Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,381)

Search Parameters:
Keywords = decontamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3616 KiB  
Systematic Review
Comparison of Air Abrasion and Mechanical Decontamination for Managing Inflammatory Reactions around Dental Implants: A Systematic Review and Meta-Analysis
by Ki-Jung Jang, Ahrim Lyu, Sung-Hoon Han, Na Jin Kim, Saet-Byeol Han, Hye-Jung Song, Won-Jong Park and Jun-Beom Park
Appl. Sci. 2024, 14(17), 7775; https://doi.org/10.3390/app14177775 - 3 Sep 2024
Viewed by 233
Abstract
Background: A number of mechanical decontamination methods have been proposed, however, there is no agreed-upon gold standard among them. This study aims to conduct a meta-analysis to assess the differences in the management of an inflammatory reaction around dental implants between air abrasion [...] Read more.
Background: A number of mechanical decontamination methods have been proposed, however, there is no agreed-upon gold standard among them. This study aims to conduct a meta-analysis to assess the differences in the management of an inflammatory reaction around dental implants between air abrasion and mechanical decontamination. Methods: A comprehensive search strategy was employed, incorporating controlled vocabulary (MeSH) and free-text terms. This search was conducted by two reviewers to identify published systematic reviews. Three major electronic databases, namely, Medline via PubMed, the Cochrane database, and Embase, were searched up to May 2024. Results: Initially, 300 articles were identified. After conducting a comprehensive search and applying strict inclusion criteria, a total of 13 studies were deemed eligible for inclusion in the meta-analysis. The results showed that the mean difference in probing depth between air abrasion and other mechanical decontamination was 0.28 (95% confidence interval, −0.20 to 0.76). The mean difference in probing depth of air abrasion compared with other mechanical decontamination in maintenance purposes was 1.05 (95% confidence interval, 0.18 to 1.91). The mean difference in bleeding on probing between air abrasion and other mechanical decontamination was 0.51 (95% confidence interval, 0.07 to 0.95). The mean difference in alveolar bone loss between air abrasion and other mechanical decontamination was −0.14 (95% confidence interval, −0.77 to 0.48). The mean difference in alveolar bone loss for surgical approaches of air abrasion compared with other mechanical decontamination was 0.32 (95% confidence interval, 0.03 to 0.61). Conclusions: The findings of the study indicate that the use of air abrasion was just as effective as other mechanical decontamination methods in reducing probing depth and alveolar bone loss. The subgroup analysis showed that air abrasion was less effective in reducing probing depth in maintenance purposes. Additionally, air abrasion was less effective in reducing alveolar bone loss in surgical approaches. Full article
Show Figures

Figure 1

15 pages, 3059 KiB  
Article
Preliminary Exploration of Low Frequency Low-Pressure Capacitively Coupled Ar-O2 Plasma
by Niaz Wali, Weiwen Xiao, Qayam Ud Din, Najeeb Ur Rehman, Chiyu Wang, Jiatong Ma, Wenjie Zhong and Qiwei Yang
Processes 2024, 12(9), 1858; https://doi.org/10.3390/pr12091858 - 31 Aug 2024
Viewed by 417
Abstract
Non-thermal plasma as an emergent technology has received considerable attention for its wide range of applications in agriculture, material synthesis, and the biomedical field due to its low cost and portability. It has promising antimicrobial properties, making it a powerful tool for bacterial [...] Read more.
Non-thermal plasma as an emergent technology has received considerable attention for its wide range of applications in agriculture, material synthesis, and the biomedical field due to its low cost and portability. It has promising antimicrobial properties, making it a powerful tool for bacterial decontamination. However, traditional techniques for producing non-thermal plasma frequently rely on radiofrequency (RF) devices, despite their effectiveness, are intricate and expensive. This study focuses on generating Ar-O2 capacitively coupled plasma under vacuum conditions, utilizing a low-frequency alternating current (AC) power supply, to evaluate the system’s antimicrobial efficacy. A single Langmuir probe diagnostic was used to assess the key plasma parameters such as electron density (ne), electron temperature (Te), and electron energy distribution function (EEDF). Experimental results showed that ne increases (7 × 1015 m−3 to 1.5 × 1016 m−3) with a rise in pressure and AC power. Similarly, the EEDF modified into a bi-Maxwellian distribution with an increase in AC power, showing a higher population of low-energy electrons at higher power. Finally, the generated plasma was tested for antimicrobial treatment of Xanthomonas campestris pv. Vesicatoria. It is noted that the plasma generated by the AC power supply, at a pressure of 0.5 mbar and power of 400 W for 180 s, has 75% killing efficiency. This promising result highlights the capability of the suggested approach, which may be a budget-friendly and effective technique for eliminating microbes with promising applications in agriculture, biomedicine, and food processing. Full article
Show Figures

