Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,552)

Search Parameters:
Keywords = glycolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 22244 KiB  
Article
SMYD2 Promotes Calcium Oxalate-Induced Glycolysis in Renal Tubular Epithelial Cells via PTEN Methylation
by Shengyu Pan, Tianhui Yuan, Yuqi Xia, Weimin Yu, Haoyong Li, Ting Rao, Zehua Ye, Lei Li, Xiangjun Zhou and Fan Cheng
Biomedicines 2024, 12(10), 2279; https://doi.org/10.3390/biomedicines12102279 (registering DOI) - 8 Oct 2024
Abstract
Background/Objectives: Damage to renal tubular cells (RTCs) represents a critical pathological manifestation in calcium oxalate (CaOx) stone disease, but the underlying mechanism remains elusive. Energy metabolism reprogramming is a vital influencer of RTC survival, and SMYD2 is a histone methylation transferase that [...] Read more.
Background/Objectives: Damage to renal tubular cells (RTCs) represents a critical pathological manifestation in calcium oxalate (CaOx) stone disease, but the underlying mechanism remains elusive. Energy metabolism reprogramming is a vital influencer of RTC survival, and SMYD2 is a histone methylation transferase that has been extensively implicated in various metabolic disorders. Hence, this research aimed to identify whether SMYD2 induces the reprogramming of energy metabolism in RTCs exposed to CaOx nephrolithiasis. Methods: Kidney samples were obtained from patients who underwent laparoscopic nephrectomy for non-functioning kidneys caused by nephrolithiasis. The glyoxylate-induced CaOx stone mice model was established and treated with AZ505. The SMYD2-knockout HK-2 cell line was constructed. Histological changes were evaluated by HE, VK, Tunel, Masson stainings. The molecular mechanism was explored through co-immunoprecipitation and western blotting. Results: The results found that SMYD2 upregulation led to energy reprogramming to glycolysis in human kidney tissue samples and in mice with CaOx nephrolithiasis. We also identified the substantial involvement of glycolysis in the induction of apoptosis, inflammation, and epithelial–mesenchymal transition (EMT) in HK-2 cells caused by calcium oxalate monohydrate (COM). In vivo and in vitro results demonstrated that SMYD2 inhibition reduces glycolysis, kidney injury, and fibrosis. Mechanistically, SMYD2 was found to promote metabolic reprogramming of RTCs toward glycolysis by activating the AKT/mTOR pathway via methylated PTEN, which mediates CaOx-induced renal injury and fibrosis. Conclusions: Our findings reveal an epigenetic regulatory role of SMYD2 in metabolic reprogramming in CaOx nephrolithiasis and associated kidney injury, suggesting that targeting SMYD2 and glycolysis may represent a potential therapeutic strategy for CaOx-induced kidney injury and fibrosis. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine)
Show Figures

Figure 1

15 pages, 6553 KiB  
Article
Administration of rIL-33 Restores Altered mDC/pDC Ratio, MDSC Frequency, and Th-17/Treg Ratio during Experimental Cerebral Malaria
by Saikat Mukherjee, Pronabesh Ghosh, Soubhik Ghosh, Anirban Sengupta, Samrat Sarkar, Rimbik Chatterjee, Atreyee Saha, Sriparna Bawali, Abhishek Choudhury, Altamas Hossain Daptary, Anwesha Gangopadhyay, Tarun Keswani and Arindam Bhattacharyya
Pathogens 2024, 13(10), 877; https://doi.org/10.3390/pathogens13100877 (registering DOI) - 8 Oct 2024
Viewed by 84
Abstract
The onset of malaria causes the induction of various inflammatory markers in the host’s body, which in turn affect the body’s homeostasis and create several cerebral complications. Polarization of myeloid-derived suppressor cells (MDSCs) from the classically activated M1 to alternatively activated M2 phenotype [...] Read more.
The onset of malaria causes the induction of various inflammatory markers in the host’s body, which in turn affect the body’s homeostasis and create several cerebral complications. Polarization of myeloid-derived suppressor cells (MDSCs) from the classically activated M1 to alternatively activated M2 phenotype increases the secretion of pro-inflammatory molecules. Treatment with recombinant IL-33 (rIL-33) not only alters this MDSC’s polarization but also targets the glycolysis pathway of the metabolism in MDSCs, rendering them less immunosuppressive. Along with that, the Helper T-cells subset 17 (Th17)/T regulatory cells (Tregs) ratio is skewed towards Th17, which increases inflammation by producing more IL-17. However, treating with rIL-33 also helps to restore this ratio, which brings back homeostasis. During malaria infection, there is an upregulation of IL-12 production from dendritic cells along with a distorted myeloid dendritic cells (mDC)/plasmacytoid dendritic cells (pDC) ratio towards mDCs promoting inflammation. Administering rIL-33 will also subvert this IL-12 production and increase the population of pDC in the host’s immune system during malaria infection, thus restoring mDC/pDC to homeostasis. Therefore, treatment with rIL-33 to reduce the pro-inflammatory signatures and maintenance of immune homeostasis along with the increase in survivability could be a potential therapeutic approach for cerebral malaria. Full article
(This article belongs to the Section Immunological Responses and Immune Defense Mechanisms)
Show Figures

