Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,723)

Search Parameters:
Keywords = energy harvester

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2926 KiB  
Review
MHD Generation for Sustainable Development, from Thermal to Wave Energy Conversion: Review
by José Carlos Domínguez-Lozoya, David Roberto Domínguez-Lozoya, Sergio Cuevas and Raúl Alejandro Ávalos-Zúñiga
Sustainability 2024, 16(22), 10041; https://doi.org/10.3390/su162210041 - 18 Nov 2024
Viewed by 23
Abstract
Magnetohydrodynamic (MHD) generators are direct energy conversion devices that transform the motion of an electrically conducting fluid into electricity through interaction with a magnetic field. Developed as an alternative to conventional turbine-generator systems, MHD generators evolved through the 20th century from large units, [...] Read more.
Magnetohydrodynamic (MHD) generators are direct energy conversion devices that transform the motion of an electrically conducting fluid into electricity through interaction with a magnetic field. Developed as an alternative to conventional turbine-generator systems, MHD generators evolved through the 20th century from large units, which are intended to transform thermal energy into electricity using plasma as a working fluid, to smaller units that can harness heat from a variety of sources. In the last few decades, an effort has been made to develop energy conversion systems that incorporate MHD generators to harvest renewable sources such as solar and ocean energy, strengthening the sustainability of this technology. This review briefly synthesizes the main steps in the evolution of MHD technology for electricity generation, starting by outlining its physical principles and the proposals to convert thermal energy into electricity, either using a high-temperature plasma as a working fluid or a liquid metal in a one- or two-phase flow at lower temperatures. The use of wave energy in the form of acoustic waves, which were obtained from the conversion of thermal energy through thermoacoustic devices coupled to liquid metal and plasma MHD generators, as well as alternatives for the transformation of environmental energy resources employing MHD transducers, is also assessed. Finally, proposals for the conversion of ocean energy, mainly in the form of waves and tides, into electric energy, through MHD generators using either seawater or liquid metal as working fluids, are presented along with some of the challenges of MHD conversion technology. Full article
Show Figures

Figure 1

19 pages, 1407 KiB  
Article
Optimal Control of Nonlinear, Nonautonomous, Energy Harvesting Systems Applied to Point Absorber Wave Energy Converters
by Houssein Yassin, Tania Demonte Gonzalez, Kevin Nelson, Gordon Parker and Wayne Weaver
J. Mar. Sci. Eng. 2024, 12(11), 2078; https://doi.org/10.3390/jmse12112078 - 18 Nov 2024
Viewed by 222
Abstract
Pursuing sustainable energy solutions has prompted researchers to focus on optimizing energy extraction from renewable sources. Control laws that optimize energy extraction require accurate modeling, often resulting in time-varying, nonlinear differential equations. An energy-maximizing optimal control law is derived for time-varying, nonlinear, second-order, [...] Read more.
Pursuing sustainable energy solutions has prompted researchers to focus on optimizing energy extraction from renewable sources. Control laws that optimize energy extraction require accurate modeling, often resulting in time-varying, nonlinear differential equations. An energy-maximizing optimal control law is derived for time-varying, nonlinear, second-order, energy harvesting systems. We demonstrate that sustaining periodic motion under this control law when subjected to periodic disturbances necessitates identifying appropriate initial conditions, inducing the system to follow a limit cycle. The general optimal solution is applied to two point absorber wave energy converter models: a linear model where the analytical derivation of initial conditions suffices and a nonlinear model demanding a numerical approach. A stable limit cycle is obtained for the latter when the initial conditions lie within an ellipse centered at the origin of the phase plane. This work advances energy-maximizing optimal control solutions for nonautonomous nonlinear systems with application to point absorbers. The results also shed light on the significance of initial conditions in achieving physically realizable periodic motion for periodic energy harvesting systems. Full article
Show Figures