Figure 1

26 pages, 4809 KiB  
Article
Valorizing Tea Waste: Green Synthesis of Iron Nanoparticles for Efficient Dye Removal from Water
by Cristina Rodríguez-Rasero, María F. Alexandre-Franco, Carmen Fernández-González, Vicente Montes-Jiménez and Eduardo M. Cuerda-Correa
Antioxidants 2024, 13(9), 1059; https://doi.org/10.3390/antiox13091059 - 30 Aug 2024
Viewed by 276
Abstract
This study explores the valorization of tea leaf waste by extracting polyphenols through reflux extraction, subsequently using them to synthesize zero-valent iron nanoparticles (nZVI). The in situ generated nanoparticles, when combined with fixed amounts of hydrogen peroxide, facilitated the removal of various dyes [...] Read more.
This study explores the valorization of tea leaf waste by extracting polyphenols through reflux extraction, subsequently using them to synthesize zero-valent iron nanoparticles (nZVI). The in situ generated nanoparticles, when combined with fixed amounts of hydrogen peroxide, facilitated the removal of various dyes (methylene blue, methyl orange, and orange G) via a hetero-catalytic Fenton process. The iron nanoparticles were thoroughly characterized by gas adsorption of N2 at 77 K, scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), FT-IR spectroscopy, X-ray diffraction (XRD), and thermal analysis, including thermogravimetric analysis (TG) and temperature-programmed reduction (TPR). A statistical design of experiments and response surface methodology were employed to analyze the influence of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. The results demonstrated that optimizing the operational conditions could achieve 100% dye removal efficiency. This study highlights the potential of nZVI synthesized through eco-friendly methods as a promising solution for water decontamination involving diverse model dyes, thus contributing to sustainable waste management and environmental protection. Full article
(This article belongs to the Special Issue Antioxidant Properties and Applications of Food By-Products)
Show Figures

