Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,930)

Search Parameters:
Keywords = grape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 653 KiB  
Article
Exploring the Biological Value of Red Grape Skin: Its Incorporation and Impact on Yogurt Quality
by Eugenia Covaliov, Tatiana Capcanari, Vladislav Reșitca, Aurica Chirsanova, Alina Boiștean, Rodica Sturza, Antoanela Patras, Cristina Bianca Pocol, Olga Ruseva and Ana Chioru
Foods 2024, 13(20), 3254; https://doi.org/10.3390/foods13203254 - 13 Oct 2024
Viewed by 247
Abstract
The study was conducted to study the sustainability and enhanced nutrition gains obtained from incorporating grape skin powder (GSP) extracted from both Fetească Neagră and Rară Neagră grape varieties into yogurt. Grape skins are major leftovers from wineries, having high amounts of phenolic [...] Read more.
The study was conducted to study the sustainability and enhanced nutrition gains obtained from incorporating grape skin powder (GSP) extracted from both Fetească Neagră and Rară Neagră grape varieties into yogurt. Grape skins are major leftovers from wineries, having high amounts of phenolic compounds and dietary fiber responsible for their ability to improve the characteristics of food. The research aimed to evaluate the effect of GSP addition at varying concentrations (0.5%, 1.0%, and 1.5%) on the yogurt’s physicochemical properties, antioxidant activity, color parameters, and sensory attributes. Analysis revealed that both Fetească Neagră and Rară Neagră GSP increased the total phenolic content and antioxidant activity; however, Fetească Neagră showed greater improvements, with TPC reaching 1.52 mg GAE/100 g and DPPH inhibition up to 26.63%. Although slightly lower, TPC rose to 1.43 mg GAE/100 g and DPPH inhibition increased to 18.93% with Rară Neagră enhancing these parameters conversely. Color changes were observed in fortified yogurts where lightness decreased (L*) and redness increased (a*) due to the pH-dependent anthocyanin stability. Syneresis, indicative of yogurt’s water-holding capacity, was reduced at higher concentrations of GSP from both varieties, suggesting improved textural integrity. Sensory evaluation indicated that consumers generally favored yogurts with lower concentrations of GSP. Yogurts fortified with Fetească Neagră GSP received higher overall preference, while those with Rară Neagră GSP were also well-received for their distinct flavor profiles when used at suitable levels. These results show that GSP from both types of grapes improves the nutritional value of yogurt and complies with the principles of sustainable food production through reutilizing agro-industrial waste. Full article
(This article belongs to the Section Dairy)
16 pages, 1730 KiB  
Article
In Vitro Mechanistic Studies of a Standardized Sustainable Grape Seed Extract for Potential Application as a Mood-Modulating and Cognition-Enhancing Supplement
by Gozde Hasbal-Celikok, Mehtap Kara, Marta Sánchez, Claudia Owsianik, Pilar Gómez-Serranillos, Tugba Yilmaz-Ozden, Ezgi Öztaş, Özge Sultan Zengin, Gul Ozhan, Nazli Arda, Merve Tunc, Sumeyye Sahin, Areaba Shafiq, Ayesha Kanwal, Hunaiba I. Ujjan, Fazle Rabbani, Giovanna Petrangolini and Amjad Khan
Nutrients 2024, 16(20), 3459; https://doi.org/10.3390/nu16203459 - 12 Oct 2024
Viewed by 290
Abstract
Background: Grape seed extract (GSE) from Vitis vinifera L. is rich in polyphenols and oligomeric proanthocyanidin complexes (OPCs), and it has shown potential benefits in managing low mood and cognitive function. In this study, we investigated the potential bioactivities of Enovita®, [...] Read more.
Background: Grape seed extract (GSE) from Vitis vinifera L. is rich in polyphenols and oligomeric proanthocyanidin complexes (OPCs), and it has shown potential benefits in managing low mood and cognitive function. In this study, we investigated the potential bioactivities of Enovita®, a standardized GSE extract (GSEe herein) rich in OPCs, in key mechanistic pathways related to low mood conditions and cognitive function. Methods: In vitro assays were conducted to assess GSEe’s inhibitory effects on γ-aminobutyric acid transaminase (GABA-T) and monoamine oxidase A (MAO-A), its binding affinity to the GABA site of GABA-A receptors, and its effects on acetylcholinesterase (AChE). Its neuroprotective effects on human SH-SY5Y neuroblastoma cells under oxidative stress (induced by H2O2) were assessed using MTT and LDH release assays. Its antioxidant activities were evaluated using DPPH, ABTS, FRAP, ORAC, HORAC, total phenolic content, and TAS assays. Its cytotoxicity was also evaluated. Results: GSEe showed significant GABA-T inhibitory activity. It also exhibited MAO-A and AChE inhibition, along with moderate binding affinity to the GABA-A receptor. In neuroprotective assays, GSEe provided significant protection to SH-SY5Y cells against oxidative stress. GSEe demonstrated robust antioxidant activity in all assays, including scavenging of DPPH and ABTS radicals, high ferric-reducing power, high polyphenolic contents, and a substantial total antioxidant capacity. Conclusions: GSEe exhibits promising bioactivities, highlighting its potential as a supplement for modulating mood and enhancing cognitive function. Overall, the promising results from these in vitro studies provide a strong foundation for the continued exploration and development of GSEe as a viable natural supplement for enhancing mental health and cognitive function. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Figure 1