Figure 1

20 pages, 6019 KiB  
Article
Experimental Measurements of Wind Flow Characteristics on an Ellipsoidal Vertical Farm
by Simeng Xie, Pedro Martinez-Vazquez and Charalampos Baniotopoulos
Buildings 2024, 14(11), 3646; https://doi.org/10.3390/buildings14113646 (registering DOI) - 16 Nov 2024
Viewed by 322
Abstract
The rise of high-rise vertical farms in cities is helping to mitigate urban constraints on crop production, including land, transportation, and yield requirements. However, separate issues arise regarding energy consumption. The utilisation of wind energy resources in high-rise vertical farms is therefore on [...] Read more.
The rise of high-rise vertical farms in cities is helping to mitigate urban constraints on crop production, including land, transportation, and yield requirements. However, separate issues arise regarding energy consumption. The utilisation of wind energy resources in high-rise vertical farms is therefore on the agenda. In this study, we investigate the aerodynamic performance of an ellipsoidal tall building with large openings to determine, on the one hand, the threshold income wind that could impact human comfort, and on the other, the turbulence intensity at specific locations on the roof and façade where micro-wind turbines could operate. To this end, we calculate the wind pressure coefficient and turbulence intensity of two scale models tested within a wind tunnel facility and compare the results with a separate CFD simulation completed in the past. The results confirm that the wind turbines installed on the building façade at a height of at least z/h = 0.725 can operate properly when the inlet wind speed is greater than 7 m/s. Meanwhile, the wind regime on the roof is more stable, which could yield higher energy harvesting via wind turbines. Furthermore, we observe that the overall aerodynamic performance of the models tested best under wind flowing at angles of 45° and 60° with respect to their centreline, whereas the turbulence at the wind envelope compares to that of the free wind flow at roof height. Full article
(This article belongs to the Special Issue Wind Load Effects on High-Rise and Long-Span Structures: 2nd Edition)
Show Figures

Figure 1

17 pages, 2213 KiB  
Article
A Room-Level Indoor Localization Using an Energy-Harvesting BLE Tag
by Yutao Chen, Yun Wang and Yubin Zhao
Electronics 2024, 13(22), 4493; https://doi.org/10.3390/electronics13224493 - 15 Nov 2024
Viewed by 253
Abstract
Energy-efficient and cost-effective localization systems are attractive for large-scale tracking and localization of goods. In this paper, we propose a room-level localization system using energy-harvesting BLE tags to track the targets. We introduce the Dempster–Shafer (D–S) evidence theory combined with fingerprinting technology for [...] Read more.
Energy-efficient and cost-effective localization systems are attractive for large-scale tracking and localization of goods. In this paper, we propose a room-level localization system using energy-harvesting BLE tags to track the targets. We introduce the Dempster–Shafer (D–S) evidence theory combined with fingerprinting technology for location estimation. To reduce the estimation complexity, we divide the indoor environment into clear areas and fuzzy areas. The D–S algorithm is employed to locate the target in the clear areas when the targets are only detected by the anchor nodes within a single room. Conversely, fuzzy areas are characterized by RSSI signals detected by anchor nodes across multiple rooms. Then, the system integrates fingerprint matching to ensure superior positioning accuracy across the deployment. Extensive experiments demonstrate that the proposed system maintains a room-level positioning accuracy above 99% under standard test conditions within an area of approximately 2000 m2 with lots of rooms. Full article
Show Figures

Figure 1

14 pages, 10000 KiB  
Article
High-Efficiency Triple-Junction Polymer Solar Cell: A Theoretical Approach
by Fazli Sattar, Xiaozhuang Zhou and Zakir Ullah
Molecules 2024, 29(22), 5370; https://doi.org/10.3390/molecules29225370 - 14 Nov 2024
Viewed by 290
Abstract
This study presents the theoretical design and evaluation of a triple-junction polymer solar cell architecture, incorporating oligomers of PDCBT, PPDT2FBT, and PDPP3T as donor materials and PC71BM as the electron acceptor. Using density functional theory (DFT) simulations and time-dependent DFT (TD-DFT) [...] Read more.
This study presents the theoretical design and evaluation of a triple-junction polymer solar cell architecture, incorporating oligomers of PDCBT, PPDT2FBT, and PDPP3T as donor materials and PC71BM as the electron acceptor. Using density functional theory (DFT) simulations and time-dependent DFT (TD-DFT) methods, the investigation covers essential photovoltaic parameters, including molecular geometries, UV-Vis spectra, and charge transport properties. The device is structured to maximize solar energy absorption across the spectrum, featuring front, middle, and back junctions with band gaps of 1.9 eV, 1.63 eV, and 1.33 eV, respectively. Each layer targets different regions of the solar spectrum, optimizing light harvesting and charge separation. This innovative multi-junction design offers a promising pathway to enhanced power conversion efficiencies in polymer solar cells, advancing the integration of renewable energy technologies. Full article
Show Figures