Figure 1

10 pages, 2199 KiB  
Communication
Comparison of Power Ultrasound and NALC-NaOH Decontamination Methods for Stool Mycobacterial Culture: A Prospective Study
by Peng Tian, Jing He, Xiaojie Ling, Yan Wang, Yunfeng Deng and Zhongfa Zhang
Microorganisms 2024, 12(9), 1799; https://doi.org/10.3390/microorganisms12091799 - 30 Aug 2024
Viewed by 362
Abstract
Stool samples have been reported to be useful for the diagnosis of pulmonary tuberculosis (PTB), especially in patients who are unable to produce sputum. However, contamination limits the usefulness of stool specimens in mycobacterial culture. In this study, a novel decontamination method of [...] Read more.
Stool samples have been reported to be useful for the diagnosis of pulmonary tuberculosis (PTB), especially in patients who are unable to produce sputum. However, contamination limits the usefulness of stool specimens in mycobacterial culture. In this study, a novel decontamination method of power ultrasound (PU) was evaluated for mycobacterial isolation from suspected PTB cases. Stool samples (n = 650) were collected, and each sample was divided into approximately three equal groups. In addition to an AFB smear (Auramine O method), the stool samples were treated using different decontamination methods (NaOH-NALC vs. PU methods). The sensitivity (calculated against CRS) and contamination rates between the two methods were compared using McNemar’s test. Of the 650 samples, 32 (4.92%) stool samples treated with the NaOH-NALC method were culture-positive, including Mycobacterium tuberculosis (M.TB; n = 21, 3.23%) and nontuberculous mycobacteria (NTM; n = 11, 1.69%). Sixty-one (9.38%) stool samples treated with the PU method were culture-positive, including M.TB (n = 37, 5.69%) and NTM (n = 24, 3.69%). Statistical analysis showed that a significant difference was found in the isolation rate of M.TB and NTM between the two methods (p < 0.05). Additionally, compared with the NALC-NaOH method (19.07%), stool samples treated with the PU method (13.23%) had a significantly lower contamination rate (p < 0.05). In conclusion, our findings suggest that the utilization of the PU method as a novel decontamination technique could significantly enhance the isolation rates of both NTM and M.TB when stool specimens are employed for culture. Compared to the NaOH-NALC method, this approach proves to be more effective in facilitating stool mycobacterial culture. Full article
(This article belongs to the Special Issue Prevention, Treatment and Diagnosis of Tuberculosis, 2nd Edition)
Show Figures

Figure 1

19 pages, 2692 KiB  
Article
Sustainable Recovery of the Health of Soil with Old Petroleum Hydrocarbon Contamination through Individual and Microorganism-Assisted Phytoremediation with Lotus corniculatus
by Rimas Meištininkas, Irena Vaškevičienė, Agnieszka I. Piotrowicz-Cieślak, Magdalena Krupka and Jūratė Žaltauskaitė
Sustainability 2024, 16(17), 7484; https://doi.org/10.3390/su16177484 - 29 Aug 2024
Viewed by 331
Abstract
Due to the large number of areas contaminated with TPH, there is significant interest in biological remediation technology research, offering a comprehensive and sustainable approach to soil decontamination and health recovery at the same time. This study aimed to investigate the effectiveness of [...] Read more.
Due to the large number of areas contaminated with TPH, there is significant interest in biological remediation technology research, offering a comprehensive and sustainable approach to soil decontamination and health recovery at the same time. This study aimed to investigate the effectiveness of remediating TPH-contaminated soil (6120 mg kg−1) using Lotus corniculatus along with a microorganism consortium (GTC-GVT/2021) isolated from historic TPH-contaminated sites. This study evaluated the removal of TPH and soil health recovery through changes in soil nutrient content, soil enzymatic activity, and the microbiological community. The growth of L. corniculatus was reduced in TPH-contaminated soil, particularly affecting root biomass by 52.17%. Applying inoculum positively affected total plant biomass in uncontaminated (51.44%) and contaminated (33.30%) soil. The GTC-GVT/2021 inoculum significantly enhanced the degradation of TPH in contaminated soil after 90 days by 20.8% and in conjunction with L. corniculatus by 26.33% compared to the control. The soil enzymatic activity was more pronounced in TPH-contaminated soil treatments, and in most cases, the presence of L. corniculatus and inoculum led to a significantly higher soil enzymatic activity. The cultivation of L. corniculatus and the inoculum resulted in an increased concentration of inorganic P, NH4+, and water-soluble phenols in the soil, while no rise in NO3 was observed. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