9 pages, 741 KiB  
Article
Pruning and In-Season Canopy Manipulation Affects MidSouth Juice and Wine Phenolic Content
by Haley Williams, Eric Stafne, Yan Zhang and Sam Chang
Beverages 2024, 10(4), 98; https://doi.org/10.3390/beverages10040098 - 10 Oct 2024
Viewed by 346
Abstract
Low total soluble solids and high titratable acidity limit MidSouth use as a varietal red wine grape. While canopy management practices were reported not to have enough of an effect on these primary metabolites, they could potentially improve MidSouth secondary metabolites, broadening its [...] Read more.
Low total soluble solids and high titratable acidity limit MidSouth use as a varietal red wine grape. While canopy management practices were reported not to have enough of an effect on these primary metabolites, they could potentially improve MidSouth secondary metabolites, broadening its potential as a wine grape. Two studies assessed the effects of different canopy management treatments on monomeric anthocyanin pigments and total phenolic content in MidSouth juice and wine. The first study compared early pruning, early pruning with leaf removal, normal pruning with leaf removal, and normal pruning. Early pruning with leaf removal showed higher total phenolics in juice and wine in 2021 but lower levels in 2020. The second study evaluated leaf removal, shoot thinning, or neither leaf removal nor shoot thinning. Leaf removal resulted in higher anthocyanins and total phenolics in 2021 juice, while shoot thinning increased total phenolics in 2021 juice and both anthocyanins and phenolics in 2021 wine. Shoot thinning demonstrated the most consistent improvement in phenolic content. MidSouth grapes can produce a range of wine phenolic content, depending on canopy management and postharvest treatment. Further investigation is needed to understand yearly variations and optimize MidSouth for regional red wine production. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Figure 1

30 pages, 2393 KiB  
Review
Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition
by Sergio Quesada-Vázquez, Raquel Codina Moreno, Antonella Della Badia, Oscar Castro and Insaf Riahi
Toxins 2024, 16(10), 434; https://doi.org/10.3390/toxins16100434 - 10 Oct 2024
Viewed by 706
Abstract
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, [...] Read more.
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, and mutagenic effects that concern the animal industry. The chronic negative effects of mycotoxins on animal health and production and the negative economic impact on the livestock industry make it crucial to develop and implement solutions to mitigate mycotoxins. In this review, we summarize the current knowledge of the mycotoxicosis effect in livestock animals as a result of their contaminated diet. In addition, we discuss the potential of five promising phytogenics (curcumin, silymarin, grape pomace, olive pomace, and orange peel extracts) with demonstrated positive effects on animal performance and health, to present them as potential anti-mycotoxin solutions. We describe the composition and the main promising characteristics of these bioactive compounds that can exert beneficial effects on animal health and performance, and how these phytogenic feed additives can help to alleviate mycotoxins’ deleterious effects. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