Figure 1

21 pages, 8382 KiB  
Article
Laherradurin Inhibits Colorectal Cancer Cell Growth by Induction of Mitochondrial Dysfunction and Autophagy Induction
by Izamary Delgado-Waldo, Svetlana Dokudovskaya, Yahir A. Loissell-Baltazar, Eduardo Pérez-Arteaga, Jossimar Coronel-Hernández, Mariano Martínez-Vázquez, Eloy Andrés Pérez-Yépez, Alejandro Lopez-Saavedra, Nadia Jacobo-Herrera and Carlos Pérez Plasencia
Cells 2024, 13(19), 1649; https://doi.org/10.3390/cells13191649 - 3 Oct 2024
Viewed by 480
Abstract
LAH, an acetogenin from the Annonaceae family, has demonstrated antitumor activity in several cancer cell lines and in vivo models, where it reduced the tumor size and induced programmed cell death. We focused on the effects of LAH on mitochondrial dynamics, mTOR signaling, [...] Read more.
LAH, an acetogenin from the Annonaceae family, has demonstrated antitumor activity in several cancer cell lines and in vivo models, where it reduced the tumor size and induced programmed cell death. We focused on the effects of LAH on mitochondrial dynamics, mTOR signaling, autophagy, and apoptosis in colorectal cancer (CRC) cells to explore its anticancer potential. Methods: CRC cells were treated with LAH, and its effects on mitochondrial respiration and glycolysis were measured using Seahorse XF technology. The changes in mitochondrial dynamics were observed through fluorescent imaging, while Western blot analysis was used to examine key autophagy and apoptosis markers. Results: LAH significantly inhibited mitochondrial complex I activity, inducing ATP depletion and a compensatory increase in glycolysis. This disruption caused mitochondrial fragmentation, a trigger for autophagy, as shown by increased LC3-II expression and mTOR suppression. Apoptosis was also confirmed through the cleavage of caspase-3, contributing to reduced cancer cell viability. Conclusions: LAH’s anticancer effects in CRC cells are driven by its disruption of mitochondrial function, triggering both autophagy and apoptosis. These findings highlight its potential as a therapeutic compound for further exploration in cancer treatment. Full article
(This article belongs to the Special Issue Targeting Hallmarks of Cancer)
Show Figures

