber (NR) latex waste from balloon production through the devulcanization and revulcanization processes. The mechanical devulcanization of colored latex balloon waste was conducted, followed by revulcanization using a sulfur-based system. The reclaimed rubber’s properties, including crosslink density, tensile strength, and abrasion resistance, were compared with those of virgin NR. The results demonstrate that the reclaimed rubber maintains a crosslink density close to that of virgin NR. Hardness and abrasion resistance were comparable, indicating successful material recovery. Structural analyses, including FTIR and SEM microscopy, revealed that the devulcanization process effectively allowed for successful revulcanization. This study concludes that NR latex waste can be effectively recycled and reused in rubber composite formulations, offering a sustainable approach to waste management in the rubber industry and contributing to developing eco-friendly materials. In the context of this research, integrating advanced chemical and physical methods, such as solubility parameter calculations and enhanced devulcanization techniques, could further optimize the devulcanization process. These methods quantitatively enhance the efficiency of material recovery, offering a path to more sustainable recycling practices. The findings suggest that combining such advanced methodologies could significantly improve recycled NR latex’s overall performance and applicability in industrial applications. Full article
Show Figures

Figure 1

14 pages, 13110 KiB  
Article
Auxeticity Tuning by Nanolayer Inclusion Ordering in Hard Sphere Crystals
by Jakub W. Narojczyk, Krzysztof W. Wojciechowski, Jerzy Smardzewski and Konstantin V. Tretiakov
Materials 2024, 17(18), 4564; https://doi.org/10.3390/ma17184564 - 17 Sep 2024
Viewed by 241
Abstract
Designing a particular change in a system structure to achieve the desired elastic properties of materials for a given task is challenging. Recent studies of purely geometrical atomic models have shown that structural modifications on a molecular level can lead to interesting and [...] Read more.
Designing a particular change in a system structure to achieve the desired elastic properties of materials for a given task is challenging. Recent studies of purely geometrical atomic models have shown that structural modifications on a molecular level can lead to interesting and desirable elastic properties. Still, the result of such changes is usually difficult to predict. The present work concerns the impact of nanolayer inclusion ordering in hard sphere crystals on their elastic properties, with special attention devoted to their auxetic properties. Two sets of representative models, based on cubic crystals consisting of 6×6×6 unit cells of hard spheres and containing either neighboring or separated layers of spheres of another diameter, oriented orthogonally to the [001] direction, have been studied by Monte Carlo simulations in the isothermal–isobaric (NpT) ensemble. Their elastic constants have been evaluated using the Parinello–Rahman approach. The Monte Carlo simulations showed that introducing the layer inclusions into a pure face-centered cubic (FCC) structure leads to the system’s symmetry changes from cubic symmetry to tetragonal in both cases. Essential changes in the elastic properties of the systems due to layer ordering were found both for neighboring and separated inclusions. It has been found that the choice of a set of layer inclusions allows one to tune the auxetic properties in two crystallographic directions ([110][11¯0] and [101][1¯01]). In particular, this study revealed that the change in layer ordering (from six separated layers to six neighboring ones) allows for, respectively: (i) enhancing auxeticity of the system in the [101][1¯01] direction with almost loss of auxetic properties in the [110][11¯0] direction in the case of six separated layers, while (ii) in the case of six neighboring layers, keeping the auxetic properties in both auxetic directions independently of the size of spheres constituting inclusions. Full article
Show Figures

Graphical abstract

17 pages, 6692 KiB  
Article
Detecting the Sigma Phase in Duplex Stainless Steel by Magnetic Noise and First Harmonic Analysis
by João Silva, Edgard Silva, Augusto Sampaio, Rayssa Lins, Josinaldo Leite, Victor Albuquerque Silva and João Manuel R. S. Tavares
Materials 2024, 17(18), 4561; https://doi.org/10.3390/ma17184561 - 17 Sep 2024
Viewed by 234
Abstract
Non-destructive electromagnetic tests based on magnetic noise analysis have been developed to study, among others, residual stress, heat treatment outcomes, and harmful microstructures in terms of toughness. When subjected to thermal cycles above 550 °C, duplex stainless steels form an extremely hard and [...] Read more.
Non-destructive electromagnetic tests based on magnetic noise analysis have been developed to study, among others, residual stress, heat treatment outcomes, and harmful microstructures in terms of toughness. When subjected to thermal cycles above 550 °C, duplex stainless steels form an extremely hard and chromium-rich constituent that, if it is superior to 5%, compromises the steel’s corrosion resistance and toughness. In the present work, a study was carried out concerning the interaction of excitation waves with duplex stainless steel. Hence, by analyzing the magnetic noise and variations in the amplitude of the first harmonic of the excitation waves, the detection of the deleterious sigma phase in SAF 2205 steel is studied. To simplify the test, a Hall effect sensor replaced the pick-up coil placed on the opposite surface of the excitation coil. Sinusoidal excitation waves of 5 Hz and 25 Hz with amplitudes ranging from 0.25 V to 9 V were applied to samples with different amounts of the sigma phase, and the microstructures were characterized by scanning electron microscopy. The results show that the best testing condition consists of applying waves with amplitudes from 1 V to 2 V and using the first harmonic amplitude. Thus, the test proved effective for detecting the formation of the deleterious sigma phase and can follow the ability to absorb energy by impact and, thus, the material embrittlement. Full article
Show Figures