18 pages, 3200 KiB  
Article
Levofloxacin Degradation, Antimicrobial Activity Decrease, and Potential for Water Disinfection Using Peroxydisulfate Activation by Ag/TiO2 under Sunlight
by Sindy D. Jojoa-Sierra, Cesar Jaramillo-Paez, Efraím A. Serna-Galvis, Inés García-Rubio, María C. Hidalgo, José A. Navío, María P. Ormad, Ricardo A. Torres-Palma and Rosa Mosteo
Water 2024, 16(17), 2434; https://doi.org/10.3390/w16172434 - 28 Aug 2024
Viewed by 369
Abstract
Water quality and usability are global concerns due to microbial and chemical pollution resulting from anthropogenic activities. Therefore, strategies for eliminating contaminants are required. In this context, the removal and decrease in antibiotic activity (AA) associated with levofloxacin (LEV), using TiO2 and [...] Read more.
Water quality and usability are global concerns due to microbial and chemical pollution resulting from anthropogenic activities. Therefore, strategies for eliminating contaminants are required. In this context, the removal and decrease in antibiotic activity (AA) associated with levofloxacin (LEV), using TiO2 and Ag/TiO2 catalysts, with and without sunlight and peroxydisulfate, was evaluated. Additionally, the disinfection capacity of catalytic systems was assessed. The catalysts were synthesized and characterized. Moreover, the effect of Ag doping on visible light absorption was determined. Then, the photocatalytic treatment of LEV in water was performed. The materials characterization and EPR analyses revealed that LEV degradation and AA decrease were ascribed to a combined action of solar light, sulfate radical, and photocatalytic activity of the TiO2-based materials. Also, the primary byproducts were elucidated using theoretical analyses (predictions about moieties on LEV more susceptible to being attacked by the degrading species) and experimental techniques (LC-MS), which evidenced transformations on the piperazyl ring, carboxylic acid, and cyclic ether on LEV. Moreover, the AA decrease was linked to the antibiotic transformations. In addition, the combined system (i.e., light/catalyst/peroxydisulfate) was shown to be effective for E. coli inactivation, indicating the versatility of this system for decontamination and disinfection. Full article
(This article belongs to the Special Issue Control and Treatment of Emerging Contaminants in Water Ecosystems)
Show Figures