Figure 1

16 pages, 4231 KiB  
Article
Mode-Adaptive Surface Pattern Design for Enhanced Triboelectric Nanogenerator Performance
by Masoumeh Karimi Kisomi, Muhammad Sohaib Roomi and M. A. Parvez Mahmud
Nanoenergy Adv. 2024, 4(4), 328-343; https://doi.org/10.3390/nanoenergyadv4040020 - 14 Nov 2024
Viewed by 253
Abstract
Triboelectric nanogenerators (TENGs) are a promising technique for harvesting environmental energy that is based on electrostatic induction and contact electrification. This is a method that uses every relative motion between two electrodes to convert mechanical energy into electrical energy. Several modes of TENGs [...] Read more.
Triboelectric nanogenerators (TENGs) are a promising technique for harvesting environmental energy that is based on electrostatic induction and contact electrification. This is a method that uses every relative motion between two electrodes to convert mechanical energy into electrical energy. Several modes of TENGs are designed based on various relative motions between electrode pairs. As TENGs are a surface phenomenon, properties such as the structure of the electrodes are key parameters that affect their performance. In this paper, in order to identify the best pattern designed adapted to the TENG mode, the effect of surface structures in each mode is investigated numerically. To achieve the best performance of the micro-patterned electrode, a comparative study has been conducted on the four TENG modes under the same conditions. To reach this goal, micro-patterned shapes such as pyramid, spherical, and cube structures are designed, and the open circuit voltage is calculated and compared to a flat surface. The results show that surface modification has a significant role in TENG’s performance. Based on this study, by using a cube-patterned electrode instead of a flat electrode, the output voltage increases from 233 V to 384 V in sliding mode. Also, by applying the spherical pattern, the output voltage is 1.7 times higher than a flat electrode in contact-separation mode. In the case of investigating TENG pattern structure, the results show that the electrical outputs of the patterned layer depend on the mode. The spherical pattern has a higher impact in contact-separation mode compared to the cube pattern. Meanwhile, in sliding mode, the cube pattern has a greater effect. This work provides a hint for designing an effective pattern on electrodes for a particular mode to enhance TENG performance. Full article
Show Figures

Figure 1

20 pages, 1183 KiB  
Article
Initialization Algorithms of a Rigid–Flexible Coupling Fluid–Structure Interaction System by Considering Length-and-Area Constraints
by Le Fang, Ziyu Zhou, Xingrong Huang and Zhe Li
Water 2024, 16(22), 3265; https://doi.org/10.3390/w16223265 - 13 Nov 2024
Viewed by 334
Abstract
Rigid–flexible coupling fluid–structure interaction systems are expected to be future solutions for reducing energy lost in water. The dynamics of these systems is usually investigated via numerical simulations. However, in existing numerical works there is no accurate algorithm for the initialization of the [...] Read more.
Rigid–flexible coupling fluid–structure interaction systems are expected to be future solutions for reducing energy lost in water. The dynamics of these systems is usually investigated via numerical simulations. However, in existing numerical works there is no accurate algorithm for the initialization of the flexible filament, which ensures both the length and area constraints, leading to inaccurate results or even severe numerical instabilities. We propose two alternative initialization algorithms, respectively, the “Trapezoidal arrangement” and the “Quartic curve arrangement”. The performances of both of these two algorithms are investigated in numerical simulations by using the immersed boundary method. The motion responses and force characteristics of the flexible filament are analyzed carefully, verifying the capability of the proposed algorithms. Specifically, “Quartic curve arrangement” is further recommended due to its good property of convergence. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