30 pages, 1442 KiB  
Article
In-Depth Characterization of the Volatile Aroma Profile and Other Characteristics of White Wine Produced by Sequential Inoculation with a Lachancea thermotolerans Starter Yeast Strain
by Doris Delač Salopek, Urska Vrhovsek, Silvia Carlin, Sanja Radeka and Igor Lukić
Fermentation 2024, 10(10), 515; https://doi.org/10.3390/fermentation10100515 - 10 Oct 2024
Viewed by 304
Abstract
The yeast Lachancea thermotolerans has the ability to produce notable amounts of lactic acid and reduce alcoholic strength in fermentation, so it has a considerable potential for mitigating negative impacts of climate changes in winemaking. In this study, a treatment with L. thermotolerans [...] Read more.
The yeast Lachancea thermotolerans has the ability to produce notable amounts of lactic acid and reduce alcoholic strength in fermentation, so it has a considerable potential for mitigating negative impacts of climate changes in winemaking. In this study, a treatment with L. thermotolerans and Saccharomyces cerevisiae in sequential inoculation was compared to a control S. cerevisiae monoculture fermentation of Malvazija istarska (aka Malvasia Istriana) white grape must. Standard physico-chemical parameters of the obtained wines were determined by the OIV methods. Targeted (GC/FID and GC/MS) and untargeted (GC×GC/TOF-MS) gas chromatographic techniques were combined for the analysis of volatile compounds. Phenolic compounds were analyzed by UPLC/QqQ-MS/MS, and proteins by RP-HPLC-DAD, while a sensory analysis of wines was performed by a panel of trained and certified tasters. L. thermotolerans co-fermentation treatment increased the concentration of lactic acid and decreased alcoholic strength. L. thermotolerans increased the concentrations of geraniol, β-ionone, isobutanol, isobutyric acid, ethyl isobutyrate, several major acetates, ethyl lactate, and diethyl succinate, followed by many minor compounds. This wine also contained more hydroxycinnamoyl tartrates, while control S. cerevisiae wine had higher levels of free hydroxycinnamates. The effects on PR proteins were minor. L. thermotolerans co-fermentation slightly enhanced the sensory perception of tropical fruit, herbaceous, tobacco, and buttery odor notes, as well as fullness of body. With the largest number of identified volatile compounds up to date and other results obtained, this study contributes to the better understanding of oenological and especially aromatic potential of L. thermotolerans in white wine production. Full article
(This article belongs to the Special Issue Wine and Beer Fermentation)
Show Figures

Figure 1

29 pages, 3529 KiB  
Article
Antioxidant, Nutritional Properties, Microbiological, and Health Safety of Juice from Organic and Conventional ‘Solaris’ Wine (Vitis vinifera L.) Farming
by Ireneusz Ochmian, Sebastian W. Przemieniecki, Magdalena Błaszak, Magdalena Twarużek and Sabina Lachowicz-Wiśniewska
Antioxidants 2024, 13(10), 1214; https://doi.org/10.3390/antiox13101214 - 9 Oct 2024
Viewed by 618
Abstract
This study investigated the technological parameters, microbiological, and functional properties of juice from Solaris grapes grown under conventional and organic farming systems to assess how these cultivation methods influence juice quality. The one-year study focused on key aspects such as the levels of [...] Read more.
This study investigated the technological parameters, microbiological, and functional properties of juice from Solaris grapes grown under conventional and organic farming systems to assess how these cultivation methods influence juice quality. The one-year study focused on key aspects such as the levels of health-promoting polyphenols, the presence of mycotoxins, and pesticide residues. Organic grapes showed greater bacterial and fungal diversity, with significant differences in dominant genera. Sphingomonas and Massilia were the predominant bacteria across both systems, while Erysiphe was more common in conventional grapes, and Aureobasidium was abundant in both. Despite the presence of genes for mycotoxin production, no mycotoxins were detected in the juice or pomace. Organic juice exhibited significantly higher levels of polyphenols, leading to enhanced antioxidant properties and improved technological characteristics, including lower acidity and higher nitrogen content. However, residues of sulfur and copper, used in organic farming, were detected in the juice, while conventional juice contained synthetic pesticide residues like cyprodinil and fludioxonil. These findings highlight that while organic juice offers better quality and safety in terms of polyphenol content and antioxidant activity, it also carries risks related to residues from organic treatments, and conventional juice poses risks due to synthetic pesticide contamination. Full article
Show Figures

