Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (851)

Search Parameters:
Keywords = fluid identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 872 KiB  
Review
Neuroinflammatory Biomarkers in Alzheimer’s Disease: From Pathophysiology to Clinical Implications
by Fausto Roveta, Lucrezia Bonino, Elisa Maria Piella, Innocenzo Rainero and Elisa Rubino
Int. J. Mol. Sci. 2024, 25(22), 11941; https://doi.org/10.3390/ijms252211941 - 6 Nov 2024
Viewed by 300
Abstract
The identification of neuroinflammation as a critical factor in Alzheimer’s disease (AD) has expanded the focus of research beyond amyloid-β and tau pathology. The neuroinflammatory fluid biomarkers GFAP, sTREM2, and YKL-40 have gained attention for their potential in early detection and monitoring of [...] Read more.
The identification of neuroinflammation as a critical factor in Alzheimer’s disease (AD) has expanded the focus of research beyond amyloid-β and tau pathology. The neuroinflammatory fluid biomarkers GFAP, sTREM2, and YKL-40 have gained attention for their potential in early detection and monitoring of disease progression. Plasma GFAP has demonstrated promise in predicting the conversion from mild cognitive impairment to AD dementia, while sTREM2 highlights microglial activation, although there are conflicting results regarding its dynamics in AD pathogenesis. Advanced imaging techniques, such as PET tracers targeting TSPO and MAO-B, have also been developed to visualize glial activation in vivo, offering spatial and temporal insights into neuroinflammatory processes. However, the clinical implementation of these biomarkers faces challenges due to their lack of specificity, as many of them can be elevated in other conditions. Therapeutic strategies targeting neuroinflammation are emerging, with TREM2-targeting therapies and antidiabetic drugs like GLP-1 receptor agonists showing potential in modulating microglial activity. Nevertheless, the complexity of neuroinflammation, which encompasses both protective and harmful responses, necessitates further research to fully unravel its role and optimize therapeutic approaches for AD. Full article
Show Figures

Figure 1

17 pages, 6623 KiB  
Review
The Management of Interstitial Lung Disease in the ICU: A Comprehensive Review
by Zehra Dhanani and Rohit Gupta
J. Clin. Med. 2024, 13(22), 6657; https://doi.org/10.3390/jcm13226657 - 6 Nov 2024
Viewed by 675
Abstract
Interstitial lung disease (ILD) encompasses a diverse group of parenchymal lung diseases characterized by varying degrees of inflammation and/or fibrosis. Patients with ILD frequently require hospitalization, with many needing intensive care unit (ICU) admission, most often due to respiratory failure. The diagnosis and [...] Read more.
Interstitial lung disease (ILD) encompasses a diverse group of parenchymal lung diseases characterized by varying degrees of inflammation and/or fibrosis. Patients with ILD frequently require hospitalization, with many needing intensive care unit (ICU) admission, most often due to respiratory failure. The diagnosis and management of ILD in the ICU present unique challenges. Diagnosis primarily relies on chest CT imaging to identify fibrosis and inflammation. Acute exacerbations, whether in idiopathic pulmonary fibrosis (IPF) or non-IPF ILD, require careful evaluation of potential triggers and differential diagnoses. Bronchoalveolar lavage may provide valuable information, such as the identification of infections, but carries risks of complications. Biopsies, whether transbronchial or surgical, can also be informative but pose significant procedural risks. Corticosteroids are the cornerstone of treatment for acute exacerbations of IPF, with higher doses potentially benefiting non-IPF ILD. Additional immunosuppressive agents may be used in cases with evidence of inflammation. Oxygen supplementation, particularly with high-flow nasal cannula, is often employed to manage severe hypoxemia, while noninvasive ventilation can be useful for worsening hypoxemia and/or hypercapnia. When mechanical ventilation is used, it is recommended to target low tidal volumes to minimize lung injury; high PEEP may be less effective and even associated with increased mortality. Prone positioning can improve oxygenation in severely hypoxemic patients. In addition to ventilatory strategies, careful fluid management and addressing concomitant pulmonary hypertension are essential components of care. Extracorporeal membrane oxygenation is a high-risk intervention reserved for the most severe cases. Lung transplantation may be considered for end-stage ILD patients in the ICU, with outcomes dependent on the urgency of transplantation and the patient’s overall condition. Managing ILD in the ICU requires a multidisciplinary approach, and despite recent advances, mortality remains high, emphasizing the need for continued research and individualized treatment strategies. Full article
(This article belongs to the Special Issue Updates on Interstitial Lung Disease)
Show Figures

