Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,140)

Search Parameters:
Keywords = growth traits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1490 KiB  
Article
Allelochemicals Released from Rice Straw Inhibit Wheat Seed Germination and Seedling Growth
by Bo Li, Wenwen Wu, Wenyuan Shen, Fei Xiong and Kaihua Wang
Agronomy 2024, 14(10), 2376; https://doi.org/10.3390/agronomy14102376 - 14 Oct 2024
Abstract
Recently, returning rice straw to soil has become a common problem in wheat production because it causes decreased wheat seedling emergence. Allelopathy is an important factor affecting seed germination. However, the effects of rice straw extracts on wheat seed germination and seedling growth [...] Read more.
Recently, returning rice straw to soil has become a common problem in wheat production because it causes decreased wheat seedling emergence. Allelopathy is an important factor affecting seed germination. However, the effects of rice straw extracts on wheat seed germination and seedling growth remain unclear. Wheat seeds and seedlings were treated with 30 g L−1 of rice leaf extracts (L1), 60 g L−1 of rice leaf extracts (L2), 30 g L−1 of rice stem extracts (S1), 60 g L−1 of rice stem extracts (S2) and sterile water (CK) to study the allelopathic effects of rice straw extracts on wheat seed germination and seedling growth. The α-amylase and antioxidant enzyme activities in wheat seeds; the agronomic traits, photosynthetic indicators, and nutrient contents of wheat seedlings; and the phenolic acids in rice stem extracts were determined. Common allelochemicals, including 4-hydroxybenzoic acid, hydrocinnamic acid, trans-cinnamic acid, vanillic acid, benzoic acid, protocatechualdehyde, caffeic acid, syringic acid, sinapic acid, and salicylic acid, were detected in rice stem extracts. Low-concentration rice leaf and stem extracts (30 g L−1) had no effect on the germination rate of wheat seeds. High-concentration (60 g L−1) rice stem and leaf extracts decreased the seed germination rate by 11.00% and 12.02%. Rice stem extract (60 g L−1) decreased the α-amylase activity, and gibberellin content of wheat seeds but increased superoxide dismutase, peroxidase, and catalase activities and malondialdehyde content in wheat seeds. Allelochemicals entered the internal tissues of wheat seeds, where they decreased the gibberellin content and α-amylase activity and increased the antioxidant enzyme activity, ultimately leading to an inhibitory effect on seed germination. Rice stem and leaf extracts decreased the SPAD value and photosynthetic indicators of wheat seedlings. Rice stem extract (60 g L−1) decreased the fresh weight and root length of wheat seedlings by 31.37% and 45.46%. Low-concentration rice leaf and stem extract (30 g L−1) had no effect on the nutrient contents of wheat seedlings. Rice leaf and stem extracts (60 g L−1) decreased the nitrogen and potassium contents of wheat seedlings. These results indicated that low-concentration rice leaf and stem extract (30 g L−1) had no effect on wheat seed germination and the high-concentration rice stem extract (60 g L−1) released allelochemicals and inhibited wheat seed germination and seedling growth. These findings provide a basis for the improvement of straw return techniques. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
17 pages, 1768 KiB  
Article
A Novel Enterococcus-Based Nanofertilizer Promotes Seedling Growth and Vigor in Wheat (Triticum aestivum L.)
by Salma Batool, Maryam Safdar, Saira Naseem, Abdul Sami, Rahman Shah Zaib Saleem, Estíbaliz Larrainzar and Izzah Shahid
Plants 2024, 13(20), 2875; https://doi.org/10.3390/plants13202875 - 14 Oct 2024
Abstract
Excessive use of chemical fertilizers poses significant environmental and health concerns. Microbial-based biofertilizers are increasingly being promoted as safe alternatives. However, they have limitations such as gaining farmers’ trust, the need for technical expertise, and the variable performance of microbes in the field. [...] Read more.
Excessive use of chemical fertilizers poses significant environmental and health concerns. Microbial-based biofertilizers are increasingly being promoted as safe alternatives. However, they have limitations such as gaining farmers’ trust, the need for technical expertise, and the variable performance of microbes in the field. The development of nanobiofertilizers as agro-stimulants and agro-protective agents for climate-smart and sustainable agriculture could overcome these limitations. In the present study, auxin-producing Enterococcus sp. SR9, based on its plant growth-promoting traits, was selected for the microbe-assisted synthesis of silver nanoparticles (AgNPs). These microbial-nanoparticles SR9AgNPs were characterized using UV/Vis spectrophotometry, scanning electron microscopy, and a size analyzer. To test the efficacy of SR9AgNPs compared to treatment with the SR9 isolate alone, the germination rates of cucumber (Cucumis sativus), tomato (Solanum lycopersicum), and wheat (Triticum aestivum L.) seeds were analyzed. The data revealed that seeds simultaneously treated with SR9AgNPs and SR9 showed better germination rates than untreated control plants. In the case of vigor, wheat showed the most positive response to the nanoparticle treatment, with a higher vigor index than the other crops analyzed. The toxicity assessment of SR9AgNPs demonstrated no apparent toxicity at a concentration of 100 ppm, resulting in the highest germination and biomass gain in wheat seedlings. This work represents the first step in the characterization of microbial-assisted SR9AgNPs and encourages future studies to extend these conclusions to other relevant crops under field conditions. Full article
