Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,060)

Search Parameters:
Keywords = diets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12323 KiB  
Article
Effects of 1-Deoxynojirimycin Extracts of Mulberry Leaves on Oxidative Stress and the Function of the Intestinal Tract in Broilers Induced by H2O2
by Chengfeng Zhao, Mingzhu Wang, Tao Li, Dehui Li, Yuan Feng, Yuhua Wang, Liang Qu, Adileidys Ruiz Barcenas, Boris Ramos Serrano, Manman Shen and Weiguo Zhao
Animals 2024, 14(22), 3319; https://doi.org/10.3390/ani14223319 - 18 Nov 2024
Abstract
The poultry industry struggles with oxidative stress affecting gut health and productivity. This study examined using 1-Deoxynojirimycin (DNJ) extracts from mulberry leaves as an antioxidant in broilers feed to combat this issue. We divided 240 broilers, aged 16 days, into six groups, including [...] Read more.
The poultry industry struggles with oxidative stress affecting gut health and productivity. This study examined using 1-Deoxynojirimycin (DNJ) extracts from mulberry leaves as an antioxidant in broilers feed to combat this issue. We divided 240 broilers, aged 16 days, into six groups, including a control and groups exposed to oxidative stress through H2O2 injections, with different supplement levels of DNJ-E (40, 80, 120, and 160 mg/kg of the basal diet) lasting until the broilers reached 42 days old. We evaluated intestinal morphology, ultrastructure, oxidative stress markers, the tight junction, and inflammatory cytokines. Adding 40 mg/kg DNJ-E improved villus height, the villus-to-crypt ratio, and cellular ultrastructure, and increased SOD levels in the jejunum and ileum, as well as CAT levels in the duodenum and jejunum (p < 0.05), compared to the H2O2 group. The addition of DNJ had differential effects on oxidative stress, the intestinal barrier, and immune-related genes. Importantly, the dosages of 40 mg/kg and 80 mg/kg resulted in an upregulation of MUC2 mRNA expression (p < 0.05). These findings suggest that DNJ-E holds potential as a beneficial feed additive for enhancing broiler health, particularly at supplementation levels below 80 mg/kg, as higher concentrations may negatively influence intestinal health. Future investigations should aim to elucidate the underlying mechanisms through which DNJ-E operates within the avian gastrointestinal system. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