Figure 1

13 pages, 4312 KiB  
Article
Soil-Mulching Treatment Enhances the Content of Stilbene in Grape Berries: A Transcriptomic and Metabolomic Analysis
by Bo Wang, Weimin Wu, Zhuangwei Wang, Zhenxiao Chen and Xicheng Wang
Foods 2024, 13(19), 3208; https://doi.org/10.3390/foods13193208 - 9 Oct 2024
Viewed by 464
Abstract
Soil mulching is a useful agronomic practice that promotes early fruit maturation and affects fruit quality. However, the regulatory mechanism of fruit metabolites under soil-mulching treatments remains unknown. In this study, variations in the gene sets and metabolites of grape berries after mulching [...] Read more.
Soil mulching is a useful agronomic practice that promotes early fruit maturation and affects fruit quality. However, the regulatory mechanism of fruit metabolites under soil-mulching treatments remains unknown. In this study, variations in the gene sets and metabolites of grape berries after mulching (rice straw + felt + plastic film) using transcriptome and metagenomic sequencing were investigated. The results of the cluster analysis and orthogonal projection to latent structures discriminant analysis of the metabolites showed a difference between the mulching and control groups, as did the principal component analysis results for the transcriptome. In total, 36 differentially expressed metabolites were identified, of which 10 (resveratrol, ampelopsin F, piceid, 3,4′-dihydroxy-5-methoxystilbene, ε-viniferin, trans resveratrol, epsilon-viniferin, 3′-hydroxypterostilbene, 1-methyl-resveratrol, and pterostil-bene) were stilbenes. Their content increased after mulching, indicating that stilbene synthase activity increased after mulching. The weighted gene co-expression network analysis revealed that the turquoise and blue modules were positively and negatively related to stilbene compounds. The network analysis identified two seed genes (VIT_09s0054g00610, VIT_13s0156g00260) and two transcription factors (VIT_13s0156g00260, VIT_02s0025g04590). Overall, soil mulching promoted the accumulation of stilbene compounds in grapes, and the results provided key genetic information for further studies. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

13 pages, 2048 KiB  
Article
Association of SO2-Generating Pads before Packaging and during Cold Storage to Extend the Conservation of ‘Italia’ Table Grapes
by Maíra T. Higuchi, Aline C. de Aguiar, Nathalia R. Leles, Viviani V. Marques, Leandro S. A. Gonçalves, Fábio Yamashita, Khamis Youssef and Sergio R. Roberto
Plants 2024, 13(19), 2827; https://doi.org/10.3390/plants13192827 - 9 Oct 2024
Viewed by 375
Abstract
The SO2-generating pads contain different concentrations of sodium metabisulfite, which absorbs water from the grapes’ transpiration, releasing SO2 gas, and there are slow-(SlowSO2) and dual (DualSO2)-releasing pads (fast release in the first 48 h and slow [...] Read more.
The SO2-generating pads contain different concentrations of sodium metabisulfite, which absorbs water from the grapes’ transpiration, releasing SO2 gas, and there are slow-(SlowSO2) and dual (DualSO2)-releasing pads (fast release in the first 48 h and slow for up to 60 days). The ultra-fast SO2-generating pad (FieldSO2) releases the SO2 quickly for up to 6 h, and it was designed to be used soon after the harvest and until the grapes’ packaging. The goal was to study the effect of FieldSO2 associated with SlowSO2 and DualSO2 pads on gray mold incidence and physicochemical and appearance characteristics of ‘Italia’ table grapes. Grapes were harvested from a commercial vineyard in Parana, Brazil, in 2020 and 2021, and packaged in cardboard boxes, and the treatments were as follows: control (without SO2-generating pads); FieldSO2 + SlowSO2; and FieldSO2 + DualSO2. After 30, 45, 60, 75, and 90 days of cold storage (1 ± 1 °C), the grapes were assessed for gray mold incidence, mass loss, shattered berries, stem browning, and filamentous fungi on the surface. The use of FieldSO2 associated with SO2-generating pads is effective in controlling gray mold on ‘Italia’ table grapes, especially the treatment FieldSO2 + DualSO2, which provides the lowest incidence of the disease up to 90 days of cold storage, while the combination with SlowSO2 results in intermediate efficacy. Treatments combining these SO2-generating pads extend the postharvest shelf life of ‘Italia’ grapes, with few shattered berries, low mass loss and freshness of the rachis without impairing the bunch’s appearance. Full article
Show Figures