Figure 1

18 pages, 5556 KiB  
Article
Ascorbic Acid Enhances the Inhibitory Effect of Theasaponins against Candida albicans
by Yuhong Chen, Ying Gao and Junfeng Yin
Int. J. Mol. Sci. 2024, 25(19), 10661; https://doi.org/10.3390/ijms251910661 - 3 Oct 2024
Viewed by 268
Abstract
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our [...] Read more.
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our previous studies prove that theasaponins display inhibitory activity against C. albicans. Ascorbic acid (VC) is a vitamin found in many plants that shows potential in combination therapy. However, whether VC enhances the activity of theasaponins remains unclear. In this study, the checkerboard micro-dilution method was used to assess the effect of VC (0–80 mmol/L) on the anti-C. albicans effect of theasaponins (0–1000 μg/mL). Then, the effects of theasaponins (31.25 μg/mL), VC (80 mmol/L), and theasaponins (31.25 μg/mL) + VC (80 mmol/L) on C. albicans planktonic cells and different stages of biofilm formation were assessed. Transcriptomic analysis was conducted to investigate the molecular mechanisms. According to the results, VC enhanced the anti-planktonic and anti-biofilm effect of theasaponins against C. albicans. The minimum inhibitory concentration of theasaponins was significantly decreased and the fungicidal efficiency was increased with the addition of VC. VC remarkably aggravated the suppression of theasaponins with regard to various virulence factors of C. albicans, including adhesion, early biofilm formation, mature biofilm, cell surface hydrophobicity, and phospholipase activity. Compared with the theasaponins or VC groups, the level of intracellular reactive oxygen species was higher, while the levels of mitochondrial membrane potential and adenosine triphosphate were lower in the combination group, suggesting more severe oxidative stress, mitochondrial injury, and energy deficiency. Transcriptomic analysis revealed that the combination predominantly suppressed the pathways of glycolysis, glycerophospholipid metabolism, glutathione metabolism, and cysteine and methionine metabolism. This implied that energy deficiency and redox imbalance were associated with the anti-C. albicans activity of the combination. These results prove that VC enhances the inhibitory effect of theasaponins against C. albicans and that the combination has the potential to be used as a topical antifungal therapy or disinfectant. Full article
(This article belongs to the Special Issue Antifungal Drug Discovery: Progresses, Challenges, Opportunities)
Show Figures

Figure 1

19 pages, 4778 KiB  
Article
Development of a Competitive Nutrient-Based T-Cell Immunotherapy Designed to Block the Adaptive Warburg Effect in Acute Myeloid Leukemia
by Huynh Cao, Jeffrey Xiao, David J. Baylink, Vinh Nguyen, Nathan Shim, Jae Lee, Dave J. R. Mallari, Samiksha Wasnik, Saied Mirshahidi, Chien-Shing Chen, Hisham Abdel-Azim, Mark E. Reeves and Yi Xu
Biomedicines 2024, 12(10), 2250; https://doi.org/10.3390/biomedicines12102250 - 3 Oct 2024
Viewed by 395
Abstract
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., [...] Read more.
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., glucose) from T cells, leading to T-cell dysfunction and leukemia progression. Methods: Thus, we explored whether genetic reprogramming of T-cell metabolism could improve their survival and empower T cells with a competitive glucose-uptake advantage against blasts and inhibit their uncontrolled proliferation. Results: Here, we discovered that high-glucose concentration reduced the T-cell expression of glucose transporter GLUT1 (SLC2A1) and TFAM (mitochondrion transcription factor A), an essential transcriptional regulator of mitochondrial biogenesis, leading to their impaired expansion ex vivo. To overcome the glucose-induced genetic deficiency in metabolism, we engineered T cells with lentiviral overexpression of SLC2A1 and/or TFAM transgene. Multi-omics analyses revealed that metabolic reprogramming promoted T-cell proliferation by increasing IL-2 release and reducing exhaustion. Moreover, the engineered T cells competitively deprived glucose from allogenic blasts and lessened leukemia burden in vitro. Conclusions: Our findings propose a novel T-cell immunotherapy that utilizes a dual strategy of starving blasts and cytotoxicity for preventing uncontrolled leukemia proliferation. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