19 pages, 574 KiB  
Article
Association of Shift Work, Sociodemographic Variables and Healthy Habits with Obesity Scales
by Javier Tosoratto, Pedro Juan Tárraga López, Ángel Arturo López-González, Daniela Vallejos, Emilio Martínez-Almoyna Rifá and José Ignacio Ramirez-Manent
Life 2024, 14(11), 1503; https://doi.org/10.3390/life14111503 - 18 Nov 2024
Abstract
Background: Shift work has been associated with unhealthy lifestyle habits and a higher prevalence of obesity, which negatively impacts the health of shift workers. The objective of our study was to examine the influence of shift work on obesity, as well as on [...] Read more.
Background: Shift work has been associated with unhealthy lifestyle habits and a higher prevalence of obesity, which negatively impacts the health of shift workers. The objective of our study was to examine the influence of shift work on obesity, as well as on sociodemographic variables, anthropometric measurements, and lifestyle habits in individuals working this type of schedule. Methods: An observational, cross-sectional, descriptive study involving 53,053 workers from various labour sectors across several Spanish autonomous communities was conducted. It included 31,753 men (17,527 of them working shifts) and 21,300 women (11,281 of them working shifts). The relationship between shift work and obesity was examined, as well as its association with sex, age, social class, education level, smoking, alcohol consumption, sedentary behaviour, and unhealthy diet. Results: Obesity showed higher prevalence and mean values among shift workers across all four formulas used (BMI obesity, WtHR high, CUN BAE obesity, METS-VF high). All variables related to unhealthy lifestyle habits revealed a significantly greater prevalence among shift workers, with high statistical significance (p < 0.001). Age, sex, and social class affected the risk of obesity, with a greater prevalence observed in shift workers compared to non-shift workers (p < 0.001). Men had a higher risk than women, with an OR ranging from 1.17 (1.12–1.21) for BMI obesity to 7.45 (6.71–8.20) for METS-VF high. Conclusions: Shift workers exhibit a higher prevalence of obesity and unhealthy lifestyle habits, with men at greater risk. The variables that most significantly increase the risk of obesity include age, physical inactivity, low adherence to the Mediterranean diet, and alcohol consumption. Full article
(This article belongs to the Section Epidemiology)
24 pages, 1473 KiB  
Protocol
Switching Mediterranean Consumers to Mediterranean Sustainable Healthy Dietary Patterns (SWITCHtoHEALTHY): Study Protocol of a Multicentric and Multi-Cultural Family-Based Nutritional Intervention Study
by Lorena Calderón-Pérez, Alícia Domingo, Josep M. del Bas, Biotza Gutiérrez, Anna Crescenti, Djamel Rahmani, Amèlia Sarroca, José Maria Gil, Kenza Goumeida, Tianyu Zhang Jin, Metin Güldaş, Çağla Erdoğan Demir, Asmaa El Hamdouchi, Lazaros P. Gymnopoulos, Kosmas Dimitropoulos, Perla Degli Innocenti, Alice Rosi, Francesca Scazzina, Eva Petri, Leyre Urtasun, Giuseppe Salvio, Marco de la Feld and Noemi Boquéadd Show full author list remove Hide full author list
Nutrients 2024, 16(22), 3938; https://doi.org/10.3390/nu16223938 (registering DOI) - 18 Nov 2024
Abstract
Background/Objectives: Populations in Mediterranean countries are abandoning the traditional Mediterranean diet (MD) and lifestyle, shifting towards unhealthier habits due to profound cultural and socioeconomic changes. The SWITCHtoHEALTHY project aims to demonstrate the effectiveness of a multi-component nutritional intervention to improve the adherence of [...] Read more.
Background/Objectives: Populations in Mediterranean countries are abandoning the traditional Mediterranean diet (MD) and lifestyle, shifting towards unhealthier habits due to profound cultural and socioeconomic changes. The SWITCHtoHEALTHY project aims to demonstrate the effectiveness of a multi-component nutritional intervention to improve the adherence of families to the MD in three Mediterranean countries, thus prompting a dietary behavior change. Methods: A parallel, randomized, single-blinded, and controlled multicentric nutritional intervention study will be conducted over 3 months in 480 families with children and adolescents aged 3–17 years from Spain, Morocco, and Turkey. The multi-component intervention will combine digital interactive tools, hands-on educational materials, and easy-to-eat healthy snacks developed for this study. Through the developed SWITCHtoHEALTHY app, families will receive personalized weekly meal plans, which also consider what children eat at school. The engagement of all family members will be prompted by using a life simulation game. In addition, a set of activities and educational materials for adolescents based on a learning-through-playing approach will be codesigned. Innovative and sustainable plant-based snacks will be developed and introduced into the children’s dietary plan as healthy alternatives for between meals. By using a full-factorial design, families will be randomized into eight groups (one control and seven interventions) to test the independent and combined effects of each component (application and/or educational materials and/or snacks). The impact of the intervention on diet quality, economy, and the environment, as well as on classical anthropometric parameters and vital signs, will be assessed in three different visits. The COM-B behavioral model will be used to assess essential factors driving the behavior change. The main outcome will be adherence to the MD assessed through MEDAS in adults and KIDMED in children and adolescents. Conclusions: SWITCHtoHEALTHY will provide new insights into the use of sustained models for inducing dietary and lifestyle behavior changes in the family setting. It will facilitate generating, boosting, and maintaining the switch to a healthier MD dietary pattern across the Mediterranean area. Registered Trial, National Institutes of Health, ClinicalTrials.gov (NCT06057324). Full article