Figure 1

16 pages, 1395 KiB  
Article
Enhancement in Sulfamethoxazole Degradation via Efficient Heterogeneous Activation of Peracetic Acid by FeS
by Linyi Li, Yanlin Wu and Wenbo Dong
Water 2024, 16(17), 2405; https://doi.org/10.3390/w16172405 - 27 Aug 2024
Viewed by 417
Abstract
Peracetic acid (PAA) has attracted increasing attention in wastewater decontamination for yielding reactive oxygen species (ROS). In this study, mackinawite (FeS) was synthesized and applied as the heterogeneous catalyst for PAA activation. Using sulfamethoxazole (SMX) as the target pollutant, the influences of FeS [...] Read more.
Peracetic acid (PAA) has attracted increasing attention in wastewater decontamination for yielding reactive oxygen species (ROS). In this study, mackinawite (FeS) was synthesized and applied as the heterogeneous catalyst for PAA activation. Using sulfamethoxazole (SMX) as the target pollutant, the influences of FeS dosage, PAA dosage and initial pH values on SMX degradation by the FeS/PAA process were investigated. Under optimal conditions, SMX could be completely removed within 5 min with the apparent first-order rate constant (kobs) of 7.71 × 10−4 s−1. Electron spin resonance spectroscopy (ESR) analysis and radical scavenging experiments were modulated to detect the active species. During the activation process of PAA, various active components were evidenced to be hydroxyl radicals (HO), singlet oxygen (1O2), superoxide radicals (O2•−) and organic radicals (R-O, e.g., CH3C(O)O and CH3C(O)OO), whereas HO and R-O were demonstrated as the dominant active species responsible for SMX abatement. Both dissolved Fe(II) ions and active sites on the surface of FeS were proven to be activators for PAA, and SMX abatement was highly promoted as a result. Furthermore, the acidic pH displayed superior efficiency in SMX decomposition compared with alkaline and neutral conditions. Five degradation pathways of SMX were put forward and the toxicity of byproducts was further evaluated. Overall, this study provided an efficient and environmentally friendly PAA activation approach using FeS, which might broaden its applicability in the remediation of micropollutants. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2191 KiB  
Article
Surface Decontamination of Titanium Dental Implants Subjected to Implantoplasty by Treatment with Citric Acid Solutions
by Pilar Fernández-Garrido, Begoña M. Bosch, Javier Gil and Manuel Fernández-Domínguez
Coatings 2024, 14(9), 1093; https://doi.org/10.3390/coatings14091093 - 27 Aug 2024
Viewed by 580
Abstract
Implantoplasty is one of the most common techniques to remove peri-implantitis from the surface of dental implants. It is a process of mechanization of the titanium surface, causing the loss of the roughness of the dental implant, which leads to difficulty in tissue [...] Read more.
Implantoplasty is one of the most common techniques to remove peri-implantitis from the surface of dental implants. It is a process of mechanization of the titanium surface, causing the loss of the roughness of the dental implant, which leads to difficulty in tissue regeneration. The aim of this research is to apply a decontaminant based on citric acid and add collagen and magnesium cations to promote tissue formation and have a bactericidal character. Eighty commercially pure grade 3 titanium discs were used to perform the implantoplasty protocol, like the one used in dental clinics. They were treated with four different solutions: 25% citric acid, 25% citric acid with the addition of collagen 0.25 g/L, 25% citric acid with the addition of 0.50 g/L and the latter with the addition of 1% Mg (NO3)2. The roughness was determined by confocal microscopy, the contact angle, adhesion and proliferation of HFFs fibroblasts, proliferation of SaOS-2 osteoblasts and bactericidal behavior by culturing very common bacteria in the oral cavity, Gram-positive Streptococcus sanguinis and gordonii and as Gram-negative Pseudomonas aeruginosa. The results showed that the treatment with citric acid slightly increases the roughness and decreases the contact angle from 78 to 13°, making the surface superhydrophilic. Fibroblast proliferation studies show a very significant increase at 24 h, the most favorable solution being the one containing 0.50 g/L of collagen with the presence of magnesium in a 25% citric acid solution. This same solution shows the highest cytocompatibility and osteoblastic proliferation with statistically significant differences with respect to the control and the rest of the solutions. Microbiological studies show a bactericidal effect due to the presence of citric acid, which is especially effective on Gram-positive bacteria. The results allow us to have mouthwashes that can be applied in the patient’s mouth, which will help the regeneration of tissues and avoid new bacterial colonization. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

16 pages, 12709 KiB  
Article
A Study on the Optimization of Water Jet Decontamination Performance Parameters Based on the Response Surface Method
by Xianyan Qiu, Mengkun Wang, Bingzheng Chen and Yang Ai
Appl. Sci. 2024, 14(16), 7409; https://doi.org/10.3390/app14167409 - 22 Aug 2024
Viewed by 328
Abstract
The substrate that adheres between the teeth of the traveling track plate during the operation of a deep-sea polymetallic nodule mining vehicle affects the driving performance, so this study aimed to investigate the effect of the water jet on the cleaning and decontamination [...] Read more.
The substrate that adheres between the teeth of the traveling track plate during the operation of a deep-sea polymetallic nodule mining vehicle affects the driving performance, so this study aimed to investigate the effect of the water jet on the cleaning and decontamination performance of the track under different conditions. An optimization design method based on response surface methodology (RSM) is proposed. Based on the Box–Behnken design, the optimization variables of jet pressure, jet target distance, and impact angle, and the target response of jet strike pressure on tracks, were selected, and the numerical simulation method was combined with the response surface method to establish the regression model of the response of each optimization variable to the jet strike pressure on tracks and to determine the optimal parameter combinations. The study findings indicate that the primary factor influencing the pressure of the jet striking the crawler is the jet pressure. The hierarchical order of influence on the pressure of the jet striking the crawler, under the interaction of the three factors, is as follows: jet pressure and impact angle, jet pressure and target distance of the jet, and target distance of the jet and impact angle. The maximum pressure of the jet striking the crawler occurs when the jet pressure is 0.983 MPa, the target distance is 0.14 m, and the impact angle is 89.5°. Overall, the proposed design serves as a systematic framework for parameter optimization in the cleaning and decontamination process, and the research method and results provide theoretical references for the optimal design of mining truck desorption efficiency, which is critical for increasing mining efficiency and lowering energy consumption. Full article
Show Figures