18 pages, 2156 KiB  
Article
Both the Positioned Supplemental or Night-Interruptional Blue Light and the Age of Leaves (Or Tissues) Are Important for Flowering and Vegetative Growth in Chrysanthemum
by Jingli Yang, Jinnan Song, Yoo Gyeong Park and Byoung Ryong Jeong
Plants 2024, 13(20), 2874; https://doi.org/10.3390/plants13202874 - 14 Oct 2024
Abstract
In this study, the effects of supplemental or night interruptional blue light (S-BL or NI-BL) positioning on morphological growth, photoperiodic flowering, and expression of floral genes in Chrysanthemum morifolium were investigated. Blue light-emitting diodes (LEDs) at an intensity of 30 μmol·m−2·s [...] Read more.
In this study, the effects of supplemental or night interruptional blue light (S-BL or NI-BL) positioning on morphological growth, photoperiodic flowering, and expression of floral genes in Chrysanthemum morifolium were investigated. Blue light-emitting diodes (LEDs) at an intensity of 30 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) were used for 4 h either (1) to supplement the white LEDs at the end of the 10 h short-day (SD10 + S-BL4) and 13 h long-day conditions (LD13 + S-BL4), or (2) to provide night interruption in the SD10 (SD10 + NI-BL4) and LD13 (LD13 + NI-BL4). The S-BL4 or NI-BL4 was positioned to illuminate either the shoot tip, the youngest leaf (vigorously growing the third leaf from the shoot tip), or the old leaf (the third leaf from the stem base). In the text, they will be denoted as follows: SD10 + S-BL4-S, -Y, or -O; SD10 + NI-BL4-S, -Y, or -O; LD13 + S-BL4-S, -Y, or -O; LD13 + NI-BL4-S, -Y, or -O. Normally, the LD13 conditions enhanced more vegetative growth than the SD10 periods. The growth of leaves, stems, and branches strongly responded to the S-BL4 or NI-BL4 when it was targeted onto the shoot tip, followed by the youngest leaf. The SD10 + S-BL4 or +NI-BL4 on the old leaf obviously suppressed plant extension growth, resulting in the smallest plant height. Under LD13 conditions, the flowering-related traits were significantly affected when the S-BL4 or NI-BL4 was shed onto the youngest leaf. However, these differences do not exist in the SD10 environments. At the harvest stage, other than the non-flowered LD13 treatment, the LD13 + S-BL4 irradiating the youngest leaf induced the most flowers, followed by the shoot tip and old leaf. Moreover, LD13 + NI-BL4 resulted in the latest flowering, especially when applied to the shoot tip and old leaf. However, the SD10 + S-BL4 or + NI-BL4 irradiated the shoot tip, youngest leaf, or old leaf all significantly earlier and increased flowering compared to the SD10 treatment. Overall: (1) Generally, vegetative growth was more sensitive to photoperiod rather than lighting position, while, during the same photoperiod, the promotion of growth was stronger when the light position of S-BL4 or NI-BL4 was applied to the shoot tip or the youngest leaf. (2) The photoperiodic flowering of these short-day plants (SDPs) comprehensively responded to the photoperiod combined with blue light positioning. Peculiarly, when they were exposed to the LD13 flowering-inhibited environments, the S-BL4 or NI-BL4 shed onto the leaves, especially the youngest leaves, significantly affecting flowering. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
17 pages, 2113 KiB  
Article
Effects of Different Weeding Methods on Soil Physicochemical Properties, Root Morphology, and Fruit Economic Traits in Camellia oleifera Abel. Plantations
by Xueyun Shi, Huaiyuan Wu, Shuangling Xie, Hongkui Li, Yan Wang, Yuman Wang, Huiyun Liu, Qinhua Cheng, Zongde Wang and Dongnan Hu
Horticulturae 2024, 10(10), 1093; https://doi.org/10.3390/horticulturae10101093 - 13 Oct 2024
Viewed by 275
Abstract
Soil physicochemical properties, root characteristics, and fruit economic traits were determined in Camellia oleifera plantations under spontaneous vegetation + mowing (W1), spontaneous vegetation + glyphosate (W2), and no weeding (CK) treatments. Compared with CK, W1 reduced soil bulk density and increased total nitrogen, [...] Read more.
Soil physicochemical properties, root characteristics, and fruit economic traits were determined in Camellia oleifera plantations under spontaneous vegetation + mowing (W1), spontaneous vegetation + glyphosate (W2), and no weeding (CK) treatments. Compared with CK, W1 reduced soil bulk density and increased total nitrogen, total phosphorus, ammonium nitrogen, nitrate nitrogen, and effective potassium content. W2 treatment resulted in higher bulk density than W1 and lower water-holding capacity, total nitrogen, total phosphorus, total potassium, ammonium nitrogen, nitrate nitrogen, and available potassium of the soil. Generally, both W1 and W2 inhibited weed morphological traits while favoring the C. oleifera root system, with the W1 treatment resulting in the greatest increase. Fruit transverse diameter, longitudinal diameter, yield, and oil yield were higher in W1 than in CK and W2 treatments. Weed root systems and C. oleifera root systems ultimately affect oil production and yield by affecting bulk density, ammonium nitrogen, nitrate nitrogen, fruit transverse diameter, seed yield, and seed kernel oil content. In summary, W1 treatment improved the physicochemical properties, root growth, fruit growth, and soil quality in C. oleifera plantations. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