Figure 1

17 pages, 1738 KiB  
Article
Sustainable and Reusable Modified Membrane Based on Green Gold Nanoparticles for Efficient Methylene Blue Water Decontamination by a Photocatalytic Process
by Lucia Mergola, Luigi Carbone, Ermelinda Bloise, Maria Rosaria Lazzoi and Roberta Del Sole
Nanomaterials 2024, 14(19), 1611; https://doi.org/10.3390/nano14191611 - 8 Oct 2024
Viewed by 503
Abstract
Methylene blue (MB) is a dye hazardous pollutant widely used in several industrial processes that represents a relevant source of water pollution. Thus, the research of new systems to avoid their environmental dispersion represents an important goal. In this work, an efficient and [...] Read more.
Methylene blue (MB) is a dye hazardous pollutant widely used in several industrial processes that represents a relevant source of water pollution. Thus, the research of new systems to avoid their environmental dispersion represents an important goal. In this work, an efficient and sustainable nanocomposite material based on green gold nanoparticles for MB water remediation was developed. Starting from the reducing and stabilizing properties of some compounds naturally present in Lambrusco winery waste (grape marc) extracts, green gold nanoparticles (GM-AuNPs) were synthesized and deposited on a supporting membrane to create an easy and stable system for water MB decontamination. GM-AuNPs, with a specific plasmonic band at 535 nm, and the modified membrane were first characterized by UV–vis spectroscopy, X-ray diffraction (XRD), and electron microscopy. Transmission electron microscopy analysis revealed the presence of two breeds of crystalline shapes, triangular platelets and round-shaped penta-twinned nanoparticles, respectively. The crystalline nature of GM-AuNPs was also confirmed from XRD analysis. The photocatalytic performance of the modified membrane was evaluated under natural sunlight radiation, obtaining a complete disappearance of MB (100%) in 116 min. The photocatalytic process was described from a pseudo-first-order kinetic with a rate constant (k) equal to 0.044 ± 0.010 min−1. The modified membrane demonstrated high stability since it was reused up to 20 cycles, without any treatment for 3 months, maintaining the same performance. The GM-AuNPs-based membrane was also tested with other water pollutants (methyl orange, 4-nitrophenol, and rhodamine B), revealing a high selectivity towards MB. Finally, the photocatalytic performance of GM-AuNPs-based membrane was also evaluated in real samples by using tap and pond water spiked with MB, obtaining a removal % of 99.6 ± 1.2% and 98.8 ± 1.9%, respectively. Full article
(This article belongs to the Special Issue Advanced Studies in Bionanomaterials)
Show Figures