Figure 1

12 pages, 5513 KiB  
Proceeding Paper
Decontamination of Heavy and Trace Metals by Using Natural Sorbents: A Case Study of Chemical Laboratory Wastewater Treatment
by Ahmed M. A. Aly, Ahmed H. A. Emam, Ala H. S. Alardah, Rinad A. M. Edriss Khataby, Ahmed Easa, Ahmad A. Ahmadi, Mohammad Ibrahim and Noora Al-Qahtani
Mater. Proc. 2024, 18(1), 6; https://doi.org/10.3390/materproc2024018006 - 21 Aug 2024
Viewed by 73
Abstract
Chemical wastewater treatment in laboratories poses a significant challenge due to the complex nature of the contaminants involved. Humic materials and clay have emerged as promising solutions for remediation due to their unique properties, such as high adsorption capacity and ability to form [...] Read more.
Chemical wastewater treatment in laboratories poses a significant challenge due to the complex nature of the contaminants involved. Humic materials and clay have emerged as promising solutions for remediation due to their unique properties, such as high adsorption capacity and ability to form stable complexes with heavy metals. This research explores the potential of humic materials and clay in wastewater treatment by evaluating their effectiveness in removing various chemicals commonly found in laboratory effluents. Ultimately, this research aims to contribute to developing sustainable and cost-effective approaches for managing chemical wastewater in laboratories. Humic acid demonstrated a higher affinity for specific metals, with Cobalt (Co) showing the highest uptake, followed by Manganese (Mn) and Molybdenum (Mo), among other elements. On the other hand, the natural clay sample exhibited a different uptake sequence, indicating its distinct sorption preferences for various metals. The notable uptake of Molybdenum (Mo), Barium (Ba), and Arsenic (As) by the clay sample underscores its potential as an effective sorbent for these elements in wastewater treatment applications. Full article
Show Figures

Figure 1

11 pages, 2975 KiB  
Article
The Construction of Iodine-Doped Carbon Nitride as a Metal-Free Nanozyme for Antibacterial and Water Treatment
by Xinru Cai, Tongtong Xie, Linshan Luo and Xiting Li
Nanomaterials 2024, 14(16), 1369; https://doi.org/10.3390/nano14161369 - 21 Aug 2024
Viewed by 436
Abstract
Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic [...] Read more.
Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic activity compared to pure CN, due to enhanced light adsorption and a narrowed band gap. Antibacterial tests confirmed that I-CN exhibits exceptional antibacterial activity against both Escherichia coli and Staphylococcus aureus. The results showed that I-CN effectively generates superoxide radicals and hydroxyl radicals under light irradiation, resulting in enhanced antibacterial activity. In addition, I-CN can also be applied for a heterogeneous photo-Fenton-like reaction, achieving a high performance for the degradation of sulfamethoxazole (SMX), a typical antibiotic, via the photocatalytic activation of peroxymonosulfate (PMS). These results shed new light on the fabrication of metal-free nanozymes and their applications for disinfection and water decontamination. Full article
(This article belongs to the Special Issue Nanocatalysts for Environmental Remediation)
Show Figures