15 pages, 3046 KiB  
Article
The Personality Traits and Interactive Behavior of Chinese Mitten Crab (Eriocheir sinensis)
by Jianyang Sun, Dongxin Zhang, Yuhang Hong, Chengyi Weng, Yangyang Pang, Yongxu Cheng and Xiaozhen Yang
Fishes 2024, 9(10), 408; https://doi.org/10.3390/fishes9100408 - 12 Oct 2024
Viewed by 147
Abstract
Agonistic behavior is a common behavior among agonistic Chinese mitten crabs (Eriocheir sinensis). Such behavior often leads to limb loss or physical impairment, and significantly affects the survival, growth, and quality of the crabs, and even the yield and economic value [...] Read more.
Agonistic behavior is a common behavior among agonistic Chinese mitten crabs (Eriocheir sinensis). Such behavior often leads to limb loss or physical impairment, and significantly affects the survival, growth, and quality of the crabs, and even the yield and economic value for E. sinensis. Agonistic behavior often occurs in agonistic crabs, which is closely related to personality traits and interactive behavior of animals. E. sinensis has personality traits such as boldness, aggression, and exploration as evidenced by the partition-crossing experiment, mirror experiment, and shelter experiment. Agonistic crabs were identified as individuals with boldness, high aggression, and high exploration. The interactive behavior spectrum of E. sinensis was first obtained, consisting of 15 behaviors. This spectrum described and summarized all interactive behaviors of E. sinensis during fights. The interactive behavior characteristics of agonistic crabs were identified as darting, intimidating, grabbing, pushing, stretching, and visitation. These results lay a theoretical basis for in-depth behavioral research on E. sinensis in the future. The technique of identifying agonistic crabs by personality traits and interactive behaviors not only allows for the elimination of agonistic crabs from the aquaculture process and the reduction in negative impacts caused by aggressive crabs, but also allows for the breeding of non-agonistic crabs and the further reduction in the economic losses caused by fighting behaviors. Full article
Show Figures