42 pages, 3233 KiB  
Systematic Review
A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting
by Bjarnhedinn Gudlaugsson, Bethany Marguerite Bronkema, Ivana Stepanovic and David Christian Finger
Energies 2024, 17(22), 5666; https://doi.org/10.3390/en17225666 - 13 Nov 2024
Viewed by 277
Abstract
There is a growing need to ensure the resilience of energy and water systems through digitalization, retrofit these systems for cleaner energy systems, and protect public safety in terms of water quality. This resilience requires a reliable power supply that could be provided [...] Read more.
There is a growing need to ensure the resilience of energy and water systems through digitalization, retrofit these systems for cleaner energy systems, and protect public safety in terms of water quality. This resilience requires a reliable power supply that could be provided by harnessing unexploited energy hidden in the current water infrastructure through the deployment of vortex-induced vibration energy harvesters. Therefore, being able to understand the feasibility of deploying these devices across technical, socioeconomic and environmental scales could further enhance successful deployment and integration of these devices. This paper aims to provide a systematic review investigating the development of energy harvester technologies to understand the key methods used to assess their application feasibility. This study used the PRISMA guidelines, and 139 articles were reviewed and synthesized. The trends were visualized, illustrating the current direction in energy harvesting development and application and methods used to assess the feasibility of these devices and technology. The majority of the reviewed studies focused on technical feasibility, design configuration, limitation, and identification of the most optimal application environment. The results revealed a huge opportunity for energy harvesters, especially as a power supply for monitoring sensors. Nevertheless, the results also identified a knowledge gap when it comes to assessing the overall application feasibility of energy harvesting as most studies currently neglect economic feasibility, environmental impacts, social aspects and energy resilience. Assessment tools will help fill this knowledge gap by identifying the key barriers and benefits gained from integrating this technology into existing energy systems and water systems. Full article
(This article belongs to the Section B2: Clean Energy)
Show Figures

Figure 1

16 pages, 3875 KiB  
Article
Temperature Effect of Cocoa (Theobroma cacao L.) Drying on Energy Consumption, Bioactive Composition and Vibrational Changes
by David J. Jiménez-Rodríguez, Pedro García-Alamilla, Facundo J. Márquez-Rocha, Rubén Vázquez-Medina, Areli Carrera-Lanestosa, Fanny A. González-Alejo, Carlos A. Sánchez-Ramos and Franco L. Ruiz-Santiago
Processes 2024, 12(11), 2523; https://doi.org/10.3390/pr12112523 - 12 Nov 2024
Viewed by 640
Abstract
Cocoa drying is the post-harvest thermal process used to condition the beans to a moisture content between 6.5 and 7% for storage and further processing. Convective drying is an energy-intensive process where time and temperature are considered critical factors for the degradation of [...] Read more.
Cocoa drying is the post-harvest thermal process used to condition the beans to a moisture content between 6.5 and 7% for storage and further processing. Convective drying is an energy-intensive process where time and temperature are considered critical factors for the degradation of bioactive compounds in edible products. In the present study, the energy parameters, vibrational spectroscopy, and changes in bioactive compounds of cocoa beans were studied during thin-layer hot air drying at 50 °C, 60 °C, and 70 °C. Moisture loss, specific energy consumption (SEC), energy efficiency, total phenolics (TPs), total flavonoids (TFs), and antioxidant activity (DPPH) were determined. Fourier transform infrared (FT-IR) spectroscopy with attenuated total reflectance (ATR) was used to characterize the samples, and a multivariate analysis was applied to find interactions among the components. The obtained SEC was 18,947.30–24,469.51 kJ/kg, and the energy efficiency was 9.73–12.31%. When the temperature was 70 °C, the best values for SEC and energy efficiency were obtained. The results also showed that the convective drying generated changes in the TP levels for the three temperatures, mainly after 300 min, with maximum levels between 360 and 600 min, at 70 °C; however, it does not have a clear relationship with the TFs and the antioxidant activity. The FT-IR and the multivariate analysis revealed changes in several signals in the 1800 to 400 cm−1 range, confirming the variation in the associated signal with phenolic compounds. Full article
(This article belongs to the Special Issue Drying Kinetics and Quality Control in Food Processing, 2nd Edition)
Show Figures