Figure 1

63 pages, 3691 KiB  
Article
Contribution to the Statistical Mechanics of Static Triplet Correlations and Structures in Fluids with Quantum Spinless Behavior
by Luis M. Sesé
Quantum Rep. 2024, 6(4), 564-626; https://doi.org/10.3390/quantum6040038 - 3 Nov 2024
Viewed by 371
Abstract
The current developments in the theory of quantum static triplet correlations and their associated structures (real r-space and Fourier k-space) in monatomic fluids are reviewed. The main framework utilized is Feynman’s path integral formalism (PI), and the issues addressed cover quantum [...] Read more.
The current developments in the theory of quantum static triplet correlations and their associated structures (real r-space and Fourier k-space) in monatomic fluids are reviewed. The main framework utilized is Feynman’s path integral formalism (PI), and the issues addressed cover quantum diffraction effects and zero-spin bosonic exchange. The structures are associated with the external weak fields that reveal their nature, and due attention is paid to the underlying pair-level structures. Without the pair, level one cannot fully grasp the triplet extensions in the hierarchical ladder of structures, as both the pair and the triplet structures are essential ingredients in the triplet response functions. Three general classes of PI structures do arise: centroid, total continuous linear response, and instantaneous. Use of functional differentiation techniques is widely made, and, as a bonus, this leads to the identification of an exact extension of the “classical isomorphism” when the centroid structures are considered. In this connection, the direct correlation functions, as borrowed from classical statistical mechanics, play a key role (either exact or approximate) in the corresponding quantum applications. Additionally, as an auxiliary framework, the traditional closure schemes for triplets are also discussed, owing to their potential usefulness for rationalizing PI triplet results. To illustrate some basic concepts, new numerical calculations (path integral Monte Carlo PIMC and closures) are reported. They are focused on the purely diffraction regime and deal with supercritical helium-3 and the quantum hard-sphere fluid. Full article
(This article belongs to the Special Issue Exclusive Feature Papers of Quantum Reports in 2024–2025)
Show Figures

Figure 1

19 pages, 7421 KiB  
Article
Multi-Objective Numerical Analysis of Horizontal Rectilinear Earth–Air Heat Exchangers with Elliptical Cross Section Using Constructal Design and TOPSIS
by Ivanilton Reinato de Andrade, Elizaldo Domingues dos Santos, Houlei Zhang, Luiz Alberto Oliveira Rocha, Andre Luis Razera and Liércio André Isoldi
Fluids 2024, 9(11), 257; https://doi.org/10.3390/fluids9110257 - 31 Oct 2024
Viewed by 429
Abstract
This study presents a numerical evaluation of a Horizontal Rectilinear Earth–air Heat Exchanger (EAHE), considering the climatic and soil conditions of Viamão, Brazil, a subtropical region. The Constructal Design method, combined with the Exhaustive Search, was utilized to define the system constraints, degree [...] Read more.
This study presents a numerical evaluation of a Horizontal Rectilinear Earth–air Heat Exchanger (EAHE), considering the climatic and soil conditions of Viamão, Brazil, a subtropical region. The Constructal Design method, combined with the Exhaustive Search, was utilized to define the system constraints, degree of freedom, and performance indicators. The degree of freedom was characterized by the aspect ratio between the vertical and horizontal lengths of the elliptical cross-section duct (H/L). The performance indicators for the EAHE configurations were assessed based on thermal potential (TP) and pressure drop (PD). The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was applied for multi-objective evaluation, and a methodology for EAHE is proposed. The problem was solved using FLUENT software (version 2024 R2), which employs the Finite Volume Method to solve the conservation equations for mass, momentum, and energy. The (H/L)T,o = 6.0 configuration showed a 16.4% increase in thermal performance for heating and 15.9% for cooling compared to the conventional circular duct. Conversely, the (H/L)F,o = 1.0 configuration reduced pressure loss by 65.33%. The integration of Constructal Design with TOPSIS facilitated the identification of optimized geometries that achieve a balance between performance indicators and those that specifically prioritize thermal or fluid dynamic aspects, being this approach an original scientific contribution of the present work. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