16 pages, 1562 KiB  
Article
Liver Fibrosis Is Enhanced by a Higher Egg Burden in Younger Mice Infected with S. mansoni
by Heike Müller, Jan K. Straßmann, Anne S. Baier, Verena von Bülow, Frederik Stettler, Maximilian J. Hagen, Fabian P. Schmidt, Annette Tschuschner, Andreas R. Schmid, Daniel Zahner, Kernt Köhler, Jörn Pons-Kühnemann, Daniel Leufkens, Dieter Glebe, Surmeet Kaur, Max F. Möscheid, Simone Haeberlein, Christoph G. Grevelding, Ralf Weiskirchen, Mohamed El-Kassas, Khaled Zalata, Elke Roeb and Martin Roderfeldadd Show full author list remove Hide full author list
Cells 2024, 13(19), 1643; https://doi.org/10.3390/cells13191643 - 2 Oct 2024
Viewed by 570
Abstract
Schistosomiasis affects over 250 million people worldwide, with the highest prevalence at the age of 10–14 years. The influence of the host’s age on the severity of liver damage is unclear. We infected male 8, 14, and 20-week-old mice with S. mansoni. [...] Read more.
Schistosomiasis affects over 250 million people worldwide, with the highest prevalence at the age of 10–14 years. The influence of the host’s age on the severity of liver damage is unclear. We infected male 8, 14, and 20-week-old mice with S. mansoni. Hepatic damage, inflammation, fibrosis, and metabolism were analyzed by RT-qPCR, Western blotting, ELISA, immunohistochemistry, and mechanistic transwell chamber experiments using S. mansoni eggs and human hepatic stellate cells (HSCs) or primary mouse hepatocytes. Major results were validated in human biopsies. We found that hepatosplenomegaly, granuloma size, egg load, inflammation, fibrosis, and glycogen stores all improved with the increasing age of the host. However, serum alanine transaminase (ALT) levels were lowest in young mice infected with S. mansoni. Hepatic carbohydrate exploitation was characterized by a shift towards Warburg-like glycolysis in S. mansoni-infected animals. Notably, S. mansoni eggs stimulated hepatic stellate cells to an alternatively activated phenotype (GFAP+/desmin+/αSMA) that secretes IL-6 and MCP-1. The reduction of fibrosis in older age likely depends on the fine-tuning of regulatory and inflammatory cytokines, alternative HSC activation, and the age-dependent preservation of hepatic energy stores. The current results emphasize the significance of investigations on the clinical relevance of host age-dependent liver damage in patients with schistosomiasis. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

27 pages, 4908 KiB  
Article
Potent Biological Activity of Fluorinated Derivatives of 2-Deoxy-d-Glucose in a Glioblastoma Model
by Maja Sołtyka-Krajewska, Marcin Ziemniak, Anna Zawadzka-Kazimierczuk, Paulina Skrzypczyk, Ewelina Siwiak-Niedbalska, Anna Jaśkiewicz, Rafał Zieliński, Izabela Fokt, Stanisław Skóra, Wiktor Koźmiński, Krzysztof Woźniak, Waldemar Priebe and Beata Pająk-Tarnacka
Biomedicines 2024, 12(10), 2240; https://doi.org/10.3390/biomedicines12102240 - 1 Oct 2024
Viewed by 771
Abstract
Background: One defining feature of various aggressive cancers, including glioblastoma multiforme (GBM), is glycolysis upregulation, making its inhibition a promising therapeutic approach. One promising compound is 2-deoxy-d-glucose (2-DG), a d-glucose analog with high clinical potential due to its ability to [...] Read more.
Background: One defining feature of various aggressive cancers, including glioblastoma multiforme (GBM), is glycolysis upregulation, making its inhibition a promising therapeutic approach. One promising compound is 2-deoxy-d-glucose (2-DG), a d-glucose analog with high clinical potential due to its ability to inhibit glycolysis. Upon uptake, 2-DG is phosphorylated by hexokinase to 2-DG-6-phosphate, which inhibits hexokinase and downstream glycolytic enzymes. Unfortunately, therapeutic use of 2-DG is limited by poor pharmacokinetics, suppressing its efficacy. Methods: To address these issues, we synthesized novel halogenated 2-DG analogs (2-FG, 2,2-diFG, 2-CG, and 2-BG) and evaluated their glycolytic inhibition in GBM cells. Our in vitro and computational studies suggest that these derivatives modulate hexokinase activity differently. Results: Fluorinated compounds show the most potent cytotoxic effects, indicated by the lowest IC50 values. These effects were more pronounced in hypoxic conditions. 19F NMR experiments and molecular docking confirmed that fluorinated derivatives bind hexokinase comparably to glucose. Enzymatic assays demonstrated that all halogenated derivatives are more effective HKII inhibitors than 2-DG, particularly through their 6-phosphates. By modifying the C-2 position with halogens, these compounds may overcome the poor pharmacokinetics of 2-DG. The modifications seem to enhance the stability and uptake of the compounds, making them effective at lower doses and over prolonged periods. Conclusions: This research has the potential to reshape the treatment landscape for GBM and possibly other cancers by offering a more targeted, effective, and metabolically focused therapeutic approach. The application of halogenated 2-DG analogs represents a promising advancement in cancer metabolism-targeted therapies, with the potential to overcome current treatment limitations. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