Figure 1

21 pages, 31954 KiB  
Article
Exploring Plant Growth-Promoting Traits of Endophytic Fungi Isolated from Ligusticum chuanxiong Hort and Their Interaction in Plant Growth and Development
by Qing Wang, Xinyu Zhang, Qiqi Xie, Jiwen Tao, Yujie Jia, Yirong Xiao, Zizhong Tang, Qingfeng Li, Ming Yuan and Tongliang Bu
J. Fungi 2024, 10(10), 713; https://doi.org/10.3390/jof10100713 (registering DOI) - 12 Oct 2024
Viewed by 183
Abstract
Endophytic fungi inhabit various plant tissues and organs without inducing evident disease symptoms. They can contribute positively to the growth of plants, bolster plants resilience to environmental and biological stresses, and facilitate the accumulation of secondary metabolites. These microbial resources possess significant developmental [...] Read more.
Endophytic fungi inhabit various plant tissues and organs without inducing evident disease symptoms. They can contribute positively to the growth of plants, bolster plants resilience to environmental and biological stresses, and facilitate the accumulation of secondary metabolites. These microbial resources possess significant developmental and utilization value in various applications. Hence, this study focused on exploring the plant growth-promoting (PGP) traits of 14 endophytic fungi from Ligusticum chuanxiong Hort (CX) and elucidating the effects and mechanisms that facilitate plant growth. According to PGP activity evaluation, the majority of strains demonstrated the capacity to produce IAA (78.57%), siderophores (50.00%), ammonia (35.71%), potassium solubilization (21.43%), nitrogen fixation (57.14%), and phosphate solubilization (42.86%). Further investigations indicated that the levels of IAA ranged from 13.05 to 301.43 μg/mL, whereas the soluble phosphorus levels ranged from 47.32 to 125.95 μg/mL. In cocultivation assays, it was indicated that Fusarium sp. YMY5, Colletotrichum sp. YMY6, Alternaria sp. ZZ10 and Fusarium sp. ZZ13 had a certain promoting effect on lateral root number and fresh weight of tobacco. Furthermore, ZZ10 and ZZ13 significantly enhanced the germination potential, germination index, and vigor index of tobacco seeds. The subsequent potted trials demonstrated that the four endophytic fungi exhibited an enhancement to growth parameters of tobacco to a certain extent. ZZ10 and ZZ13 treatment had the best promotion effect. Inoculation with YMY5 increased the chlorophyll a and total chlorophyll content. ZZ10 and ZZ13 treatment remarkably increased the net photosynthetic rate, soluble sugars and soluble protein content, catalase and peroxidase activities, and lowered malondialdehyde content in tobacco leaves. In addition, YMY5 remarkably elevated superoxide dismutase activities. ZZ13 upregulated the expression of growth-related gene. Among them, ZZ13 had a better growth-promoting effect. In conclusion, these endophytic fungi possessing multi-trait characteristics and the capacity to enhance plant growth exhibit promising potential as biofertilizers or plant growth regulators. Full article
Show Figures

Figure 1

27 pages, 5359 KiB  
Article
Opportunities for the Early Diagnosis and Selection of Scots Pine with Potential Resistance to Root and Butt Rot Disease
by Valentyna Dyshko, Ivan Ustskiy, Piotr Borowik and Tomasz Oszako
Forests 2024, 15(10), 1789; https://doi.org/10.3390/f15101789 - 11 Oct 2024
Viewed by 260
Abstract
Pine stands affected by root and butt rot (Heterobasidion annosum s.l.) contain pines (Pinus sylvestris L.) that can survive for a long time without showing external symptoms of the disease (‘conditionally resistant’ refers to trees that survive without symptoms despite [...] Read more.
Pine stands affected by root and butt rot (Heterobasidion annosum s.l.) contain pines (Pinus sylvestris L.) that can survive for a long time without showing external symptoms of the disease (‘conditionally resistant’ refers to trees that survive without symptoms despite infection). The establishment of stands from the seeds of such trees can significantly increase the effectiveness of artificial afforestation. Since the growth and development of pine trees is determined to a certain extent by the number of cotyledons after seed germination, this article examines this trait in the progeny of trees that are potentially resistant and those that have already been attacked by root pathogens. The number of cotyledons and the resilience of trees is fascinating and not generally known. Presumably, the number of cotyledons can be linked to disease resistance based on increased vigour. Biologically, a larger area for carbon assimilation leads to better photosynthetic efficiency and the production of more assimilates (sugars) necessary to trigger defence processes in the event of infection. From an ecological point of view, this can give tree populations in areas potentially threatened by root system diseases a chance of survival. The aim of this study was to analyze the potential of using the number of cotyledons and other seedling characteristics to predict the resistance of trees to root and butt rot disease. The collected data show that the seedlings from the group of diseased trees exhibited lower growth rates and vigour. However, the seedlings from the group of potentially resistant trees are similar to the control, meaning the trees that show no disease symptoms because they have not come into contact with the pathogen. Our observations suggest that monitoring germinating cotyledons could serve as an early diagnostic tool to identify disease-resistant pines, although further research is needed. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