Figure 1

11 pages, 2777 KiB  
Article
Spontaneous Color Preferences and Associative Learning in Protaetia brevitarsis (Coleoptera: Scarabaeidae)
by Hui Wu, Zhuangzhi Cui, Xiaoqing Huang, Khalid Hussain Dhiloo, Fanfang Kong, Zhongyue Wang and Yongqiang Liu
Insects 2024, 15(10), 780; https://doi.org/10.3390/insects15100780 - 8 Oct 2024
Viewed by 360
Abstract
Color vision, which varies among species, plays an important role in foraging, mating, and habitat selection among insects. Protaetia brevitarsis (Coleoptera: Scarabaeidae, Lewis) is an omnivorous beetle that damages both crops and fruit. Here, to understand the effect of vision and olfaction in [...] Read more.
Color vision, which varies among species, plays an important role in foraging, mating, and habitat selection among insects. Protaetia brevitarsis (Coleoptera: Scarabaeidae, Lewis) is an omnivorous beetle that damages both crops and fruit. Here, to understand the effect of vision and olfaction in host selection, experiments were conducted on the spectral wavelength preference, color preference, and associative learning ability of adult P. brevitarsis using LED lights and grapes. In our experiments, adults showed the strongest spontaneous preference toward the red spectrum, particularly 730 nm. Non-preferred lights were used to train adults with a food reward (grapes). Green-trained adults had an increasing tendency to prefer green light, and blue-trained adults had a clear preference for blue light. Furthermore, adults significantly preferred red grapes in the absence of olfactory cues, but their selectivity for grapes differed in the presence of olfactory cues, indicating that vision was not the only factor in foraging decisions, but that olfactory cues also influenced their decision making. The results lay the groundwork for revealing their host localization mechanism and provide promising avenues for biological control in the field. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Graphical abstract

17 pages, 2833 KiB  
Review
The Potential of Microorganisms for the Control of Grape Downy Mildew—A Review
by Zhan-Bin Sun, Han-Jian Song, Yong-Qiang Liu, Qing Ren, Qi-Yu Wang, Xiao-Feng Li, Han-Xu Pan and Xiao-Qing Huang
J. Fungi 2024, 10(10), 702; https://doi.org/10.3390/jof10100702 - 8 Oct 2024
Viewed by 382
Abstract
Plasmopara viticola (Berk.et Curtis) Berl. Et de Toni is the pathogen that causes grape downy mildew, which is an airborne disease that severely affects grape yield and causes huge economic losses. The usage of effective control methods can reduce the damage to plants [...] Read more.
Plasmopara viticola (Berk.et Curtis) Berl. Et de Toni is the pathogen that causes grape downy mildew, which is an airborne disease that severely affects grape yield and causes huge economic losses. The usage of effective control methods can reduce the damage to plants induced by grape downy mildew. Biocontrol has been widely used to control plant diseases due to its advantages of environmental friendliness and sustainability. However, to date, only a few comprehensive reviews on the biocontrol of grape downy mildew have been reported. In this review, we summarize the biological characteristics of P. viticola and its infection cycle, followed by a detailed overview of current biocontrol agents, including bacteria and fungi that could be used to control grape downy mildew, and their control effects. Furthermore, potential control mechanisms of biocontrol agents against grape downy mildew are discussed. Lastly, suggestions for future research on the biocontrol of grape downy mildew are provided. This review provides the basis for the application of grape downy mildew biocontrol. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