20 pages, 8830 KiB  
Article
Enhanced Antifungal Efficacy of Validamycin A Co-Administered with Bacillus velezensis TCS001 against Camellia anthracnose
by Zhilei Chen, Hao Cao, Jing Jin, Zhong Li, Shouke Zhang and Jie Chen
Plants 2024, 13(19), 2743; https://doi.org/10.3390/plants13192743 - 30 Sep 2024
Viewed by 325
Abstract
Anthracnose, a fungal disease harming fruit trees and crops, poses a threat to agriculture. Traditional chemical pesticides face issues like environmental pollution and resistance. A strategy combining low-toxicity chemicals with biopesticides is proposed to enhance disease control while reducing chemical use. Our study [...] Read more.
Anthracnose, a fungal disease harming fruit trees and crops, poses a threat to agriculture. Traditional chemical pesticides face issues like environmental pollution and resistance. A strategy combining low-toxicity chemicals with biopesticides is proposed to enhance disease control while reducing chemical use. Our study found that mixing validamycin A (VMA) and Bacillus velezensis TCS001 effectively controlled anthracnose in Camellia oleifera. The combination increased antifungal efficacy by 65.62% over VMA alone and 18.83% over TCS001 alone. It caused pathogen deformities and loss of pathogenicity. Transcriptomic analysis revealed that the mix affected the pathogen’s metabolism and redox processes, particularly impacting cellular membrane functions and inducing apoptosis via glycolysis/gluconeogenesis. In vivo tests showed the treatment activated C. oleifera’s disease resistance, with a 161.72% increase in polyphenol oxidase concentration in treated plants. This research offers insights into VMA and TCS001’s mechanisms against anthracnose, supporting sustainable forestry and national edible oil security. Full article
(This article belongs to the Special Issue Nutrient Management on Soil Microbiome Dynamics and Plant Health)
Show Figures