(This article belongs to the Special Issue Advances in Sustainable Healthy Diets)
21 pages, 376 KiB  
Article
Comparison of High n-3 PUFA Levels and Cyclic Heat Stress Effects on Carcass Characteristics, Meat Quality, and Oxidative Stability of Breast Meat of Broilers Fed Low- and High-Antioxidant Diets
by Manca Pečjak Pal, Jakob Leskovec, Alenka Levart, Tatjana Pirman, Janez Salobir and Vida Rezar
Animals 2024, 14(22), 3314; https://doi.org/10.3390/ani14223314 - 18 Nov 2024
Abstract
This study investigated the individual and combined effects of a high dietary n-3 PUFA intake and cyclic heat stress (HS) on the carcass characteristics, meat quality, and oxidative stability of broiler breast meat and the potential of antioxidant supplementation (vitamins E, C, and [...] Read more.
This study investigated the individual and combined effects of a high dietary n-3 PUFA intake and cyclic heat stress (HS) on the carcass characteristics, meat quality, and oxidative stability of broiler breast meat and the potential of antioxidant supplementation (vitamins E, C, and selenium) to mitigate these effects. A total of 192 one-day-old male Ross 308 broilers were randomly assigned to 24 pens within two controlled environment chambers and fed with the following diets: a basal diet low in antioxidants according to NRC recommendations (NRC group), a basal diet according to Aviagen recommendations additionally supplemented with 200 IU/kg vitamin E, 250 mg/kg vitamin C, and 0.15 mg/kg selenium (HAOX group), and these two diets further supplemented with 5% linseed oil (NRC N-3 and HAOX N-3 groups). On day 22, the broilers were exposed to the following two environmental conditions: thermoneutral (TN, 21 °C) or cyclic HS (HS, 34 ± 1 °C, 7 h/d) in a 2 × 2 × 2 factorial design. A high intake of n-3 PUFAs significantly decreased growth performance, dressing percentage, and breast yield, while the incidence of pale, soft, and exudative (PSE) meat characteristics and malondialdehyde (MDA) levels increased. Cyclic HS reduced body weight (BW) and average daily feed intake (ADFI), but had limited effects on meat quality. No interactions between n-3 PUFAs and HS were observed for any measurements. High antioxidant supplementation increased breast yield, improved meat quality, and reduced oxidative stress, as evidenced by an enhanced antioxidant activity and lower MDA levels. In conclusion, n-3 PUFAs had a negative effect on both the carcass characteristics and meat quality of broilers, while HS primarily affected only carcass characteristics, with neither stressor having severe adverse effects. High levels of antioxidants could mitigate the negative effects of dietary- and heat-induced oxidative stress by enhancing the oxidative stability of broiler meat. Full article
(This article belongs to the Section Animal Nutrition)
17 pages, 2100 KiB  
Article
Effects of Different Levels of Antarctic Krill Oil on the Ovarian Development of Macrobrachium rosenbergii
by Xiaochuan Zheng, Jie Yang, Xin Liu, Cunxin Sun, Qunlan Zhou, Aimin Wang, Jianming Chen and Bo Liu
Animals 2024, 14(22), 3313; https://doi.org/10.3390/ani14223313 - 18 Nov 2024
Abstract
Antarctic krill oil has been proven to be able to promote the ovarian development of crustaceans, but its optimal application dose and potential regulatory mechanism in Macrobrachium rosenbergii are still unclear. In this study, five isonitrogenous and isolipidic diets with gradient additions of [...] Read more.
Antarctic krill oil has been proven to be able to promote the ovarian development of crustaceans, but its optimal application dose and potential regulatory mechanism in Macrobrachium rosenbergii are still unclear. In this study, five isonitrogenous and isolipidic diets with gradient additions of Antarctic krill oil (0%, 1.5%, 3%, 4.5%, and 6%) were served exposed to 8 weeks of feeding. The results show that 3–4.5% Antarctic krill oil supplementation significantly increases the weight gain rate and specific growth rate of M. rosenbergii (p < 0.05). In addition, 3–4.5% Antarctic krill oil supplementation significantly increased the content of hemolymph vitellogenin (VTG) and the levels of reproductive hormones, including methyl farnesoate (MF), estradiol (E2), and progesterone (P4) (p < 0.05). The differences in ovarian index, oocyte volume, yolk granule deposition in oocytes, and the transcription levels of VTG genes in hepatopancreas and ovarian tissues demonstrated that the addition of Antarctic krill oil significantly promoted ovarian development and vitellogenesis, especially at the 4.5% addition level. In terms of molecular signaling, this study confirms that the retinol metabolic signaling pathway, MF signaling pathway, steroid hormone signaling pathway, and ecdysone signaling pathway, along with their specific molecules, such as Farnesoic acid-O-methyltransferase (FAMeT), retinoid x receptor (RXR), ecdysone receptor (EcR), and estrogen-related receptor (ERR), are involved in the regulation of the ovarian development of M. rosenbergii by adding Antarctic krill oil at appropriate doses. The findings indicate that the supplementation of 4.5% Antarctic krill oil in the diet is optimal for stimulating the secretion of reproductive hormones in female M. rosenbergii, thereby promoting vitellogenesis and ovarian development. Full article
(This article belongs to the Special Issue Advances in Aquaculture Nutrition for Sustainable Health Management)
Show Figures