23 pages, 24320 KiB  
Article
Environmental Driving of Adaptation Mechanism on Rumen Microorganisms of Sheep Based on Metagenomics and Metabolomics Data Analysis
by Haiying He, Chao Fang, Lingling Liu, Mingming Li and Wujun Liu
Int. J. Mol. Sci. 2024, 25(20), 10957; https://doi.org/10.3390/ijms252010957 - 11 Oct 2024
Viewed by 442
Abstract
Natural or artificial selection causes animals to adapt to their environment. The adaptive changes generated by the rumen population and metabolism form the basis of ruminant evolution. In particular, the adaptive drive for environmental adaptation reflects the high-quality traits of sheep that have [...] Read more.
Natural or artificial selection causes animals to adapt to their environment. The adaptive changes generated by the rumen population and metabolism form the basis of ruminant evolution. In particular, the adaptive drive for environmental adaptation reflects the high-quality traits of sheep that have migrated from other places or have been distant from their origins for a long time. The Hu sheep is the most representative sheep breed in the humid and low-altitude environments (Tai Lake region) in East Asia and has been widely introduced into the arid and high-altitude environments (Tibetan Plateau and Hotan region), resulting in environmental adaptive changes in the Hu sheep. In this study, a joint analysis of the rumen microbial metagenome and metabolome was conducted on Hu sheep from different regions (area of origin and area of introduction) with the objective of investigating the quality traits of Hu sheep and identifying microorganisms that influence the adaptive drive of ruminants. The results demonstrated that the growth performance of Hu sheep was altered due to changes in rumen tissue and metabolism following their introduction to the arid area at relatively high altitude. Metagenomic and metabolomic analyses (five ramsper area) revealed that 3580 different microorganisms and 732 different metabolites were identified in the rumen fluid of arid sheep. Among these, the representative upregulated metabolites were 4,6-isocanedione, methanesulfonic acid and N2-succinyl-L-arginine, while the dominant microorganism was Prevotella ruminicola. The downregulated metabolites were identified as campesterol, teprenone and dihydroclavaminic acid, while the disadvantaged microorganisms were Dialister_succinatiphilus, Prevotella_sp._AGR2160, Prevotella_multisaccharivorax and Selenomonas_bovis. The results of the Pearson analysis indicated that the rumen microbiota and metabolite content of sheep were significantly altered and highly correlated following their relocation from a humid lowland to an arid upland. In particular, the observed changes in rumen microorganisms led to an acceleration of body metabolism, rendering sheep highly adaptable to environmental stress. Prevotella_ruminicola was identified as playing an important role in this process. These findings provide insights into the environmental adaptation mechanisms of sheep. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 751 KiB  
Review
WRKY Transcription Factors in Response to Metal Stress in Plants: A Review
by Yuanzhi Huang, Zhaofei Sun and Xiangui Zhou
Int. J. Mol. Sci. 2024, 25(20), 10952; https://doi.org/10.3390/ijms252010952 - 11 Oct 2024
Viewed by 438
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal [...] Read more.
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress—including cadmium (Cd), arsenic (As), copper (Cu)—and aluminum (Al) toxicity. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress)
Show Figures

Figure 1

19 pages, 7313 KiB  
Article
Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production
by Ivana Danilov, Vanja Vlajkov, Zdravko Šumić, Anita Milić, Aleksandra Tepić Horecki, Tatjana Dujković, Nemanja Živanović, Nataša Simin, Marija Lesjak and Jovana Grahovac
Foods 2024, 13(20), 3224; https://doi.org/10.3390/foods13203224 - 10 Oct 2024
Viewed by 433
Abstract
Fruit juice production is one of the most important branches of the food and beverage industry, considering both the market size and demand. It is also one of the largest generators of industrial wastewater, considering the large consumption of fresh water during fruit [...] Read more.
Fruit juice production is one of the most important branches of the food and beverage industry, considering both the market size and demand. It is also one of the largest generators of industrial wastewater, considering the large consumption of fresh water during fruit processing. Hence, the appropriate treatment strategies are of the utmost importance to minimize the environmental footprint of food industry effluents. This study aimed to investigate the valorization routes for strawberry juice production wastewater (SJPW), both in terms of nutrient recovery and a circular approach to its utilization as a medium for plant biostimulant production. The results show a low antioxidant capacity and low content of polyphenols in SJPW; however, promising results were obtained for the in vitro seed germination and tomato growth promotion when investigating a biostimulant based on Bacillus sp. BioSol021, which was cultivated using SJPW in a lab-scale bioreactor, with root and shoot length improvements of approximately 30% and 25%, respectively, compared to the control samples. The plant growth promotion (PGP) traits indicated the ability of IAA production, in a concentration of 8.55 ± 0.05 mg/L, and the enzymatic activity was evaluated as through the enzymatic activity index (EAI), achieving the following: 2.26 ± 0.04 for cellulolytic activity, 2.49 ± 0.08 for hemicellulolytic activity, 2.91 ± 0.16 for pectinolytic activity, and 1.05 ± 0.00 for proteolytic activity. This study opens a new chapter of possibilities for the development of techno-economically viable circular bioprocess solutions aimed at obtaining value-added microbial products for sustainable agriculture based on the valorization of food industry effluents thus contributing to more sustainable food production at both the agricultural and industrial levels. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