Figure 1

16 pages, 2474 KiB  
Article
Effect of Dietary Benzoic Acid Supplementation on Growth Performance, Rumen Fermentation, and Rumen Microbiota in Weaned Holstein Dairy Calves
by Haonan Dai, Qi Huang, Shujing Li, Dewei Du, Wenli Yu, Jia Guo, Zengyuan Zhao, Xin Yu, Fengtao Ma and Peng Sun
Animals 2024, 14(19), 2823; https://doi.org/10.3390/ani14192823 - 30 Sep 2024
Viewed by 416
Abstract
Supplementation with benzoic acid (BA) in animal feed can reduce feeds’ acid-binding capacity, inhibit pathogenic bacterial growth, enhance nutrient digestion, and increase intestinal enzyme activities. This study aimed to investigate the effects of different doses of BA on the growth performance, rumen fermentation, [...] Read more.
Supplementation with benzoic acid (BA) in animal feed can reduce feeds’ acid-binding capacity, inhibit pathogenic bacterial growth, enhance nutrient digestion, and increase intestinal enzyme activities. This study aimed to investigate the effects of different doses of BA on the growth performance, rumen fermentation, and rumen microbiota of weaned Holstein dairy calves. Thirty-two Holstein calves at 60 days of age were randomly assigned into four groups (n = 8): a control group (fed with a basal diet without BA supplementation; CON group) and groups that were supplemented with 0.25% (LBA group), 0.50% (MBA group), and 0.75% (HBA group) BA to the basal diet (dry matter basis), respectively. The experiment lasted for 42 days, starting at 60 days of age and ending at 102 days of age, with weaning occurring at 67 days of age. Supplementation with BA linearly increased the average daily gain of the weaned dairy calves, which was significantly higher in the LBA, MBA, and HBA groups than that in the CON group. The average daily feed intake was quadratically increased with increasing BA supplementation, peaking in the MBA group. Supplementation with BA linearly decreased the feed-to-gain (F/G) ratio, but did not affect rumen fermentation parameters, except for the molar proportion of butyrate and iso-butyrate, which were linearly increased with the dose of BA supplementation. Compared with the CON group, the molar proportions of iso-butyrate in the LBA, MBA, and HBA groups and that of butyrate in the HBA group were significantly higher than those in the CON group. Supplementation with BA had no significant effect on the alpha and beta diversity of the rumen microbiota, but significantly increased the relative abundances of beneficial bacteria, such as Bifidobacterium, and reduced those of the harmful bacteria, such as unclassified_o__Gastranaerophilales and Oscillospiraceae_UCG-002, in the rumen. Functional prediction analysis using the MetaCyc database revealed significant variations in the pathways associated with glycolysis across groups, including the GLYCOLYSIS-TCA-GLYOX-BYPASS, GLYCOL-GLYOXDEG-PWY, and P105-PWY pathways. In conclusion, BA supplementation improved the composition and function of rumen microbiota, elevated the production of butyrate and iso-butyrate, and increased the growth performance of weaned Holstein dairy calves. Full article
Show Figures

Figure 1

18 pages, 6495 KiB  
Article
FmRbohH Mediates ROS Generation and Enhances Pollen Tube Growth in Fraxinus mandshurica
by Bello Hassan Jakada, Shuqi Wang, Shun Yang, Ying Wu, Zerui Huang, Yunping Liu and Xingguo Lan
Forests 2024, 15(10), 1735; https://doi.org/10.3390/f15101735 - 30 Sep 2024
Viewed by 303
Abstract
Flowering plants require normal pollen germination and growth to be fertilized, but studies on the mechanism regulating pollen tube growth in Fraxinus mandshurica are limited. Here, we used transcriptomic data to study the oxidative phosphorylation pathway during pollen tube growth in Fraxinus mandshurica [...] Read more.
Flowering plants require normal pollen germination and growth to be fertilized, but studies on the mechanism regulating pollen tube growth in Fraxinus mandshurica are limited. Here, we used transcriptomic data to study the oxidative phosphorylation pathway during pollen tube growth in Fraxinus mandshurica. Our study identified 8,734 differentially expressed genes during the stages S1 to S3 of pollen tube growth. Significant enrichment of the oxidative phosphorylation pathway, amino acid synthesis, protein processing in the ER, carbon metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis were examined using the Kyoto Encyclopedia of Genes and Genomes, and 58 genes linked to ROS synthesis and scavenging during the S1–S3 stages were identified. Also, H2DCFDA staining confirmed ROS formation in the pollen and the pollen tubes, and treatment with copper (II) chloride (CuCl2) and diphenyleneiodonium (DPI) was shown to reduce ROS in the pollen tube. Reduction in ROS content caused decreased pollen germination and pollen tube length. Furthermore, FmRbohH (respiratory burst oxidase homolog H) expression was detected in the pollen and pollen tube, and an antisense oligodeoxynucleotide assay demonstrated reduced ROS and pollen tube growth in Fraxinus mandshurica. This study shed more light on the RbohH gene functions during pollen tube growth. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