Figure 1

22 pages, 1083 KiB  
Article
Dietary Zinc Restriction and Chronic Restraint Stress Affect Mice Physiology, Immune Organ Morphology, and Liver Function
by Dorota Bederska-Łojewska, Kinga Szczepanik, Justyna Turek, Agata Machaczka, Łukasz Gąsior, Bartłomiej Pochwat, Joanna Piotrowska, Bartłomiej Rospond and Bernadeta Szewczyk
Nutrients 2024, 16(22), 3934; https://doi.org/10.3390/nu16223934 (registering DOI) - 18 Nov 2024
Abstract
Background: Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice. Methods: The mice were divided [...] Read more.
Background: Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice. Methods: The mice were divided into four groups: control, chronic restraint stress for 3 weeks, a zinc-restricted diet (<3 mg/kg) for 4 weeks, and a combination of stress and zinc restriction. Mice spleen and thymus weights were measured, and hematoxylin–eosin staining was conducted for liver and intestinal morphometry. Moreover, metallothionein (MT-1, MT-2, and MT-3), zinc transporter (ZnT-1), oxidative stress markers (TBARS, SOD, and GSH-Px), and zinc, iron, and copper concentrations in the liver were evaluated. Immunohistochemical analysis of the jejunum for ZIP1 and ZIP4 was also performed. Conclusions: Our findings reveal that dietary zinc restriction and chronic stress induce structural changes in the intestines and immune organs and impact metallothionein expression, oxidative stress, and liver iron and copper homeostasis. Full article
(This article belongs to the Section Micronutrients and Human Health)
16 pages, 675 KiB  
Review
The Importance of Diet in the Treatment of Endometriosis
by Joanna Szczepanik and Małgorzata Dłużewska
Women 2024, 4(4), 453-468; https://doi.org/10.3390/women4040034 (registering DOI) - 18 Nov 2024
Abstract
The world of science is increasingly looking for answers to the question of how specific dietary components affect the risk of chronic diseases and assessing their potential to alleviate the severity of individual diseases. This research concerns both the assessment of the benefits [...] Read more.
The world of science is increasingly looking for answers to the question of how specific dietary components affect the risk of chronic diseases and assessing their potential to alleviate the severity of individual diseases. This research concerns both the assessment of the benefits of using individual dietary components and those of nutritional models. Endometriosis, due to its chronic and inflammatory nature, is also a topic of interest among scientists, who seek to support its course through proper nutrition. In endometriosis, great interest is focused on dietary patterns such as an anti-inflammatory diet, a gluten-free diet, a low-FODMAP diet, or a Mediterranean diet. An anti-inflammatory diet primarily focuses on fresh vegetables, fruits, seeds, nuts, whole grain products, and healthy sources of protein and fats, including mono- and polyunsaturated fatty acids, eliminating highly processed products, meat products, trans fats, and refined sugars. It is believed that this type of diet may contribute to reducing the severity of endometriosis symptoms and help reduce inflammation. The aim of the review is to identify the main trends in the field of diets supporting the treatment of endometriosis in the last 5 years. Full article
Show Figures