18 pages, 6262 KiB  
Article
Label-Free Quantitative Proteomics Analysis of Nasal Lavage Fluid in Chronic Rhinosinusitis with Nasal Polyposis
by Musallam Kashoob, Afshan Masood, Assim A. Alfadda, Salini Scaria Joy, Wed Alluhaim, Shahid Nawaz, Mashal Abaalkhail, Omar Alotaibi, Saad Alsaleh and Hicham Benabdelkamel
Biology 2024, 13(11), 887; https://doi.org/10.3390/biology13110887 - 30 Oct 2024
Viewed by 498
Abstract
(1) Background: Chronic rhinosinusitis (CRS) is a common chronic inflammation of the nasal mucosa and the paranasal sinuses. The pathogenesis of chronic rhinosinusitis (CRS) is multifactorial and, as of yet, not well understood. (2) Methods: Nasal lavage fluid samples were collected from patients [...] Read more.
(1) Background: Chronic rhinosinusitis (CRS) is a common chronic inflammation of the nasal mucosa and the paranasal sinuses. The pathogenesis of chronic rhinosinusitis (CRS) is multifactorial and, as of yet, not well understood. (2) Methods: Nasal lavage fluid samples were collected from patients diagnosed with chronic sinusitis with nasal polyposis (CRSwNP) (n = 10) and individuals without sinusitis (control group) (n = 10) who had no nasal complaints. In the present study, we used an untargeted label-free LC-MS/MS mass spectrometric approach combined with bioinformatics and network pathway analysis to compare the changes in the proteomic profiles of the CRSwNP group and the control group. Data from LC-MS/MS underwent univariate and multivariate analyses. (3) Results: The proteomic analyses revealed distinct differences in the abundances of nasal lavage fluid proteins between the CRSwNP and control groups: a total of 234 proteins, 151 up- and 83 down-regulated in CRSwNP. Functional Gene Ontology (GO) analysis showed that dysregulated proteins were involved in airway inflammatory reaction, immune response, and oxidative stress. The biomarkers were evaluated using the Receiver Operating Characteristic (ROC) curve; an Area Under the Curve (AUC) of 0.999 (95% CI) identified potential biomarkers between the CRSwNP and control group. EMILIN-3 and RAB11-binding protein RELCH were down-regulated, and Macrophage migration inhibitory factor and deoxyribonuclease-1 were up-regulated, in CRSwNP compared to the control group. (4) Conclusions: These differentially expressed proteins identified in CRSwNP are involved in airway inflammatory reaction, immune response, and oxidative stress. In particular, the identification of increased interleukin-36 gamma (IL-36γ), which contributes to inflammatory response, and a decrease in SOD, in this group are notable findings. In the future, several of these proteins may prove useful for exploring the pathogenesis of nasal polyps and chronic sinusitis or as objective biomarkers for quantitatively monitoring disease progression or response to therapy. Full article
(This article belongs to the Special Issue Proteomics and Human Diseases)
Show Figures