Figure 1

17 pages, 6557 KiB  
Article
Balancing of Resonant Differential Coils for Broadband Inductive Sensor Systems
by Liam A. Marsh, Adam D. Fletcher and Anthony J. Peyton
Sensors 2024, 24(18), 6009; https://doi.org/10.3390/s24186009 - 17 Sep 2024
Viewed by 249
Abstract
Differential coils are frequently implemented in inductive sensing systems. They can be considered as a single coil that is made up of two or more subcoils, wound in series opposition. They can be used on the transmit or receive side of measurement systems, [...] Read more.
Differential coils are frequently implemented in inductive sensing systems. They can be considered as a single coil that is made up of two or more subcoils, wound in series opposition. They can be used on the transmit or receive side of measurement systems, and, if designed correctly, ensure no coupling between coils under background conditions. By cancelling background coupling, the receive electronics only needs to be able to measure the change in coupling produced by a target. This allows for a more efficient use of the dynamic range, and for larger receive-side amplifier gain, thereby improving SNR. When subcoils are not electrically similar, it can be hard to engineer the coil to be perfectly balanced across a wide bandwidth. This paper presents an analytical model of a resonant differential coil pair that is tested and applied on a planar metal detector for the detection of buried objects. The model demonstrates the capability to balance an arbitrary differential coil pair, which has a broad applicability across a range of inductive sensor applications such as metal detection and non-destructive testing. The method is applied to the practical system. The results show that the correction resulting from this method ensures a stable balance across a significantly enhanced bandwidth. In the case studied here, the bandwidth of the experimental system is increased from 20 kHz to 90 kHz. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