Figure 1

24 pages, 1698 KiB  
Article
Integrating Mixed Livestock Systems to Optimize Forage Utilization and Modify Woody Species Composition in Semi-Arid Communal Rangelands
by Mhlangabezi Slayi and Ishmael Festus Jaja
Land 2024, 13(11), 1945; https://doi.org/10.3390/land13111945 - 18 Nov 2024
Abstract
Communally owned rangelands serve as critical grazing areas for mixed livestock species such as cattle and goats, particularly in the arid and semi-arid regions of Southern Africa. This study aimed to evaluate the nutritional composition and woody species composition of communal rangelands where [...] Read more.
Communally owned rangelands serve as critical grazing areas for mixed livestock species such as cattle and goats, particularly in the arid and semi-arid regions of Southern Africa. This study aimed to evaluate the nutritional composition and woody species composition of communal rangelands where cattle and goat flocks graze together and to investigate the influence of grazing intensity on vegetation dynamics. Vegetation surveys were conducted across varying grazing intensities to assess species richness, biomass, and dietary preferences, while soil properties were analyzed to determine their interaction with vegetation attributes. Stepwise regression and path analyses were used to explore the relationships between soil characteristics, vegetation structure, and livestock dietary choices. The results revealed that high grazing pressure significantly reduced grass biomass (p = 0.003) and woody species density (p = 0.007) while increasing shrub cover (p = 0.018). Nutritional analysis indicated that goats preferred woody shrubs, which contributed 42.1% of their diet compared to 27.8% for cattle (p = 0.008). Regression analysis further showed that soil organic carbon (p = 0.002) and tree height (p = 0.041) were strong predictors of shrub cover. Seasonal variation significantly affected forage availability and nutritional content, with higher crude protein levels recorded during the wet season (p = 0.007). These findings suggest that grazing management strategies should be tailored to the distinct forage needs of cattle and goats to maintain the productivity and ecological stability of communal rangelands. A holistic approach that considers livestock dietary preferences, vegetation composition, and soil health is essential for sustainable rangeland management in mixed-species grazing systems. Full article
(This article belongs to the Section Land–Climate Interactions)
19 pages, 4473 KiB  
Article
Imeglimin Halts Liver Damage by Improving Mitochondrial Dysfunction in a Nondiabetic Male Mouse Model of Metabolic Dysfunction-Associated Steatohepatitis
by Kosuke Kaji, Soichi Takeda, Satoshi Iwai, Norihisa Nishimura, Shinya Sato, Tadashi Namisaki, Takemi Akahane and Hitoshi Yoshiji
Antioxidants 2024, 13(11), 1415; https://doi.org/10.3390/antiox13111415 - 18 Nov 2024
Abstract
Imeglimin promotes glucose-stimulated insulin secretion in the pancreas in a glucose-dependent manner and inhibits gluconeogenesis in the liver. Meanwhile, imeglimin can improve mitochondrial function in hepatocytes. We used a nondiabetic metabolic dysfunction-associated steatohepatitis (MASH) model to examine the effects of imeglimin on MASH [...] Read more.
Imeglimin promotes glucose-stimulated insulin secretion in the pancreas in a glucose-dependent manner and inhibits gluconeogenesis in the liver. Meanwhile, imeglimin can improve mitochondrial function in hepatocytes. We used a nondiabetic metabolic dysfunction-associated steatohepatitis (MASH) model to examine the effects of imeglimin on MASH independent of its glucose-lowering action. Mice fed a choline-deficient high-fat diet (CDA-HFD) were orally administered imeglimin (100 and 200 mg/kg twice daily), and MASH pathophysiology was evaluated after 8 weeks. Moreover, an in vitro study investigated the effects of imeglimin on palmitic acid (PA)-stimulated lipid accumulation, apoptosis, and mitochondrial dysfunction in human hepatocytes. CDA-HFD-fed mice showed hepatic steatosis, inflammation, and fibrosis without hyperglycemia. Imeglimin reduced hepatic steatosis in response to increased expression of β-oxidation-related markers. Imeglimin reduced reactive oxygen species accumulation and increased mitochondrial biogenesis in CDA-HFD-fed mice. Consequently, imeglimin suppressed hepatocyte apoptosis and decreased macrophage infiltration with reduced proinflammatory cytokine expression, suppressing hepatic fibrosis development. PA-stimulated hepatocytes induced lipogenesis, inflammatory cytokine production, and apoptosis, which were significantly suppressed by imeglimin. In mitochondrial function, imeglimin improved PA-stimulated decrease in mitochondrial membrane potential, mitochondrial complexes activity, oxygen consumption rate, and mitochondrial biogenesis marker expression. In conclusion, imeglimin could contribute to prevention of MASH progression through suppressing de novo lipogenesis and enhancing fatty acid oxidation. Full article
Show Figures

Figure 1

19 pages, 11582 KiB  
Article
Small Molecule Inhibitor of Protein Kinase C DeltaI (PKCδI) Decreases Inflammatory Pathways and Gene Expression and Improves Metabolic Function in Diet-Induced Obese Mouse Model
by Brenna Osborne, Rekha S. Patel, Meredith Krause-Hauch, Ashley Lui, Gitanjali Vidyarthi and Niketa A. Patel
Biology 2024, 13(11), 943; https://doi.org/10.3390/biology13110943 (registering DOI) - 18 Nov 2024
Abstract
Obesity promotes metabolic diseases such as type 2 diabetes and cardiovascular disease. PKCδI is a serine/threonine kinase which regulates cell growth, differentiation, and survival. Caspase-3 cleavage of PKCδI releases the C-terminal catalytic fragment (PKCδI_C), which promotes inflammation and apoptosis. We previously demonstrated an [...] Read more.
Obesity promotes metabolic diseases such as type 2 diabetes and cardiovascular disease. PKCδI is a serine/threonine kinase which regulates cell growth, differentiation, and survival. Caspase-3 cleavage of PKCδI releases the C-terminal catalytic fragment (PKCδI_C), which promotes inflammation and apoptosis. We previously demonstrated an increase in PKCδI_C in human obese adipose tissue (AT) and adipocytes. Subsequently, we designed a small molecule drug called NP627 and demonstrated that NP627 specifically inhibited the release of PKCδI_C in vitro. Here, we evaluate the in vivo safety and efficacy of NP627 in a diet-induced obese (DIO) mouse model. The results demonstrate that NP627 treatment in DIO mice increased glucose uptake and inhibited the cleavage of PKCδI_C in the AT as well as in the kidney, spleen, and liver. Next, RNAseq analysis was performed on the AT from the NP627-treated DIO mice. The results show increases in ADIPOQ and CIDEC, upregulation of AMPK, PI3K-AKT, and insulin signaling pathways, while inflammatory pathways were decreased post-NP627 administration. Further, levels of lncRNAs associated with metabolic pathways were affected by NP627 treatment. In conclusion, the study demonstrates that NP627, a small-molecule inhibitor of PKCδI activity, is not toxic and that it improves the metabolic function of DIO mice in vivo. Full article
Show Figures