Figure 1

24 pages, 15499 KiB  
Article
An Automated Computational Fluid Dynamics Workflow for Simulating the Internal Flow of Race Car Radiators
by Francesco Mangini, Matteo Vaccalluzzo, Eugenio Bardoscia, Andrea Bortoli and Alessandro Colombo
Appl. Sci. 2024, 14(21), 9930; https://doi.org/10.3390/app14219930 - 30 Oct 2024
Viewed by 492
Abstract
In this article, we present a software tool developed in Python, named T-WorkFlow. It has been devised to meet some of the design needs of Tatuus Racing S.p.a., a leading company in the design and production of racing cars for the FIA Formula [...] Read more.
In this article, we present a software tool developed in Python, named T-WorkFlow. It has been devised to meet some of the design needs of Tatuus Racing S.p.a., a leading company in the design and production of racing cars for the FIA Formula 3 Regional and Formula 4 categories. The software leverages the open-source tools OpenFOAM and FreeCAD to fully automate the fluid dynamics simulation process within car radiators. The goal of T-WorkFlow is to provide designers with precise and easily interpretable results that facilitate the identification of the geometry, ensuring optimal flow distribution in the radiator channels. T-WorkFlow requires the radiator’s geometry files in .stp and .stl formats, along with additional user inputs provided through a graphical interface. For mesh generation, the software leverages the OpenFOAM tools blockMesh and snappyHexMesh. To ensure uniform mesh quality across different configurations, and thus, comparable numerical results, various pre-processing operations on the specific geometry files are needed. After generating the mesh, T-WorkFlow automatically defines a control surface for each radiator channel to monitor the volumetric flow rate distribution. This is achieved by combining the OpenFOAM command topoSet with specific geometric information directly obtained from the radiator’s CAD through FreeCAD. During the simulation, the software provides various outputs that automate the main post-processing operations, enabling quick and easy identification of the configuration that ensures the desired performance. Full article
(This article belongs to the Special Issue The Industrial Applications of Computational Fluid Dynamics)
Show Figures

Figure 1

11 pages, 1126 KiB  
Article
Three-Dimensional Reconstruction of the Right Ventricle from a Radial Basis Morphing of the Inner Surface
by Carlotta Fontana and Nicola Cappetti
Computation 2024, 12(11), 216; https://doi.org/10.3390/computation12110216 - 26 Oct 2024
Viewed by 389
Abstract
In the realm of cardiac health research, accurate fluid dynamics simulations are vital for comprehending the heart function and diagnosing conditions. Central to these simulations is the precision of ventricular wall meshes used to model heart geometry. However, segmenting the wetted surface, particularly [...] Read more.
In the realm of cardiac health research, accurate fluid dynamics simulations are vital for comprehending the heart function and diagnosing conditions. Central to these simulations is the precision of ventricular wall meshes used to model heart geometry. However, segmenting the wetted surface, particularly in the right ventricle (RV) with its significantly thinner parietal thickness compared to the left ventricle, presents challenges. This study focuses on qualitatively evaluating an automated reconstruction model for the RV’s outer wall using Radial Basis function (RBF) morphing. Two procedural criteria were compared, a random selection of control points and a curvature-based approach, which differ in terms of the identification of the control points of the RBF function. From these considerations, it emerges that a controlled use of the RBF function on the basis of the curvatures guarantees the greater controllability of the shape evolutions of the parietal structure of the RV, but it is more sensitive to any anomalies in the distribution of the vertices, as can be seen from the number of outliers, and its controllability is a function of the percentage of points chosen, exerting a greater impact on the required computational capacity. The definition of a strategic criterion for the selection of control points could represent a crucial aspect in the definition of an automatic reconstruction procedure of anatomical elements, which guarantees a morphological variability in line with the need to expand the pathological sample to be used for statistical formulations in the clinical field. Full article
Show Figures