17 pages, 14403 KiB  
Article
Maize Endophytic Plant Growth-Promoting Bacteria Peribacillus simplex Can Alleviate Plant Saline and Alkaline Stress
by Guoliang Li, Miaoxin Shi, Wenhao Wan, Zongying Wang, Shangwei Ji, Fengshan Yang, Shumei Jin and Jianguo Zhang
Int. J. Mol. Sci. 2024, 25(20), 10870; https://doi.org/10.3390/ijms252010870 - 10 Oct 2024
Viewed by 381
Abstract
Soil salinization is currently one of the main abiotic stresses that restrict plant growth. Plant endophytic bacteria can alleviate abiotic stress. The aim of the current study was to isolate, characterize, and assess the plant growth-promoting and saline and alkaline stress-alleviating traits of [...] Read more.
Soil salinization is currently one of the main abiotic stresses that restrict plant growth. Plant endophytic bacteria can alleviate abiotic stress. The aim of the current study was to isolate, characterize, and assess the plant growth-promoting and saline and alkaline stress-alleviating traits of Peribacillus simplex M1 (P. simplex M1) isolates from maize. One endophytic bacterial isolate, named P. simplex M1, was selected from the roots of maize grown in saline–alkali soil. The P. simplex M1 genome sequence analysis of the bacteria with a length of 5.8 Mbp includes about 700 genes that promote growth and 16 antioxidant activity genes that alleviate saline and alkaline stress. P. simplex M1 can grow below 400 mM NaHCO3 on the LB culture medium; The isolate displayed multiple plant growth-stimulating features, such as nitrogen fixation, produced indole-3-acetic acid (IAA), and siderophore production. This isolate had a positive effect on the resistance to salt of maize in addition to the growth. P. simplex M1 significantly promoted seed germination by enhancing seed vigor in maize whether under normal growth or NaHCO3 stress conditions. The seeds with NaHCO3 treatment exhibited higher reactive oxygen species (ROS) levels than the maize in P. simplex M1 inoculant on maize. P. simplex M1 can colonize the roots of maize. The P. simplex M1 inoculant plant increased chlorophyll in leaves, stimulated root and leaf growth, increased the number of lateral roots and root dry weight, increased the length and width of the blades, and dry weight of the blades. The application of inoculants can significantly reduce the content of malondialdehyde (MDA) and increase the activity of plant antioxidant enzymes (Catalase (CAT), Superoxide Dismutase (SOD), and Peroxidase (POD)), which may thereby improve maize resistance to saline and alkaline stress. Conclusion: P. simplex M1 isolate belongs to plant growth-promoting bacteria by having high nitrogen concentration, indoleacetic acid (IAA), and siderophore, and reducing the content of ROS through the antioxidant system to alleviate salt alkali stress. This study presents the potential application of P. simplex M1 as a biological inoculant to promote plant growth and mitigate the saline and alkaline effects of maize and other crops. Full article
Show Figures