Figure 1

16 pages, 3187 KiB  
Article
Non-Targeted Metabolomics of White Rhinoceros Colostrum and Its Changes During Early Lactation by 1H Nuclear Magnetic Resonance Spectroscopy
by Gernot Osthoff and Petronella Nieuwoudt
Metabolites 2024, 14(11), 637; https://doi.org/10.3390/metabo14110637 (registering DOI) - 18 Nov 2024
Abstract
Background/Objectives: Dynamic changes in components from colostrum to mature milk occur in any mammal. However, the time it takes to reach the mature milk stage differs between taxa and species, as do the final concentrations of all the components. The white rhinoceros belongs [...] Read more.
Background/Objectives: Dynamic changes in components from colostrum to mature milk occur in any mammal. However, the time it takes to reach the mature milk stage differs between taxa and species, as do the final concentrations of all the components. The white rhinoceros belongs to the family Perissodactyla, of which the milk and milk metabolome of the domesticated Equidae have been studied to some detail. Metabolomic information on the colostrum and milk of the Rhinocerotidae is lacking. Methods: Colostrum and milk were obtained from seven white rhinoceroses. Of note is that it was their first parturition and all followed the same diet, two factors known to affect colostrum composition and its changes during early lactation in domesticated mammals. Milk serum was prepared by the ultrafiltration of the milk samples. Untargeted 1N NMR spectra were processed with Topspin 3.2, calibration was carried out according to the alanine signal and the identification of signals was carried out with Chenomx and assignments in the literature. Statistical analysis of the data was carried out using MetaboAnalyst 6.0. Results: The changes in the metabolites were followed during the first 7 days of lactation as well as on day 20. The amounts of amino acids and their derivatives, organic acids and lipid metabolites decreased over lactation, while carbohydrates and their derivatives increased. The colostrum phase ended on day 2, while the transition to mature milk seemed to be complete by day 7. From day 3 to 7, galactose metabolism and tyrosine metabolism were uprated. Of interest is the presence of the oligosaccharide 3′-sialyllactose on days 3 and 4 of lactation. Conclusions: Mainly the content of carbohydrates increased over lactation, specifically lactose. The 3′-sialyllactose content peaked on days 3 and 4 of lactation. The colostrum phase ended on day 2. The mature milk stage was reached by day 7. The galactose metabolism and tyrosine metabolism were uprated after day 3 of lactation. Full article
(This article belongs to the Special Issue Animal Nutritional Metabolism and Toxicosis Disease)
Show Figures