14 pages, 4014 KiB  
Article
Unexpected and Synergistical Effects of All-Trans Retinoic Acid and TGF-β2 on Biological Aspects of 2D and 3D Cultured ARPE19 Cells
by Megumi Higashide, Megumi Watanabe, Tatsuya Sato, Toshifumi Ogawa, Araya Umetsu, Soma Suzuki, Masato Furuhashi, Hiroshi Ohguro and Nami Nishikiori
Biomedicines 2024, 12(10), 2228; https://doi.org/10.3390/biomedicines12102228 - 30 Sep 2024
Viewed by 293
Abstract
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance [...] Read more.
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance (TEER) and an extracellular flux assay (2D), measurement of levels of reactive oxygen species (ROS), gene expression analyses of COL1, αSMA, Zo-1, HIF1α, and PGC1α (2D), and physical property analyses (3D). Results: Under a normoxia condition, treatment with 100 nM ATRA substantially decreased barrier function regardless of the presence of 5 ng/mL TGF-β2 in 2D ARPE19 monolayer cells. Under a hypoxia condition, treatment with ATRA conversely increased barrier function, but the effect was masked by a marked increase in effects induced by TGF-β2. Although ATRA alone did not affect cellular metabolism and ROS levels in 2D ARPE cells, treatment with ATRA under a hypoxia condition did not affect ROS levels but shifted cellular metabolism from mitochondrial respiration to glycolysis. The changes of cellular metabolism and ROS levels were more pronounced with treatment of both ATRA and TGF-β2 independently of oxygen conditions. Changes in mRNA expressions of some of the above genes suggested the involvement of synergistical regulation of cellular functions by TGF-β2 and hypoxia. In 3D ARPE spheroids, the size was decreased and the stiffness was increased by either treatment with TGF-β2 or ATRA, but these changes were unexpectedly modulated by both ATRA and TGF-β2 treatment regardless of oxygen conditions. Conclusions: The findings reported herein indicate that TGF-β2 and hypoxia synergistically and differentially induce effects in 2D and 3D cultured ARPE19 cells and that their cellular properties are significantly altered by the presence of ATRA. Full article
(This article belongs to the Special Issue 3D Cell Culture Systems for Biomedical Research)
Show Figures

Figure 1

17 pages, 12649 KiB  
Article
Pterostilbene Induces Pyroptosis in Breast Cancer Cells through Pyruvate Kinase 2/Caspase-8/Gasdermin C Signaling Pathway
by Tingting Pan, Li Peng, Jing Dong and Lin Li
Int. J. Mol. Sci. 2024, 25(19), 10509; https://doi.org/10.3390/ijms251910509 - 29 Sep 2024
Viewed by 362
Abstract
The incidence and mortality of breast cancer increase year by year, and it is urgent to find high-efficiency and low-toxicity anti-cancer drugs. Pterostilbene (PTE) is a natural product with antitumor activity, but the specific antitumor mechanism is not very clear. Aerobic glycolysis is [...] Read more.
The incidence and mortality of breast cancer increase year by year, and it is urgent to find high-efficiency and low-toxicity anti-cancer drugs. Pterostilbene (PTE) is a natural product with antitumor activity, but the specific antitumor mechanism is not very clear. Aerobic glycolysis is the main energy supply for cancer cells. Pyroptosis is an inflammatory, programmed cell death. The aim of this study was to investigate the effect of PTE on glycolysis and pyroptosis in EMT6 and 4T1 cells and the specific mechanism, and to elucidate the role of pyruvate kinase 2 (PKM2), a key enzyme in glycolysis, in the antitumor role of PTE. Our study suggested that PTE induced pyroptosis by inhibiting tumor glycolysis. PKM2 played an important role in both the inhibition of glycolysis and the induction of pyroptosis by PTE. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

29 pages, 2147 KiB  
Review
The Use of Patient-Derived Organoids in the Study of Molecular Metabolic Adaptation in Breast Cancer
by Natalija Glibetic, Scott Bowman, Tia Skaggs and Michael Weichhaus
Int. J. Mol. Sci. 2024, 25(19), 10503; https://doi.org/10.3390/ijms251910503 - 29 Sep 2024
Viewed by 1033
Abstract
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment [...] Read more.
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism. Full article
(This article belongs to the Special Issue Molecular Mechanisms and New Therapies for Breast Cancer)
Show Figures