Figure 1

22 pages, 1583 KiB  
Review
Reduction in Ochratoxin A Occurrence in Coffee: From Good Practices to Biocontrol Agents
by Claudia López-Rodríguez, Carol Verheecke-Vaessen, Caroline Strub, Angélique Fontana, Sabine Schorr-Galindo and Angel Medina
J. Fungi 2024, 10(8), 590; https://doi.org/10.3390/jof10080590 - 20 Aug 2024
Viewed by 441
Abstract
Ochratoxin A (OTA) is a mycotoxin mainly produced by Aspergillus section Circumdati and section Nigri across the coffee chain. OTA is nephrotoxic and is a threat to human health. This review summarizes current knowledge on how to reduce OTA concentration in coffee from [...] Read more.
Ochratoxin A (OTA) is a mycotoxin mainly produced by Aspergillus section Circumdati and section Nigri across the coffee chain. OTA is nephrotoxic and is a threat to human health. This review summarizes current knowledge on how to reduce OTA concentration in coffee from farm to cup. After a brief introduction to the OTA occurrence in coffee, current good management practices are introduced. The core of this review focuses on biocontrol and microbial decontamination by lactic acid bacteria, yeasts and fungi, and their associated enzymes currently reported in the literature. Special attention is given to publications closest to in vivo applications of biocontrol agents and microbial OTA adsorption or degradation agents. Finally, this review provides an opinion on which future techniques to promote within the coffee supply chain. Full article
(This article belongs to the Special Issue Mycotoxin Contamination and Control in Food)
Show Figures

Figure 1

21 pages, 2832 KiB  
Article
The Antibacterial Efficacy of Far-UVC Light: A Combined-Method Study Exploring the Effects of Experimental and Bacterial Variables on Dose–Response
by David T. Griffin, Terence Gourlay and Michelle Maclean
Pathogens 2024, 13(8), 698; https://doi.org/10.3390/pathogens13080698 - 19 Aug 2024
Viewed by 501
Abstract
Far-ultraviolet C light, with a wavelength of 200–230 nm, has demonstrated broad-spectrum germicidal efficacy. However, due to increased interest in its use as an alternative antimicrobial, further knowledge about its fundamental bactericidal efficacy is required. This study had two objectives. Firstly, it investigated [...] Read more.
Far-ultraviolet C light, with a wavelength of 200–230 nm, has demonstrated broad-spectrum germicidal efficacy. However, due to increased interest in its use as an alternative antimicrobial, further knowledge about its fundamental bactericidal efficacy is required. This study had two objectives. Firstly, it investigated experimentally the Far-UVC dose–response of common bacteria suspended at various cell densities in transparent buffer, ensuring no influence from photosensitive suspending media. Increasing doses of Far-UVC were delivered to Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus in PBS at 101, 102, 103, 105 and 107 CFU·mL−1, with surviving colony-forming units enumerated (n ≥ 3). Secondly, through a systematised literature review, this work sought to explore the impact of genus/species, Gram type, cell form, cell density and irradiance on dose–response. The screening of 483 publications was performed with 25 included in the study. Data for 30 species were collated, analysed and compared with the experimental results. Overall, Gram-positive species showed greater resilience to Far-UVC than Gram-negative; some inter-species and inter-genera differences in resilience were identified; endospores were more resilient than vegetative cells; the results suggested that inactivation efficiency may decrease as cell density increases; and no significant correlation was identified between irradiance and bactericidal dose effect. In conclusion, this study has shown Far-UVC light to be an effective decontamination tool against a vast range of bacterial vegetative cells and endospores. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Figure 1