Figure 1

11 pages, 1995 KiB  
Article
Are Changes Occurring in Bacterial Taxa Community and Diversity with the Utilization of Different Substrates within SIR Measurements?
by Yosef Steinberger, Tirza Doniger, Itaii Applebaum and Chen Sherman
Microorganisms 2024, 12(10), 2034; https://doi.org/10.3390/microorganisms12102034 - 9 Oct 2024
Viewed by 370
Abstract
This research explores how the availability of substrates affects the regulation of soil microbial communities and the taxonomical composition of bacteria. The goal is to understand the impact of organic matter and substrate availability and quality on the diversity of soil bacteria. The [...] Read more.
This research explores how the availability of substrates affects the regulation of soil microbial communities and the taxonomical composition of bacteria. The goal is to understand the impact of organic matter and substrate availability and quality on the diversity of soil bacteria. The study observed gradual changes in bacterial diversity in response to the addition of different substrate-induced respiration (SIR) substrates. Understanding the structure, dynamics, and functions of soil microbial communities is essential for assessing soil quality in sustainable agriculture. The preference for carbon sources among bacterial phyla is largely influenced by their life history and trophic strategies. Bacterial phyla like Proteobacteria, Bacteroidetes, and Actinobacteria, which thrive in nutrient-rich environments, preferentially utilize glucose. On the other hand, oligotrophic bacterial phyla such as Acidobacteria or Chloroflexi, which are found in lower numbers, have a lower ability to utilize labile C. The main difference between the two lies in their substrate utilization strategies. Understanding these distinct strategies is crucial for uncovering the bacterial functional traits involved in soil organic carbon turnover. Additionally, adding organic matter can promote the growth of copiotrophic bacteria, thus enhancing soil fertility. Full article
Show Figures

Figure 1

24 pages, 1433 KiB  
Review
Exploiting Brassica rapa L. subsp. pekinensis Genome Research
by Faujiah Nurhasanah Ritonga, Zeyu Gong, Yihui Zhang, Fengde Wang, Jianwei Gao, Cheng Li and Jingjuan Li
Plants 2024, 13(19), 2823; https://doi.org/10.3390/plants13192823 - 9 Oct 2024
Viewed by 433
Abstract
Chinese cabbage, Brassica rapa L. subsp. pekinensis is a crucial and extensively consumed vegetable in the world, especially Eastern Asia. The market demand for this leafy vegetable increases year by year, resulting in multiple challenges for agricultural researchers worldwide. Multi-omic approaches and the [...] Read more.
Chinese cabbage, Brassica rapa L. subsp. pekinensis is a crucial and extensively consumed vegetable in the world, especially Eastern Asia. The market demand for this leafy vegetable increases year by year, resulting in multiple challenges for agricultural researchers worldwide. Multi-omic approaches and the integration of functional genomics helps us understand the relationships between Chinese cabbage genomes and phenotypes under specific physiological and environmental conditions. However, challenges exist in integrating multi-omics for the functional analysis of genes and for developing potential traits for Chinese cabbage improvement. However, the panomics platform allows for the integration of complex omics, enhancing our understanding of molecular regulator networks in Chinese cabbage agricultural traits. In addition, the agronomic features of Chinese cabbage are significantly impacted by the environment. The expression of these agricultural features is tightly regulated by a combination of signals from both the internal regulatory network and the external growth environment. To comprehend the molecular process of these characteristics, it is necessary to have a prior understanding of molecular breeding for the objective of enhancing quality. While the use of various approaches in Chinese cabbage is still in its early stages, recent research has shown that it has the potential to uncover new regulators both rapidly and effectively, leading to updated regulatory networks. In addition, the utilization of the efficient transformation technique in conjunction with gene editing using CRISPR/Cas9 will result in a reduction in time requirements and facilitate a more precise understanding of the role of the regulators. Numerous studies about Chinese cabbage have been conducted in the past two decades, but a comprehensive review about its genome still limited. This review provides a concise summary of the latest discoveries in genomic research related to Brassica and explores the potential future developments for this species. Full article
(This article belongs to the Special Issue Recent Advances in Horticultural Plant Genomics)
Show Figures