12 pages, 1490 KiB  
Article
The Effect of Heat Treatment on the Plasma Nitriding of Hot-rolled 17–7 PH Stainless Steel
by Hongchen Long, Xin Zhou, Yilong Ma, Kejian Li and Jianbing Ren
Metals 2024, 14(9), 1061; https://doi.org/10.3390/met14091061 - 17 Sep 2024
Viewed by 177
Abstract
17–7 PH stainless steel is a highly versatile material with a multitude of applications in a diverse range of fields, including aerospace, chemistry and petrochemistry, and medicine. The material’s exceptional mechanical properties and corrosion resistance render it the optimal selection for numerous components [...] Read more.
17–7 PH stainless steel is a highly versatile material with a multitude of applications in a diverse range of fields, including aerospace, chemistry and petrochemistry, and medicine. The material’s exceptional mechanical properties and corrosion resistance render it the optimal selection for numerous components and instruments. Nevertheless, the surface properties of 17–7 PH stainless steel are inadequate for applications requiring high hardness and wear resistance in certain extreme environments. Due to its excellent mechanical properties and corrosion resistance, it can be utilized in the manufacturing of pharmaceutical equipment components. However, certain specialized environments still require surface nitriding treatment. Considering the complex heat treatment process required for this material, this paper reports a detailed study of the surface performance changes of 17–7 PH steel before and after ion nitriding following aging heat treatment. The study employs rolled 17–7 PH stainless steel as the subject material. The impact of heat treatment on plasma nitriding of stainless steel is investigated by comparing and analyzing the influence of martensite content and dislocation density within the martensite of the material prior to and following heat treatment on the hardness, thickness, and corrosion resistance of the nitrided layer on the surface of the steel after nitriding. The results demonstrate that 17–7 PH stainless steel, which does not undergo heat treatment, exhibits a high internal dislocation density, a high nitriding efficiency, and consequently, a high surface hardness. Following the application of a heat treatment, there is an increase in the martensite content of 17–7 PH stainless steel, a decrease in the dislocation content, and an increase in the matrix hardness. Full article
19 pages, 8765 KiB  
Article
Elevated Temperature Tribological Behavior of Duplex Layer CrN/DLC and Nano Multilayer DLC-W Coatings Deposited on Carburized and Hardened 16MnCr5 Steel
by Funsho Olaitan Kolawole, Shola Kolade Kolawole, Newton Kiyoshi Fukumasu, Luis Bernardo Varela, Paulo Konrad Vencovsky, Danilo Assad Ludewigs, Roberto Martins de Souza and André Paulo Tschiptschin
Coatings 2024, 14(9), 1197; https://doi.org/10.3390/coatings14091197 - 17 Sep 2024
Viewed by 259
Abstract
This study investigates the impact of temperature on the tribological performance of duplex layer CrN/DLC and nano-multilayers DLC-W coatings deposited using hybrid PVD-PECVD techniques on carburized and hardened 16MnCr5 discs cut from internal combustion engines valve tappets. Reciprocating dry sliding experiments were conducted [...] Read more.
This study investigates the impact of temperature on the tribological performance of duplex layer CrN/DLC and nano-multilayers DLC-W coatings deposited using hybrid PVD-PECVD techniques on carburized and hardened 16MnCr5 discs cut from internal combustion engines valve tappets. Reciprocating dry sliding experiments were conducted at 25 °C, 150 °C, 200 °C, and 250 °C to analyze the high-temperature tribological behavior of the coatings. The wear mechanisms were characterized using SEM, EDS mapping, Raman spectroscopy, and nanoindentation. The lowest coefficient of friction was obtained for CrN/DLC at 25 °C. The CrN/DLC coefficients of friction (COF) increase with temperatures due to increasing adhesive wear. Similarly, DLC-W exhibited a comparable trend with increasing temperature from 25 °C to 250 °C. Both coatings’ wear resistance decreased with higher temperatures due to the transformation of sp3 C bonds to sp2 C bonds, facilitating the plastic deformation of the coatings and afterward of the substrate. The CrN/DLC displayed superior wear resistance to the DLC-W coating across all temperatures. The DLC-W multilayer coating showed poor wear resistance above 150 °C, being completely removed during the testing. Compared to both coatings, the uncoated 16MnCr5 discs exhibited higher coefficients of friction and wear rates at all temperatures. Predominant wear mechanisms observed in the coated discs were adhesive and abrasive. The study revealed a decrease in the coatings’ structural and mechanical properties with rising temperatures. Hard abrasive WC particles were identified as contributing to increased wear rates in the multilayer DLC-W coatings. Full article
Show Figures

Figure 1

16 pages, 3203 KiB  
Article
Photocurable Hypervalent Fluorinated Sulfur Containing Thin Films with Remarkable Hardness and Modulus
by Kelly A. Bonetti, Deniz Rende, Michael Murphy and John T. Welch
Molecules 2024, 29(18), 4413; https://doi.org/10.3390/molecules29184413 - 17 Sep 2024
Viewed by 245
Abstract
Novel tetrafluoro-λ6-sulfanyl-containing oligomers prepared by visible light-promoted addition of 1,4-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene or 1,3-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene to either 1,4-diethynyl benzene or the 1,3-diethynyl isomers form hard, stress resistant thin films on spin casting. The isomeric oligomers were utilized to [...] Read more.
Novel tetrafluoro-λ6-sulfanyl-containing oligomers prepared by visible light-promoted addition of 1,4-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene or 1,3-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene to either 1,4-diethynyl benzene or the 1,3-diethynyl isomers form hard, stress resistant thin films on spin casting. The isomeric oligomers were utilized to establish a structure-function relationship for the mechanical properties of films prepared from the oligomers. The Young’s moduli of 145-nm-thick cured films could reach 60 GPa. The measured hardnesses, between 1.57 and 2.77 GPa, were more than double those of polymethyl methacrylate (PMMA) films. Curing of the tetrafluoro-λ6-sulfanyl-containing polymer films by UV irradiation resulted in coatings that exhibited remarkable hardness and modulus with good surface adhesion to silicon. Full article
(This article belongs to the Special Issue Research Advances in Organofluorine Chemistry)
Show Figures

Figure 1

Back to TopTop