Figure 1

10 pages, 1712 KiB  
Article
A Novel Polarized Light Microscope for the Examination of Birefringent Crystals in Synovial Fluid
by John D. FitzGerald, Chesca Barrios, Tairan Liu, Ann Rosenthal, Geraldine M. McCarthy, Lillian Chen, Bijie Bai, Guangdong Ma and Aydogan Ozcan
Gout Urate Cryst. Depos. Dis. 2024, 2(4), 315-324; https://doi.org/10.3390/gucdd2040022 - 22 Oct 2024
Viewed by 652
Abstract
Background: The gold standard for crystal arthritis diagnosis relies on the identification of either monosodium urate (MSU) or calcium pyrophosphate (CPP) crystals in synovial fluid. With the goal of enhanced crystal detection, we adapted a standard compensated polarized light microscope (CPLM) with a [...] Read more.
Background: The gold standard for crystal arthritis diagnosis relies on the identification of either monosodium urate (MSU) or calcium pyrophosphate (CPP) crystals in synovial fluid. With the goal of enhanced crystal detection, we adapted a standard compensated polarized light microscope (CPLM) with a polarized digital camera and multi-focal depth imaging capabilities to create digital images from synovial fluid mounted on microscope slides. Using this single-shot computational polarized light microscopy (SCPLM) method, we compared rates of crystal detection and raters’ preference for image. Methods: Microscope slides from patients with either CPP, MSU, or no crystals in synovial fluid were acquired using CPLM and SCPLM methodologies. Detection rate, sensitivity, and specificity were evaluated by presenting expert crystal raters with (randomly sorted) CPLM and SCPLM digital images, from FOV above clinical samples. For each FOV and each method, each rater was asked to identify crystal suspects and their level of certainty for each crystal suspect and crystal type (MSU vs. CPP). Results: For the 283 crystal suspects evaluated, SCPLM resulted in higher crystal detection rates than did CPLM, for both CPP (51%. vs. 28%) and MSU (78% vs. 46%) crystals. Similarly, sensitivity was greater for SCPLM for CPP (0.63 vs. 0.35) and MSU (0.88 vs. 0.52) without giving up much specificity resulting in higher AUC. Conclusions: Subjective and objective measures of greater detection and higher certainty were observed for SCPLM over CPLM, particularly for CPP crystals. The digital data associated with these images can ultimately be incorporated into an automated crystal detection system that provides a quantitative report on crystal count, size, and morphology. Full article
Show Figures

Figure 1

8 pages, 1822 KiB  
Proceeding Paper
Improving Internal Combustion Engine Performance through Inlet Valve Geometry and Spray Angle Optimization: Computational Fluid Dynamics Study
by Muhammad Ahsan and Mian Noman
Eng. Proc. 2024, 72(1), 6; https://doi.org/10.3390/engproc2024072006 - 15 Oct 2024
Viewed by 380
Abstract
This study aimed to calculate the impact of inlet valve geometry and spray angle on the performance of internal combustion engines using computational fluid dynamics (CFD) analysis. CFD analysis was performed to explore the fuel flow dynamics within a combustion chamber at critical [...] Read more.
This study aimed to calculate the impact of inlet valve geometry and spray angle on the performance of internal combustion engines using computational fluid dynamics (CFD) analysis. CFD analysis was performed to explore the fuel flow dynamics within a combustion chamber at critical stages, considering factors such as swirl and tumble. This study investigated the role of the intake port’s geometry and spray angles in creating squish and swirl, which is crucial for enhancing combustion efficiency and overall engine performance. The analysis employed the Finite Volume Method (FVM), solved within ANSYS Fluent 2021 software, utilizing the standard k-ε turbulence model. Design Modeler was used for the geometry design and ANSYS Fluent facilitated the CFD analysis of the injection. Four distinct cases were explored to assess engine performance across various designs, examining parameters such as pressure, temperature, and velocity. These performance parameters were evaluated against the existing literature, enabling the identification of optimal configurations. This study identified optimal performance parameters based on the existing literature. The best design was further validated against existing designs under identical boundary conditions. This research demonstrates improved engine performance across all parameters compared to existing values in the literature. This suggests the efficacy of the proposed inlet valve geometry and spray angle configurations in increasing internal combustion engine efficiency. Full article
Show Figures