16 pages, 949 KiB  
Article
Red Grape By-Products from the Demarcated Douro Region: Chemical Analysis, Antioxidant Potential and Antimicrobial Activity against Food-Borne Pathogens
by Adriana Silva, Raquel Martins, Vanessa Silva, Fátima Fernandes, Rosa Carvalho, Alfredo Aires, Gilberto Igrejas, Virgílio Falco, Patrícia Valentão and Patrícia Poeta
Molecules 2024, 29(19), 4708; https://doi.org/10.3390/molecules29194708 - 4 Oct 2024
Viewed by 469
Abstract
Wine production is one of the most important agricultural activities. The winemaking process generates a considerable volume of different residues characterized as by-products, such as pomace, seeds, stems, and skins. By-products are rich in polyphenols with antioxidant and antibacterial properties and may act [...] Read more.
Wine production is one of the most important agricultural activities. The winemaking process generates a considerable volume of different residues characterized as by-products, such as pomace, seeds, stems, and skins. By-products are rich in polyphenols with antioxidant and antibacterial properties and may act as bacteriostatic or bactericidal agents against food-borne pathogens, improving food safety by enhancing antibiotic efficacy and reducing bacterial resistance. The aim of this study was to evaluate the phenolic composition and antioxidant activity of grape components (skins, seeds, and stems) from three red grape varieties (Periquita, Gamay, and Donzelinho Tinto) and determine their antibacterial activity against antibiotic-resistant bacteria, including Escherichia coli in food-producing animals and Listeria monocytogenes from food products and food-related environments. Ten phenolic compounds were quantified in these red grape varieties, with specific compounds found in different parts of the grape, including phenolic acids and flavonoids. Flavonoids are abundant in seeds and stems, malvidin-3-O-glucoside being the main anthocyanin in skins. The ethanolic extract from the seeds showed in vitro concentration-dependent activity against reactive species like NO and O2•−. Gamay extract was the most effective, followed by Donzelinho Tinto and Periquita. Extracts showed varying antibacterial activity against Gram-positive and Gram-negative bacteria, with stronger effects on Gram-positive bacteria. L. monocytogenes was more susceptible, while E. coli was limited to three strains. Seeds exhibited the strongest antibacterial activity, followed by stems. The results of our study provide evidence of the potential of grape by-products, particularly seeds, as sources of bioactive compounds with antioxidant and antibacterial properties, offering promising avenues for enhancing food safety and combating antibiotic resistance in food production and related environments. Full article
Show Figures

Figure 1

20 pages, 4529 KiB  
Article
Organogenesis in a Broad Spectrum of Grape Genotypes and Agrobacterium-Mediated Transformation of the Podarok Magaracha Grapevine Cultivar
by Galina Maletich, Alexander Pushin, Evgeniy Rybalkin, Yuri Plugatar, Sergey Dolgov and Pavel Khvatkov
Plants 2024, 13(19), 2779; https://doi.org/10.3390/plants13192779 - 3 Oct 2024
Viewed by 524
Abstract
We present data on the ability for organogenesis in 22 genotypes of grapevine and developed a direct organogenesis protocol for the cultivar Podarok Magaracha and the rootstock Kober 5BB. The protocol does not require replacement of culture media and growth regulators, and the [...] Read more.
We present data on the ability for organogenesis in 22 genotypes of grapevine and developed a direct organogenesis protocol for the cultivar Podarok Magaracha and the rootstock Kober 5BB. The protocol does not require replacement of culture media and growth regulators, and the duration is 11 weeks. The cultivation of explants occurs on modified MS medium with the addition of 2.0 mg L−1 benzyladenine and indole-3-butyric acid (0.15 mg L−1 for the rootstock Kober 5BB or 0.05 mg L−1 for the cultivar Podarok Magaracha). The direct organogenesis protocol consists of three time periods: (1) culturing explants for 2 weeks in dark conditions for meristematic bulk tissue, (2) followed by 4 weeks of cultivation in light conditions for regeneration, and (3) 5 weeks of cultivation in dark conditions for shoot elongation. Based on this protocol, conditions for the Agrobacterium-mediated transformation of the Podarok Magaracha cultivar were developed with an efficiency of 2.0% transgenic plants per 100 explants. Two stably transformed lines with integration into the genome of the pBin35SGFP plasmid construction, confirmed by Southern blotting, were obtained. Full article
Show Figures