Figure 1

17 pages, 4029 KiB  
Article
Effects of Root Pruning and Size on Growth Traits of Hybrid Poplar Seedlings
by Xiaochao Chang, Jin Zhang, Fangfang Wan, Lihong Xian and Yong Liu
Forests 2024, 15(10), 1770; https://doi.org/10.3390/f15101770 - 9 Oct 2024
Viewed by 345
Abstract
Selecting seedlings of varying sizes and effectively managing root pruning are key challenges in transplantation. However, the effects of seedling size and root pruning on transplantation outcomes are not fully understood. This study classified one-year-old Populus ‘Beilinxiongzhu-01’ seedlings into three size categories based [...] Read more.
Selecting seedlings of varying sizes and effectively managing root pruning are key challenges in transplantation. However, the effects of seedling size and root pruning on transplantation outcomes are not fully understood. This study classified one-year-old Populus ‘Beilinxiongzhu-01’ seedlings into three size categories based on height: large (308.75 ± 9.66 cm), medium (238.00 ± 7.71 cm), and small (138.92 ± 7.18 cm). In early March of the subsequent year, root pruning was applied with varying intensities based on root collar diameter: low (15 times), medium (7.5 times), and high (3.75 times). A control group without pruning was also included. Over the year, key phenological and morphological traits were monitored. The results showed that (1) root pruning significantly impacted the phenology of seedlings, accelerating root emergence, delaying early leaf phenology, increasing the dieback rate, and postponing end-of-season defoliation. Mortality and the rapid growth phase were not significantly affected. Larger seedlings exhibited earlier end-of-season defoliation and higher dieback rates early in the growing season, while smaller seedlings advanced in early leaf development. (2) Except under low or no pruning, root pruning reduced seedling height (H), diameter at breast height (DBH), and root collar diameter (RCD). However, across all treatments, these indicators remained higher in larger seedlings compared to smaller ones. Under medium- and high-intensity pruning, smaller seedlings exhibited higher relative growth rates and larger leaf areas than larger seedlings, with the reduction in these variables becoming more pronounced as seedlings increased in size. Notably, only larger seedlings demonstrated a reduction in maximum growth rate, suggesting greater vulnerability to root pruning. In summary, root pruning induced significant phenological and morphological differences across seedling sizes. While smaller seedlings showed some response to pruning, larger seedlings experienced more pronounced phenological disruptions and growth inhibition. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

16 pages, 3634 KiB  
Article
Alleviation of NaCl Stress on Growth and Biochemical Traits of Cenchrus ciliaris L. via Arbuscular Mycorrhizal Fungi Symbiosis
by Jahangir A. Malik, Abdulaziz A. Alqarawi, Fahad Alotaibi, Muhammad M. Habib, Salah N. Sorrori, Majed B. R. Almutairi and Basharat A. Dar
Life 2024, 14(10), 1276; https://doi.org/10.3390/life14101276 - 8 Oct 2024
Viewed by 502
Abstract
Soil salinization, especially in arid and semi-arid regions, is one of the major abiotic stresses that affect plant growth. To mediate and boost plant tolerance against this abiotic stress, arbuscular mycorrhizal fungi (AMF) symbiosis is commonly thought to be an effective tool. So, [...] Read more.
Soil salinization, especially in arid and semi-arid regions, is one of the major abiotic stresses that affect plant growth. To mediate and boost plant tolerance against this abiotic stress, arbuscular mycorrhizal fungi (AMF) symbiosis is commonly thought to be an effective tool. So, the main purpose of this study was to estimate the role of AMF (applied as a consortium of Claroideoglomus etunicatum, Funneliformis mosseae, Rhizophagus fasciculatum, and R. intraradices species) symbiosis in mitigating deleterious salt stress effects on the growth parameters (shoot length (SL), root length (RL), shoot dry weight (SDW), root dry weight (RDW), root surface area (RSA), total root length (TRL), root volume (RV), root diameter (RD), number of nodes and leaves) of Cenchrus ciliaris L. plants through improved accumulations of photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll), proline and phenolic compounds. The results of this experiment revealed that the roots of C. ciliaris plants were colonized by AMF under all the applied salinity levels (0, 75, 150, 225, and 300 mM NaCl). However, the rate of colonization was negatively affected by increasing salinity as depicted by the varied colonization structures (mycelium, vesicles, arbuscules and spores) which were highest under non-saline conditions. This association of AMF induced an increase in the growth parameters of the plant which were reduced by salinity stress. The improved shoot/root indices are likely due to enhanced photosynthetic activities as the AMF-treated plants showed increased accumulation of pigments (chlorophyll a, chlorophyll b and total chlorophyll), under saline as well as non-saline conditions, compared to non-AMF (N-AMF) plants. Furthermore, the AMF-treated plants also exhibited enhanced accumulation of proline and phenolic compounds. These accumulated metabolites act as protective measures under salinity stress, hence explaining the improved photosynthetic and growth parameters of the plants. These results suggest that AMF could be a good tool for the restoration of salt-affected habitats. However, more research is needed to check the true efficacy of different AMF inoculants under field conditions. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses 2024)
Show Figures

Figure 1

Back to TopTop