Figure 1

6 pages, 220 KiB  
Brief Report
Clinical Utility of a Multiplex PCR Panel (BioFire Joint Infection®) in the Adjustment of Empiric Antimicrobial Therapy: Experience in Pediatric Osteoarticular Infections
by Clara Udaondo, Rosa María Alcobendas Rueda, Blanca Diaz-Delgado, Agustin Remesal, Inmaculada Quiles-Melero and Cristina Calvo
Children 2024, 11(10), 1236; https://doi.org/10.3390/children11101236 - 14 Oct 2024
Viewed by 494
Abstract
Background/Objectives: This study aims to evaluate the impact of the PCR multiplex panel (BioFire JI®) on the diagnosis and management of pediatric osteoarticular infections. Methods: This retrospective study analyzed data from pediatric patients diagnosed with osteoarticular infections between January 2023 and [...] Read more.
Background/Objectives: This study aims to evaluate the impact of the PCR multiplex panel (BioFire JI®) on the diagnosis and management of pediatric osteoarticular infections. Methods: This retrospective study analyzed data from pediatric patients diagnosed with osteoarticular infections between January 2023 and April 2024. The effectiveness of the PCR multiplex panel in identifying pathogens was compared with traditional culture methods. Results: In total, 50 patients were identified (66.6% male, 74% under 3 years of age). They were diagnosed as follows: septic arthritis in 46%, osteomyelitis in 26%, and septic osteoarthritis in 22%. An identifiable agent was isolated by conventional culture in 22 cases (44%). Kingella kingae was the predominant pathogen identified, accounting for 50% of cases (11/22), followed by Staphylococcus aureus (9/22). The BioFire JI® Panel PCR demonstrated a sensitivity of 93%, with a specificity of 63% when evaluated against synovial fluid culture as the reference standard. The panel identified seven additional pathogens not detected by conventional culture methods: 2/9 MSSA (22%), 1/1 S. pyogenes (100%), and 4/11 K. kingae (37%), increasing the yield by 14%. The rapid identification of pathogens facilitated timely and targeted therapeutic interventions. Conclusions: The PCR multiplex panel (BioFire JI®) improved the diagnosis of pediatric osteoarticular infections. Full article
11 pages, 457 KiB  
Review
A Review of Recent Advances in Chromatographic Quantification Methods for Cyanogenic Glycosides
by Yao Zhao, Shuai Wen, Yan Wang, Wenshuo Zhang, Xiangming Xu and Yi Mou
Molecules 2024, 29(20), 4801; https://doi.org/10.3390/molecules29204801 - 11 Oct 2024
Viewed by 690
Abstract
Cyanogenic glycosides are naturally occurring compounds found in numerous plant species, which can release toxic hydrogen cyanide upon hydrolysis. The quantification of cyanogenic glycosides is essential for assessing their potential toxicity and health risks associated with their consumption. Liquid chromatographic techniques coupled with [...] Read more.
Cyanogenic glycosides are naturally occurring compounds found in numerous plant species, which can release toxic hydrogen cyanide upon hydrolysis. The quantification of cyanogenic glycosides is essential for assessing their potential toxicity and health risks associated with their consumption. Liquid chromatographic techniques coupled with various detectors have been widely used for the quantification of cyanogenic glycosides. In this review, we discuss recent advances in chromatographic quantification methods for cyanogenic glycosides, including the development of new stationary phases, innovative sample preparation methods, and the use of mass spectrometry. We also highlight the combination of chromatographic separation with mass spectrometric detection for the identification and quantification of specific cyanogenic glycosides and their metabolites in complex sample matrices. Lastly, we discuss the current challenges and future perspectives in the development of reliable reference standards, optimization of sample preparation methods, and establishment of robust quality control procedures. This review aims to provide an overview of recent advances in chromatographic quantification methods for cyanogenic glycosides and their applications in various matrices, including food products, biological fluids, and environmental samples. Full article
(This article belongs to the Special Issue Analytical Chemistry in Asia)
Show Figures