Figure 1

17 pages, 1090 KiB  
Article
The Possibility of Environmentally Sustainable Yield and Quality Management of Spring Wheat (Triticum aestivum L.) of the Cornetto Variety When Using Sapropel Extract
by Pavel Dmitriyev, Alexander Bykov, Ivan Zuban, Ivan Fomin, Saltanat Ismagulova, Kirill Ostrovnoy and Inna Jemaledinova
Sustainability 2024, 16(22), 9870; https://doi.org/10.3390/su16229870 - 12 Nov 2024
Viewed by 441
Abstract
Sustainable development is one of the main directions of modern agriculture. First of all, sustainability in the agricultural sector can be achieved through the possible abandonment of traditional mineral fertilizers. Many decades of using these fertilizers have led to the degradation of arable [...] Read more.
Sustainable development is one of the main directions of modern agriculture. First of all, sustainability in the agricultural sector can be achieved through the possible abandonment of traditional mineral fertilizers. Many decades of using these fertilizers have led to the degradation of arable soils and to soil and environmental pollution. As a result, this causes reductions in yields and the environmental quality of agricultural products and affects the health of the population. An alternative to traditional mineral fertilizers may be the use of innovative organomineral fertilizers obtained from local resources. These include manure, humus, compost, sediments, etc. In recent years, fertilizers obtained from the sapropels of the bottom sediments of lakes have become widespread. Their distinctive feature is the environmental friendliness and completeness of the content of chemical elements and substances necessary for the development and growth of plants. In addition, the methods of obtaining and applying these fertilizers allow us to talk about their effectiveness in use. The range of applications of these fertilizers is diverse, from use in the form of a dry extract applied directly to the soil to the use of liquid suspensions used at various stages of processing and from pre-sowing seed treatment to watering and spraying plants at different periods of vegetation. Moreover, an important aspect is the research work on the variational use of sapropel fertilizers on different crops, with different methods of production and concentrations and at different stages of processing. This publication contains the results of a study of the effect of the obtained innovative sapropel fertilizer on productivity, wheat grain quality, and economic efficiency (Triticum aestivum L.). To identify the optimal concentration of sapropel extract, laboratory studies were carried out to determine the germination energy and germination of wheat seeds of different varieties when they were soaked in various concentrations: 0.4, 0.8, 1.2, 1.6, and 2.0 g/L. The best indicators of germination energy and germination of wheat seeds during treatment with the extract were obtained at a concentration of 1.2 g/L. The research was conducted at an accredited variety testing laboratory. A field experiment was conducted in the fields of the agrobiological station of North Kazakhstan University named after Manash Kozybayev. The treatment of the seeds was carried out by soaking them in sapropel extract to evenly distribute the substance. The scheme of the field experiment included the option of using foliar treatment with a solution of sapropel extract at the tillering stage. As a result of the application of the obtained extract in the field, environmental and socio-economic efficiency was noted. The conducted field studies note its positive effect and effectiveness on the morphological, qualitative, and quantitative indicators of the wheat harvest. In the areas where wheat seeds were pretreated, as well as where foliar treatment with the resulting sapropel suspension was carried out, the best yield indicators were revealed. In these variants of the experiment with pre-sowing and pre-sowing and foliar treatment with the sapropel extract solution, the yield was 3.63 and 3.81 tons per hectare, respectively. The introduction of sapropel extract at the stage of seed treatment before sowing, as well as foliar processing of wheat at the tillering stage, will increase the efficiency and profitability of the agricultural industry and obtain a synergistic effect in the form of socio-economic efficiency and environmental safety of production. In our opinion, this will contribute to the development of sustainable agriculture and the production of environmental products. Full article
Show Figures

Figure 1

25 pages, 6502 KiB  
Article
Computational Fluid Dynamics Modeling of Pressure-Retarded Osmosis: Towards a Virtual Lab for Osmotic-Driven Process Simulations
by Meisam Mohammadi Amin and Ulrich Krühne
Membranes 2024, 14(11), 236; https://doi.org/10.3390/membranes14110236 - 11 Nov 2024
Viewed by 456
Abstract
Pressure-Retarded Osmosis (PRO) is an osmotically driven membrane-based process that has recently garnered significant attention from researchers due to its potential for clean energy harvesting from salinity gradients. The complex interactions between mixed-mode channel flows and osmotic fluxes in real PRO membrane modules [...] Read more.
Pressure-Retarded Osmosis (PRO) is an osmotically driven membrane-based process that has recently garnered significant attention from researchers due to its potential for clean energy harvesting from salinity gradients. The complex interactions between mixed-mode channel flows and osmotic fluxes in real PRO membrane modules necessitate high-fidelity modeling approaches. In this work, an efficient CFD framework is developed for the 3D simulation of osmotically driven membrane processes. This approach is based on a two-way coupling between a CFD solver, which captures external concentration polarization (ECP) effects, and an analytical representation of internal concentration polarization (ICP). Consequently, the osmotic water flux and reverse salt flux (RSF) can be accurately determined, accounting for all CP effects without any limitations on the geometrical complexity of the membrane chamber or its flow mode/regime. The proposed model is validated against experimental data, showing good agreement across various PRO case studies. Additionally, the model’s flexibility to simulate other types of osmotically driven processes such as forward osmosis (FO) is examined. Thus, the contributions of ECP and ICP effects in local osmotic pressure drop along the membrane chamber are comprehensively compared for FO and PRO modes. Finally, the capability of the CFD model to simulate a lab-scale PRO module is demonstrated across a range of Reynolds numbers from low-speed laminar up to turbulent flow regimes. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