22 pages, 4136 KiB  
Article
Insights for Precursors Influence on the Solar-Assisted Photocatalysis of Greenly Synthesizing Zinc Oxide NPs towards Fast and Durable Wastewater Detoxification
by Amr A. Essawy, Modather F. Hussein, Tamer H. A. Hasanin, Emam F. El Agammy, Hissah S. Alsaykhan, Rakan F. Alanazyi and Abd El-Naby I. Essawy
Ceramics 2024, 7(3), 1100-1121; https://doi.org/10.3390/ceramics7030072 - 19 Aug 2024
Viewed by 375
Abstract
Herein, this study has examined the influence of Zn2+ sources during a biogenic-mediated pathway to synthesize ZnO nanoparticles with highly desirable solar-responsive catalytic properties. Salts of nitrate, acetate and chloride have been utilized. The ZnO powders underwent characterization using diverse analytical tools, [...] Read more.
Herein, this study has examined the influence of Zn2+ sources during a biogenic-mediated pathway to synthesize ZnO nanoparticles with highly desirable solar-responsive catalytic properties. Salts of nitrate, acetate and chloride have been utilized. The ZnO powders underwent characterization using diverse analytical tools, including XRD, FTIR, Raman, BET, SEM, TEM with EDS/elemental mapping and UV-vis absorption/emission spectroscopic analyses. Accordingly, precursors have proved to affect crystallinity, morphology, surface characteristics, optical properties and the photocatalytic degradation of methylene blue (MB) model pollutant. It was observed that ZnO derived from zinc acetate precursor (Z-AC NPs) exhibits very fast photocatalytic degradation of MB at pH 11 with superior kinetic estimates of 0.314 min−1 and t1/2 = 2.2 min over many of recent reports. In contrast, the chloride precursor is not recommended along with the employed biogenic route. The intriguing findings could be directly correlated to the decreased crystal size, augmented surface area, the hexagonal morphology of the crystals, high potency in absorbing visible photons, high efficacy in separating photogenerated charge carriers and producing high amounts of OH radicals. Further testing of Z-AC NPs in photocatalytic remediation of water samples from Dumat Aljandal Lake in Aljouf, Saudi Arabia, contaminated with MB and pyronine Y (PY) dyestuffs, showed high dye photodegradation. Therefore, this work could lead to an extremely fast avenue for decontaminating wastewater from hazmat dyestuff. Full article
Show Figures

Figure 1

10 pages, 1912 KiB  
Article
Metabolomic Prediction of Cadmium Nephrotoxicity in the Snail Helix aspersa maxima
by Aude Devalckeneer, Marion Bouviez, Amandine Gautier and Jean-Marie Colet
Metabolites 2024, 14(8), 455; https://doi.org/10.3390/metabo14080455 - 17 Aug 2024
Viewed by 407
Abstract
The decontamination of polluted soils is a major socioeconomic issue in many industrialized countries. In situ remediation approaches are nowadays preferred to ex situ techniques, but they require among others the use of bioindicators, which are sensitive to the progressive depollution on health [...] Read more.
The decontamination of polluted soils is a major socioeconomic issue in many industrialized countries. In situ remediation approaches are nowadays preferred to ex situ techniques, but they require among others the use of bioindicators, which are sensitive to the progressive depollution on health effects. Animal species have been mainly used so far to monitor aquatic and air pollution. Current research focuses on the development of living indicators of soil pollution. In this study, the garden snail Helix aspersa maxima was acutely exposed to cadmium, one major soil contaminant causing severe health effects, including nephrotoxicity. Kidney and hemolymph were sampled and analyzed by a 1H-NMR-based metabonomic approach. Shortly after Cd exposure, numerous metabolic changes occurred in the hemolymph and kidney extracts. Altogether, they were indicative of a switch in energy sources from the Krebs cycle towards b-oxidation and the utilization of stored galactogen polysaccharides. Then, the activation of antioxidant defenses in the renal cells was suggested by the alteration in some precursors of glutathione synthesis, such as glutamate, and by the release of the antioxidant anserin. Cell membrane damage was evidenced by the increased levels of some osmolytes, betaine and putrescine, as well as by a membrane repair mechanism involving choline. Finally, the development of metabolic acidosis was suggested by the elevation in 3-HMG in the hemolymph, and the more pronounced lysine levels were consistent with acute excretion troubles. Cd-induced renal damage was objectified by the increased level of riboflavin, a recognized biomarker of nephrotoxicity. Full article
(This article belongs to the Special Issue Advances in Ecotoxicology and Metabolism)
Show Figures

Figure 1

Back to TopTop