Figure 1

17 pages, 1692 KiB  
Article
Characterization of Extraintestinal Pathogenic Escherichia coli Strains Causing Canine Pneumonia in China: Antibiotic Resistance, Virulence Genes, and Sequence Typing
by Jianyi Lai, Haibin Long, Zhihong Zhao, Gan Rao, Zhaojia Ou, Jiajie Li, Zhidong Zhou, Minhua Hu and Qingchun Ni
Vet. Sci. 2024, 11(10), 491; https://doi.org/10.3390/vetsci11100491 - 10 Oct 2024
Viewed by 789
Abstract
To determine the etiological agents responsible for acute pneumonia in puppies in China, this study utilized bronchoalveolar lavage (BAL) fluid extraction to enable the isolation, culture, biochemical identification, and 16S rRNA PCR amplification of the pathogens. Following preliminary identification, the pathogens underwent analysis [...] Read more.
To determine the etiological agents responsible for acute pneumonia in puppies in China, this study utilized bronchoalveolar lavage (BAL) fluid extraction to enable the isolation, culture, biochemical identification, and 16S rRNA PCR amplification of the pathogens. Following preliminary identification, the pathogens underwent analysis for antibiotic resistance phenotypes and resistance genes. Additionally, the study examined the presence of virulence genes, conducted multilocus sequence typing (MLST), and performed whole-genome sequencing (WGS). The findings revealed that all four isolated pathogens were characterized as extraintestinal pathogenic Escherichia coli (ExPEC). The examined ExPEC strains demonstrated resistance to cephalosporins, tetracyclines, and penicillins, while remaining susceptible to aminoglycosides, beta-lactamase inhibitors, carbapenems, chloramphenicols, and sulfonamides. An analysis of virulence genes identified the presence of eight genes, namely CNF-I, fyuA, fimC, papC, ompA, fimH, irp2, and iroN, which are implicated in their invasiveness and potential to inflict tissue damage. The MLST analysis revealed that all ExPEC strains were classified under either sequence type ST131 (Achtman database) or ST43 (Pasteur database). The study further determined that these strains were absent in the kennel’s drinking water source, thereby ruling out water contamination as a potential factor in the emergence of ST131-type ExPEC. This study offers a theoretical framework and empirical evidence for elucidating the potential pathogenic mechanisms and clinical therapeutic strategies of ExPEC in the etiology of acute pneumonia in puppies. Full article
(This article belongs to the Special Issue Bacterial Infectious Diseases of Companion Animals—2nd Edition)
Show Figures

Figure 1

21 pages, 604 KiB  
Article
New Results on Differential Subordination and Superordination for Multivalent Functions Involving New Symmetric Operator
by Abdul Rahman S. Juma, Nihad Hameed Shehab, Daniel Breaz, Luminiţa-Ioana Cotîrlă, Maslina Darus and Alin Danciu
Symmetry 2024, 16(10), 1326; https://doi.org/10.3390/sym16101326 - 8 Oct 2024
Viewed by 487
Abstract
This article aims to significantly advance geometric function theory by providing a valuable contribution to analytic and multivalent functions. It focuses on differential subordination and superordination, which characterize the interactions between analytic functions. To achieve our goal, we employ a method that relies [...] Read more.
This article aims to significantly advance geometric function theory by providing a valuable contribution to analytic and multivalent functions. It focuses on differential subordination and superordination, which characterize the interactions between analytic functions. To achieve our goal, we employ a method that relies on the characteristics of differential subordination and superordination. As one of the latest advancements in this field, this technique is able to derive several results about differential subordination and superordination for multivalent functions defined by the new operator Mλ,pmv,ρ;ηFξ within the open unit disk A. Additionally, by employing the technique, the differential sandwich outcome is achieved. Therefore, this work presents crucial exceptional instances that follow the results. The findings of this paper can be applied to a wide range of mathematical and engineering problems, including system identification, orthogonal polynomials, fluid dynamics, signal processing, antenna technology, and approximation theory. Furthermore, this work significantly advances the knowledge and understanding of the analytical functions of the unit and its interactive higher relations. The characteristics and consequences of differential subordination theory are symmetric to those of differential superordination theory. By combining them, sandwich-type theorems can be derived. Full article
33 pages, 8447 KiB  
Article
Direct Identification of the Continuous Relaxation Time and Frequency Spectra of Viscoelastic Materials
by Anna Stankiewicz
Materials 2024, 17(19), 4870; https://doi.org/10.3390/ma17194870 - 3 Oct 2024
Viewed by 538
Abstract
Relaxation time and frequency spectra are not directly available by measurement. To determine them, an ill-posed inverse problem must be solved based on relaxation stress or oscillatory shear relaxation data. Therefore, the quality of spectra models has only been assessed indirectly by examining [...] Read more.
Relaxation time and frequency spectra are not directly available by measurement. To determine them, an ill-posed inverse problem must be solved based on relaxation stress or oscillatory shear relaxation data. Therefore, the quality of spectra models has only been assessed indirectly by examining the fit of the experiment data to the relaxation modulus or dynamic moduli models. As the measures of data fitting, the mean sum of the moduli square errors were usually used, the minimization of which was an essential step of the identification algorithms. The aim of this paper was to determine a relaxation spectrum model that best approximates the real unknown spectrum in a direct manner. It was assumed that discrete-time noise-corrupted measurements of a relaxation modulus obtained in the stress relaxation experiment are available for identification. A modified relaxation frequency spectrum was defined as a quotient of the real relaxation spectrum and relaxation frequency and expanded into a series of linearly independent exponential functions that are known to constitute a basis of the space of square-integrable functions. The spectrum model, given by a finite series of these basis functions, was assumed. An integral-square error between the real unknown modified spectrum and the spectrum model was taken as a measure of the model quality. This index was proved to be expressed in terms of the measurable relaxation modulus at uniquely defined sampling instants. Next, an empirical identification index was introduced in which the values of the real relaxation modulus are replaced by their noisy measurements. The identification consists of determining the spectrum model that minimizes this empirical index. Tikhonov regularization was applied to guarantee model smoothness and noise robustness. A simple analytical formula was derived to calculate the optimal model parameters and expressed in terms of the singular value decomposition. A complete identification algorithm was developed. The analysis of the model smoothness and model accuracy for noisy measurements was carried out. The equivalence of the direct identification of the relaxation frequency and time spectra has been demonstrated when the time spectrum is modeled by a series of functions given by the product of the relaxation frequency and its exponential function. The direct identification concept can be applied to both viscoelastic fluids and solids; however, some limitations to its applicability have been pointed out. Numerical studies have shown that the proposed identification algorithm can be successfully used to identify Gaussian-like and Kohlrausch–Williams–Watt relaxation spectra. The applicability of this approach to determining other commonly used classes of relaxation spectra was also examined. Full article
Show Figures