27 pages, 21860 KiB  
Article
Photovoltaic Integrated Shading Devices in the Retrofitting of Existing Buildings on Chinese Campuses Within a Regional Context
by Zhiwen Cai, Wenhao Zhang, Jiajian Chen and Ping Su
Buildings 2024, 14(11), 3577; https://doi.org/10.3390/buildings14113577 - 11 Nov 2024
Viewed by 418
Abstract
Retrofitting existing buildings to be more energy-efficient is a tremendous contribution to the sustainability of society. The application of photovoltaic integrated shading devices (PVSDs) accords with this ambition by blocking out unwanted radiant heat gain and generating clean electricity. The deployment of PVSDs [...] Read more.
Retrofitting existing buildings to be more energy-efficient is a tremendous contribution to the sustainability of society. The application of photovoltaic integrated shading devices (PVSDs) accords with this ambition by blocking out unwanted radiant heat gain and generating clean electricity. The deployment of PVSDs needs sensible design strategies to optimize the production of renewable energy while retaining the aesthetic quality of the built-up environment, especially in historic campuses. The concept was tested in a case study of buildings in South China University of Technology (SCUT) using Ladybug 1.4.0 and PVsyst 7.2, utilizing the existing “Xia’s shading” design method in historical environments and optimizing the design from the perspective of photovoltaic performance. Firstly, the photovoltaic (PV) panels were integrated as architectural components, and the parameters were incorporated into a mathematical equation based on “Xia’s shading” design method. This was followed by the assessment of the solar energy harvesting potential based on simulated annual solar irradiation values. Lastly, the PV panels’ solar irradiation potential under these different parameters was shown in figures to identify the optimum parameters combination for PVSD applications. The proposed methodology could evolve as a design tool and thus further assist in promoting the large-scale adoption of PVSDs in retrofit projects. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 626 KiB  
Article
Joint Design of Altitude and Channel Statistics Based Energy Beamforming for UAV-Enabled Wireless Energy Transfer
by Jinho Kang
Drones 2024, 8(11), 668; https://doi.org/10.3390/drones8110668 - 11 Nov 2024
Viewed by 450
Abstract
In recent years, UAV-enabled wireless energy transfer (WET) has attracted significant attention for its ability to provide ground devices with efficient and stable power by flexibly navigating three-dimensional (3D) space and utilizing favorable line-of-sight (LoS) channels. At the same time, energy beamforming utilizing [...] Read more.
In recent years, UAV-enabled wireless energy transfer (WET) has attracted significant attention for its ability to provide ground devices with efficient and stable power by flexibly navigating three-dimensional (3D) space and utilizing favorable line-of-sight (LoS) channels. At the same time, energy beamforming utilizing multiple antennas, in which energy beams are focused toward devices in desirable directions, has been highlighted as a key technology for substantially enhancing radio frequency (RF)-based WET efficiency. Despite its significant utility, energy beamforming has not been studied in the context of UAV-enabled WET system design. In this paper, we propose the joint design of UAV altitude and channel statistics based energy beamforming to minimize the overall charging time required for all energy-harvesting devices (EHDs) to meet their energy demands while reducing the additional resources and costs associated with channel estimation. Unlike previous works, in which only the LoS dominant channel without small-scale fading was considered, we adopt a more general air-to-ground (A2G) Rician fading channel, where the LoS probability as well as the Rician factor is dependent on the UAV altitude. To tackle this highly nonconvex and nonlinear design problem, we first examine the scenario of a single EHD, drawing insights by deriving an optimal energy beamforming solution in closed form. We then devise efficient methods for jointly designing altitude and energy beamforming in scenarios with multiple EHDs. Our numerical results demonstrate that the proposed joint design considerably reduces the overall charging time while significantly lowering the computational complexity compared to conventional methods. Full article
(This article belongs to the Special Issue UAV-Assisted Mobile Wireless Networks and Applications)
Show Figures