Figure 1

26 pages, 3322 KiB  
Review
Telomere Reprogramming and Cellular Metabolism: Is There a Link?
by Maria P. Rubtsova, Denis A. Nikishin, Mikhail Y. Vyssokikh, Maria S. Koriagina, Andrey V. Vasiliev and Olga A. Dontsova
Int. J. Mol. Sci. 2024, 25(19), 10500; https://doi.org/10.3390/ijms251910500 - 29 Sep 2024
Viewed by 432
Abstract
Telomeres—special DNA–protein structures at the ends of linear eukaryotic chromosomes—define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with [...] Read more.
Telomeres—special DNA–protein structures at the ends of linear eukaryotic chromosomes—define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with the increased proliferative potential of specific cell types, such as stem and germ cells. This elongation can be permanent in these cells and is activated temporally during immune response activation and regeneration processes. The activation of telomere lengthening mechanisms is coupled with increased proliferation and the cells’ need for energy and building resources. To obtain the necessary nutrients, cells are capable of finely regulating energy production and consumption, switching between catabolic and anabolic processes. In this review, we focused on the interconnection between metabolism programs and telomere lengthening mechanisms during programmed activation of proliferation, such as in germ cell maturation, early embryonic development, neoplastic lesion growth, and immune response activation. It is generally accepted that telomere disturbance influences biological processes and promotes dysfunctionality. Here, we propose that metabolic conditions within proliferating cells should be involved in regulating telomere lengthening mechanisms, and telomere length may serve as a marker of defects in cellular functionality. We propose that it is possible to reprogram metabolism in order to regulate the telomere length and proliferative activity of cells, which may be important for the development of approaches to regeneration, immune response modulation, and cancer therapy. However, further investigations in this area are necessary to improve the understanding and manipulation of the molecular mechanisms involved in the regulation of proliferation, metabolism, and aging. Full article
(This article belongs to the Special Issue Telomeres in Development, Senescence and Genome Instability)
Show Figures

Figure 1

35 pages, 15743 KiB  
Article
Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney scRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates
by Aleksandr V. Bobrovskikh, Ulyana S. Zubairova, Ludmila G. Naumenko and Alexey V. Doroshkov
Biology 2024, 13(10), 773; https://doi.org/10.3390/biology13100773 - 27 Sep 2024
Viewed by 541
Abstract
The innate immune system (IIS) is an ancient and essential defense mechanism that protects animals against a wide range of pathogens and diseases. Although extensively studied in mammals, our understanding of the IIS in other taxa remains limited. The zebrafish (Danio rerio [...] Read more.
The innate immune system (IIS) is an ancient and essential defense mechanism that protects animals against a wide range of pathogens and diseases. Although extensively studied in mammals, our understanding of the IIS in other taxa remains limited. The zebrafish (Danio rerio) serves as a promising model organism for investigating IIS-related processes, yet the immunogenetics of fish are not fully elucidated. To address this gap, we conducted a meta-analysis of single-cell RNA sequencing (scRNA-seq) datasets from zebrafish kidney marrow, encompassing approximately 250,000 immune cells. Our analysis confirms the presence of key genetic pathways in zebrafish innate immune cells that are similar to those identified in mammals. Zebrafish macrophages specifically express genes encoding cathepsins, major histocompatibility complex class II proteins, integral membrane proteins, and the V-ATPase complex and demonstrate the enrichment of oxidative phosphorylation ferroptosis processes. Neutrophils are characterized by the significant expression of genes encoding actins, cytoskeleton organizing proteins, the Arp2/3 complex, and glycolysis enzymes and have demonstrated their involvement in GnRH and CLR signaling pathways, adherents, and tight junctions. Both macrophages and neutrophils highly express genes of NOD-like receptors, phagosomes, and lysosome pathways and genes involved in apoptosis. Our findings reinforce the idea about the existence of a wide spectrum of immune cell phenotypes in fish since we found only a small number of cells with clear pro- or anti-inflammatory signatures. Full article
(This article belongs to the Special Issue Immune Response Regulation in Animals)
Show Figures

Graphical abstract

Back to TopTop