Figure 1

12 pages, 1002 KiB  
Article
Relationship Between Serum Levels of Oxidized Lipoproteins, Circulating Levels of Myeloperoxidase and Paraoxonase 1, and Diet in Young Subjects with Insulin Resistance
by Yaquelin Marchán-Figueroa, Brenda Tepec-Casarrubias, Ulises de la Cruz-Mosso, Constanza Cecilia Astudillo-López, Inés Matia-García, Lorenzo Salgado-Goytia, Mónica Espinoza-Rojo, Natividad Castro-Alarcón, Eugenia Flores-Alfaro and Isela Parra-Rojas
Nutrients 2024, 16(22), 3930; https://doi.org/10.3390/nu16223930 (registering DOI) - 18 Nov 2024
Abstract
Oxidized low-density lipoproteins (ox-LDLs) are involved in atherosclerotic plaque formation and progression and have been linked to insulin resistance (IR). Myeloperoxidase is a potent oxidant of lipoproteins related to atherogenic risk. High-density lipoproteins (HDLs) are considered antioxidants due to their association with paraoxonase [...] Read more.
Oxidized low-density lipoproteins (ox-LDLs) are involved in atherosclerotic plaque formation and progression and have been linked to insulin resistance (IR). Myeloperoxidase is a potent oxidant of lipoproteins related to atherogenic risk. High-density lipoproteins (HDLs) are considered antioxidants due to their association with paraoxonase 1 (PON1). However, HDL can also be oxidized (ox-HDL), and its relationship with IR has not been described. This study evaluated the relationship between circulating levels of myeloperoxidase and paraoxonase 1, diet, and serum levels of ox-LDL and ox-HDL in young people with IR. This cross-sectional study examined 136 young subjects (67 and 69 with and without insulin resistance, respectively). Serum levels of ox-LDL, ox-HDL, myeloperoxidase, and PON1 were quantified using an enzyme-linked immunosorbent assay. The nutritional dietary content of the foods was determined with a food frequency questionnaire, which was analyzed with Nutrimind 2013 software. Serum ox-HDL levels were higher in young subjects without IR than those with IR (p = 0.031). Women with IR presented increased ox-LDL levels compared with women without IR (p = 0.012) and men with IR (p < 0.001). In the IR group, serum ox-LDL levels were negatively correlated with total cholesterol, triglycerides, and LDL-C, whereas the correlation was positive in the insulin-sensitive group. Consumption of vitamins B1 and B2 was related to increased HDL-C levels, while higher ox-LDL levels were related to vitamin K intake. In addition, low energy consumption and phosphorus increased PON1 levels. The results suggest that insulin resistance in young women may promote lipoprotein oxidation, and the intake of B complex vitamins may have an antiatherogenic effect. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Graphical abstract

12 pages, 4882 KiB  
Article
Tat-Beclin-1 Peptide Ameliorates Metabolic Dysfunction-Associated Steatotic Liver Disease by Enhancing Hepatic Autophagy
by Chun-Liang Chen, Fen-Fen Huang, Hsueh-Fang Lin, Chi-Chien Wu, Yen-Hsuan Ni and Yu-Cheng Lin
Int. J. Mol. Sci. 2024, 25(22), 12372; https://doi.org/10.3390/ijms252212372 - 18 Nov 2024
Abstract
Autophagy plays a crucial role in hepatic lipid metabolism, making it a key therapeutic target for addressing metabolic dysfunction-associated steatotic liver disease (MASLD). This study evaluates the efficacy of the Tat-Beclin-1 (TB-1) peptide, a specific autophagy inducer, in mitigating MASLD. Initially, we examined [...] Read more.
Autophagy plays a crucial role in hepatic lipid metabolism, making it a key therapeutic target for addressing metabolic dysfunction-associated steatotic liver disease (MASLD). This study evaluates the efficacy of the Tat-Beclin-1 (TB-1) peptide, a specific autophagy inducer, in mitigating MASLD. Initially, we examined the impact of the TB-1 peptide on autophagic activity and intracellular lipid metabolism in HepG2 cells treated with oleic acid, using a Tat scrambled (TS) control peptide for comparison. Subsequently, we established a MASLD mouse model by feeding a high-fat diet (HFD) for 16 weeks, followed by intraperitoneal administration of TB-1 or TS. Assessments included liver histopathology, serum biochemistry, and autophagy marker analysis. Our findings indicate that the TB-1 peptide significantly increased the LC3II/β-actin ratio in a dose- and time-dependent manner while promoting the expression of key autophagy markers Beclin-1 and ATG5-12. Furthermore, TB-1 treatment led to a marked reduction in both the size and number of lipid droplets in HepG2 cells. In vivo, HFD-fed mice exhibited increased liver weight, elevated serum alanine aminotransferase levels, and impaired oral glucose tolerance. TB-1 administration effectively mitigated these hepatic and metabolic disturbances. Histological analysis further revealed a substantial reduction in the severity of hepatic steatosis and fibrosis in TB-1-treated mice compared to TS controls. In conclusion, the TB-1 peptide shows significant potential in reducing the severity of MASLD in both HepG2 cell models and HFD-induced MASLD mouse models. Enhancing autophagy through TB-1 represents a promising therapeutic strategy for treating MASLD. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