Figure 1

13 pages, 407 KiB  
Article
Evaluation of Organic Waste Long-Term Effects on Cellulose, Hemicellulose and Lignin Content in Energy Grass Species Grown in East-Central Poland
by Elżbieta Malinowska and Stanislav Torma
Energies 2024, 17(22), 5598; https://doi.org/10.3390/en17225598 - 9 Nov 2024
Viewed by 342
Abstract
Biomass can be used for electricity generation, especially in developing countries, but also in developed ones, where the utilization of renewable energy sources is being integrated into a sustainable economy. There are considerable differences in the scale of biomass use and in the [...] Read more.
Biomass can be used for electricity generation, especially in developing countries, but also in developed ones, where the utilization of renewable energy sources is being integrated into a sustainable economy. There are considerable differences in the scale of biomass use and in the technology of its processing. One of the most important sources of biofuel is the biomass of grass. This research aimed to determine the long-term effects of organic fertilizers on cellulose, hemicellulose, and lignin content in the biomass of three grass species: giant miscanthus (Miscanthus × giganteus), prairie cordgrass (Spartina pectinata), and switchgrass (Panicum virgatum L.) in the first three years of growth. The experiment was established in four replications on microplots of 2 m2 in April 2018. Before planting grass rhizomes, municipal sewage sludge (SS) and spent mushroom substrate (SMS) were introduced into the soil in various combinations. Biomass is harvested in December every year. The content of structural polysaccharides in the grass species statistically significantly varied in response to organic waste. Compared to other fertilizer combinations, SS application increased the content of cellulose in the biomass of Miscanthus giganteus (43.66% of DM) and Spartina pectinata (37.69% of DM) and hemicellulose in Spartina pectinata (27.80% of DM) and Panicum virgatum (23.64% of DM). Of the three species of grass, the chemical composition of Miscanthus giganteus cell walls was the most favorable for biofuel production, with the most cellulose and hemicellulose and the least lignin compared to other grass species. The content of lignin in the biomass of Miscanthus × giganteus and Spartina pectinata was the greatest on the plot with SMS and amounted to 7.79% of DM and 12.32% of DM, respectively. In the case of Panicum virgatum, the average content of lignin was similar across all fertilized plots, with 15.42% DM. Full article
(This article belongs to the Special Issue Biomass Resources to Bioenergy)
Show Figures

Figure 1

18 pages, 2742 KiB  
Article
Night Interruption with Red and Far-Red Light Optimizes the Phytochemical Composition, Enhances Photosynthetic Efficiency, and Increases Biomass Partitioning in Italian Basil
by Soheil Fallah, Sasan Aliniaeifard, Mahboobeh Zare Mehrjerdi, Shima Mirzaei and Nazim S. Gruda
Plants 2024, 13(22), 3145; https://doi.org/10.3390/plants13223145 - 8 Nov 2024
Viewed by 482
Abstract
Controlled environment agriculture is a promising solution to address climate change and resource limitations. Light, the primary energy source driving photosynthesis and regulating plant growth, is critical in optimizing produce quality. However, the impact of specific light spectra during night interruption on improving [...] Read more.
Controlled environment agriculture is a promising solution to address climate change and resource limitations. Light, the primary energy source driving photosynthesis and regulating plant growth, is critical in optimizing produce quality. However, the impact of specific light spectra during night interruption on improving phytochemical content and produce quality remains underexplored. This study investigated the effects of red (peak wavelength at 660 nm) and far-red night interruption (peak wavelength at 730 nm) on photosynthetic efficiency, biomass distribution, and phytochemical production in Italian basil (Ocimum basilicum L.). Treatments included red light, far-red light, a combination of both, and a control without night interruption. Red light significantly increased chlorophyll a by 16.8%, chlorophyll b by 20.6%, and carotenoids by 11%, improving photosynthetic efficiency and nutritional quality. Red light also elevated anthocyanin levels by 15.5%, while far-red light promoted flavonoid production by 43.56%. Although red light enhanced biomass, the primary benefit was improved leaf quality, with more biomass directed to leaves over roots. Far-red light reduced transpiration, enhancing post-harvest water retention and shelf life. These findings demonstrate that red and far-red night interruption can optimize phytochemical content, produce quality, and post-harvest durability, offering valuable insights for controlled environment agriculture. Future research should focus on refining night interruption light strategies across a broader range of crops to enhance produce quality and shelf life in controlled environment agriculture. Full article
Show Figures

Figure 1

Back to TopTop