Figure 1

18 pages, 5368 KiB  
Article
Mesoporous Titania Nanoparticles for a High-End Valorization of Vitis vinifera Grape Marc Extracts
by Anil Abduraman, Ana-Maria Brezoiu, Rodica Tatia, Andreea-Iulia Iorgu, Mihaela Deaconu, Raul-Augustin Mitran, Cristian Matei and Daniela Berger
Inorganics 2024, 12(10), 263; https://doi.org/10.3390/inorganics12100263 - 3 Oct 2024
Viewed by 437
Abstract
Mesoporous titania nanoparticles (NPs) can be used for encapsulation polyphenols, with applications in the food industry, cosmetics, or biomedicine. TiO2 NPs were synthesized using the sol-gel method combined with solvothermal treatment. TiO2 NPs were characterized through X-ray diffraction, FTIR spectroscopy, the [...] Read more.
Mesoporous titania nanoparticles (NPs) can be used for encapsulation polyphenols, with applications in the food industry, cosmetics, or biomedicine. TiO2 NPs were synthesized using the sol-gel method combined with solvothermal treatment. TiO2 NPs were characterized through X-ray diffraction, FTIR spectroscopy, the N2 adsorption method, scanning and transmission electron microscopy, and thermal analysis. The sample prepared using Pluronic F127 presented a higher surface area and less agglomerated NPs than the samples synthesized with Pluronic P123. Grape marc (GM), a by-product from wine production, can be exploited for preparing extracts with good antioxidant properties. In this regard, we prepared hydroethanolic and ethanolic GM extracts from two cultivars, Feteasca Neagra (FN) and Pinot Noir. The extract components were determined by spectrometric analyses and HPLC. The extract with the highest radical scavenging activity, the hydroethanolic FN extract, was encapsulated in titania (FN@TiO2) and compared with SBA-15 silica support. Both resulting materials showed biocompatibility on the NCTC fibroblast cell line in a 50–300 µg/mL concentration range after 48 h of incubation and even better radical scavenging potential than the free extract. Although titania has a lower capacity to host polyphenols than SBA-15, the FN@TiO2 sample shows better cytocompatibility (up to 700 µmg/mL), and therefore, it could be used for skin-care products. Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 4551 KiB  
Article
A Chemometric Exploration of Potential Chemical Markers and an Assessment of Associated Risks in Relation to the Botanical Source of Fruit Spirits
by Branislava Srdjenović Čonić, Nebojša Kladar, Dejan Kusonić, Katarina Bijelić and Ljilja Torović
Toxics 2024, 12(10), 720; https://doi.org/10.3390/toxics12100720 - 2 Oct 2024
Viewed by 455
Abstract
Chemometric evaluation of potentially harmful volatile compound and toxic metal(loid) distribution patterns in fruit spirits relating to distinct fruit classes most commonly used in spirit production highlighted the potential of several volatiles as candidates for differentiation markers while dismissing toxic metal(loid)s. Pome fruit [...] Read more.
Chemometric evaluation of potentially harmful volatile compound and toxic metal(loid) distribution patterns in fruit spirits relating to distinct fruit classes most commonly used in spirit production highlighted the potential of several volatiles as candidates for differentiation markers while dismissing toxic metal(loid)s. Pome fruit and grape pomace spirits were mostly characterized by a lower abundance of n-propanol, methanol, ethyl acetate and acetaldehyde, while stone fruit spirits contained lower amounts of isoamyl alcohol and isobutanol. Chemometric analysis of the fruit spirit composition of aromatics identified additional potential markers characteristic for certain fruits—benzoic acid ethyl ester, benzyl alcohol, benzaldehyde, butanoic acid 3-methyl-ethyl ester, butanoic acid 2-methyl-ethyl ester and furfural. This study explored the variability in the risk potential of the investigated spirits, considering that some chemicals known to be detected in spirits are potent health hazards. Ethyl carbamate in combination with acetaldehyde showed a higher potential risk in stone fruit spirits, methanol in stone and pome fruit spirits and acetaldehyde in grape pomace spirits. It is of great interest to evaluate to what extent consumers’ preference for spirits of distinct fruit types affects health risks. Consumers of stone fruit spirits are potentially at higher risk than those consuming pome fruit or grape pomace spirits. Full article
(This article belongs to the Special Issue New Approach Methodologies for Agrochemicals and Food Toxicology)
Show Figures

Figure 1

Back to TopTop