18 pages, 4316 KiB  
Article
Macadamia (Macadamia integrifolia) Oil Prevents High-Fat Diet-Induced Lipid Accumulation and Oxidative Stress by Activating the AMPK/Nrf2 Pathway
by Ming Zhang, Yuhan Zhang, Lingdong Li, Changbin Wei, Taotao Dai, Ya Li, Xixiang Shuai and Liqing Du
Foods 2024, 13(22), 3672; https://doi.org/10.3390/foods13223672 (registering DOI) - 18 Nov 2024
Abstract
Hyperlipidemia, characterized by an abnormal lipid metabolism, is related to multiple cardiovascular diseases that pose challenges to global public health. Macadamia oil (MO), rich in monounsaturated fatty acids (around 80%), is regarded as a functional oil used to regulate lipid accumulation. Nonetheless, the [...] Read more.
Hyperlipidemia, characterized by an abnormal lipid metabolism, is related to multiple cardiovascular diseases that pose challenges to global public health. Macadamia oil (MO), rich in monounsaturated fatty acids (around 80%), is regarded as a functional oil used to regulate lipid accumulation. Nonetheless, the lipid-lowering mechanism of MO is still unknown. Therefore, the lipid-lowering effects of MO in high-fat diet (HFD)-induced hyperlipidemic mice were evaluated in this study. The results revealed that MO could effectively reduce body weight and the organ index and improve serum lipid levels by reducing total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels and elevating high-density lipoprotein cholesterol levels. Additionally, MO supplementation could improve abnormal liver function caused by hyperlipemia, characterized by decreased liver enzyme levels, including alanine aminotransferase and aspartate aminotransferase. Meanwhile, MO also exhibited an inhibitory effect on oxidative stress and lipid accumulation caused by an HFD. Moreover, findings from qRT-PCR and Western blotting analyses suggest that MO supplementation markedly prevented hyperlipidemia by inhibiting the expression of AMPK pathway-related genes, SREBP-1c, FAS, ACC, and PPAR-γ, as well as upregulating the levels of Nrf2, HO-1, and γ-GCS. These results indicate that MO attenuates lipid accumulation in vivo via AMPK/Nrf2 pathway activation, suggesting that MO could serve as a dietary supplementation or medication for treating hyperlipidemia. Full article
(This article belongs to the Special Issue Functional Lipids and Nutrition)
Show Figures

Graphical abstract

19 pages, 12970 KiB  
Article
Integrated Transcriptome and Metabolomics Analysis Reveals That Probiotics and Tea Polyphenols Synergetically Regulate Lipid Metabolism in Laying Hens
by Ming Qin, Cai Ma, Zengguang Wang, Mingzhi Liang, Yufen Sha, Jiewei Liu, Shunjin Ge, Longzong Guo and Ruili Li
Agriculture 2024, 14(11), 2072; https://doi.org/10.3390/agriculture14112072 - 18 Nov 2024
Viewed by 66
Abstract
Tea polyphenols (TP) and probiotics (PB) have been recognized for their ability to improve lipid metabolism and regulate immune function. However, their specific impact on lipid metabolism in laying hens has not been thoroughly elucidated. Therefore, this study sought to examine the effect [...] Read more.
Tea polyphenols (TP) and probiotics (PB) have been recognized for their ability to improve lipid metabolism and regulate immune function. However, their specific impact on lipid metabolism in laying hens has not been thoroughly elucidated. Therefore, this study sought to examine the effect of TP and Bacillus subtilis on lipid metabolism in laying hens through transcriptome and metabolome analyses. Two hundred Hy-line Brown layers were randomly allocated into four groups with supplemental dietary TP and PB alone and their combination for 8 weeks. Each treatment had 10 replicates of five birds. Supplementation with a TP and PB combination (TP-PB) increased redness (a*) (p < 0.05) compared to the control basal diet (CT). Dietary TP-PB decreased egg yolk and serum total cholesterol (TC) concentrations (p < 0.05) without affecting the content of total bile acid (TBA). The combined use of TP and PB significantly improved hepatic fatty acid synthetase (FAS) activity (p < 0.05) and reduced liver fat particles. Dietary TP-PB primarily influenced the transcript levels of genes involved in fat metabolic pathways. In particular, TP-PB supplementation reduced lipid storage by activating the Notch signaling pathway. Furthermore, the addition of TP-PB in the diet modulated the abundance of metabolic biomarkers associated with bile secretion and valine, leucine, and isoleucine degradation. An interaction network of mRNAs and metabolites was constructed associated with lipid metabolism, such as deoxycholic acid, TAG (14:3–14:3–20:5), PDK4, and HES4. Overall, these findings emphasized the potential health advantages of the TP and PB combination as a possible functional feed supplement in livestock nutrition. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

Back to TopTop