Graphical abstract

25 pages, 845 KiB  
Review
Oral and Gingival Crevicular Fluid Biomarkers for Jawbone Turnover Diseases: A Scoping Review
by Nurfatima Azzahra Fadli, Mariati Abdul Rahman, Saiful Anuar Karsani and Roszalina Ramli
Diagnostics 2024, 14(19), 2184; https://doi.org/10.3390/diagnostics14192184 - 30 Sep 2024
Viewed by 617
Abstract
Gingival crevicular fluid (GCF) and oral fluid have emerged as promising diagnostic tools for detecting biomarkers. This review aimed to evaluate the existing literature on using oral fluids as a source of biomarkers for bone turnover diseases affecting the jawbone. A comprehensive search [...] Read more.
Gingival crevicular fluid (GCF) and oral fluid have emerged as promising diagnostic tools for detecting biomarkers. This review aimed to evaluate the existing literature on using oral fluids as a source of biomarkers for bone turnover diseases affecting the jawbone. A comprehensive search strategy was executed between August 2014 and August 2024 across five major databases (Web of Science, EBSCOhost Dentistry & Oral Sciences Source, Cochrane Library, Scopus, and PubMed) and grey literature sources. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) was applied. The screening was facilitated using Rayyan at rayyan.ai and Endnote X20 software tools, culminating in the evaluation of 14,965 citations from databases and 34 from grey literature. Following rigorous scrutiny, 37 articles were selected for inclusion in this review, encompassing diseases such as periodontitis, medication-related osteonecrosis of the jaw (MRONJ), and osteoporosis. The quality of the included observational studies was assessed using the Revised Risk of Bias Assessment Tool for Non-Randomized Studies (RoBANS 2). Interleukin-1 beta (IL-1β), sclerostin, osteoprotegerin (OPG), and interleukin-34 (IL-34) emerged as significant biomarkers in GCF, and they were mainly from periodontitis and osteoporosis. Osteocalcin (OC), IL-1β, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), OPG, and matrix metalloproteinase-9 (MMP-9) were significant in oral fluid or saliva, and they were from periodontitis, MRONJ, and osteoporosis. These findings underscore the potential use of oral fluids, which are regarded as non-invasive tools for biomarker identification in bone turnover. Many biomarkers overlap, and it is important to identify other specific biomarkers to enable accurate diagnosis of these conditions. Full article
(This article belongs to the Special Issue Diagnostic Approach and Innovations in the Different Dentistry Fields)
Show Figures

Figure 1

Back to TopTop