Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = cylindrical pressure vessel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
0 pages, 9132 KiB  
Article
A UAV-Borne Six-Vessel Negative-Pressure Enrichment Device with Filters Designed to Collect Infectious Fungal Spores in Rice Fields
by Xiaoyan Guo, Yuanzhen Ou, Konghong Deng, Xiaolong Fan, Rui Jiang and Zhiyan Zhou
Agronomy 2024, 14(4), 716; https://doi.org/10.3390/agronomy14040716 - 29 Mar 2024
Viewed by 744
Abstract
Fungal spores that cause infectious fungal diseases in rice are mainly transmitted through air. The existing fixed, portable or vehicle-mounted fungal spore collection devices used for rice infectious diseases have several disadvantages, such as low efficiency, large volume, low precision and incomplete information. [...] Read more.
Fungal spores that cause infectious fungal diseases in rice are mainly transmitted through air. The existing fixed, portable or vehicle-mounted fungal spore collection devices used for rice infectious diseases have several disadvantages, such as low efficiency, large volume, low precision and incomplete information. In this study, a mobile fungal spore collection device is designed, consisting of six filters called “Capture-A”, which can collect spores and other airborne particles onto a filter located on a rotating disc of six filters that can be rotated to a position allowing for the capture of six individual samples. They are captured one at a time and designed and validated by capturing spores above the rice field, and the parameters of the key components of the collector are optimized through fluid simulation and verification experiments. The parameter combination of the “Capturer-A” in the best working state is as follows: sampling vessel filter screen with aperture size of 0.150 mm, bent air duct with inner diameter of 20 mm, negative pressure fan with 1500 Pa and spore sampling of cylindrical shape. In the field test, the self-developed “Capturer-A” was compared with the existing “YFBZ3” (mobile spore collection device made by Yunfei Co., Ltd., Zhengzhou, China). The two devices were experimented on at 15 sampling points in three diseased rice fields, and the samples were examined and counted under a microscope in the laboratory. It was found that the spores of rice blast disease and rice flax spot disease of rice were contained in the samples; the number of samples collected by a single sampling vessel of “Capturer-A” was about twice that of the device “YFBZ3”in the test. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture)
Show Figures

Figure 1

13 pages, 9684 KiB  
Article
Strength Analysis of Cylindrical Shells with Tangential Nozzles under Internal Pressure
by Xiaofeng Zhao, Caifu Qian and Zhiwei Wu
Appl. Sci. 2024, 14(6), 2363; https://doi.org/10.3390/app14062363 - 11 Mar 2024
Viewed by 824
Abstract
Pressure vessels having the structure of a cylindrical shell with a tangential nozzle are often used in engineering for some process requirements. But there are no accurate methods in engineering codes for the strength design of this special structure. In this paper, the [...] Read more.
Pressure vessels having the structure of a cylindrical shell with a tangential nozzle are often used in engineering for some process requirements. But there are no accurate methods in engineering codes for the strength design of this special structure. In this paper, the limit–load analysis was performed to evaluate the weakening effects of the tangential nozzles on the strength of the cylindrical shells under internal pressure. A so-called strength–weakening coefficient was defined to reflect the weakening degree of the load-bearing capacity of the cylindrical shells by the tangential nozzles or specifically by the three dimensionless structural parameters, namely diameter ratio (do/Di), diameter-thickness ratio (Di/T) and thickness ratio (t/T). Results show that when increasing do/Di and Di/T or decreasing t/T, the strength–weakening coefficient increases, which means that the strength–weakening effect of the tangential nozzle on the cylindrical shell increases. With sufficient simulation results, regression equations for the strength–weakening coefficient were obtained which provides a reference for the strength design of cylindrical shells with tangential nozzles under internal pressure. Full article
(This article belongs to the Special Issue Advances in Structural Optimization)
Show Figures

Figure 1

12 pages, 3001 KiB  
Technical Note
Flow-Induced Noise Characteristics Analysis of a Pipeline Structure in a Cabin Rigid Corner
by Weihua Chen, Luyun Chen, Hong Yi and Jianshuai Dong
Appl. Sci. 2023, 13(21), 11772; https://doi.org/10.3390/app132111772 - 27 Oct 2023
Viewed by 908
Abstract
The acoustic radiation characteristics of pipeline structures caused by turbulent fluctuating pressure are among the most important acoustic radiation sources in vessel cabins. Studying the vibro-acoustic characteristics of pipeline structures is of great relevance to engineering. The turbulence fluctuation pressure of pipeline structures’ [...] Read more.
The acoustic radiation characteristics of pipeline structures caused by turbulent fluctuating pressure are among the most important acoustic radiation sources in vessel cabins. Studying the vibro-acoustic characteristics of pipeline structures is of great relevance to engineering. The turbulence fluctuation pressure of pipeline structures’ inner surfaces was numerically analyzed by using the large eddy simulation (LES) method. At first, the vibro-acoustic differential equation of the pipeline structure system was derived by defining the fluctuation pressure as the excitation loading. According to the acoustic radiation characteristic in the quarter-infinite space, which had a combination of two rigid wall interfaces at the same time for the pipeline structures in the vessel cabins, the double reflection method, mirror image method and elastic wave Graf addition principle were applied, and the analytical function of the acoustic radiation for the cylindrical shell was derived. For the pipeline structures in the quarter-infinite acoustic space, for example, the numerical calculation for the acoustic radiation of cylindrical shell was carried out, which was excited by the turbulent pulsating pressure. Finally, the influence of inner flow velocity, frequency, and pipeline installation position were compared using numerical analysis. The results can provide technical support for the acoustic design of pipeline structure systems with complex acoustic boundaries. Full article
(This article belongs to the Special Issue Active Vibration and Noise Control)
Show Figures

Figure 1

16 pages, 3478 KiB  
Article
Biomechanical Characterisation of Thoracic Ascending Aorta with Preserved Pre-Stresses
by Shaiv Parikh, Kevin M. Moerman, Mitch J. F. G. Ramaekers, Simon Schalla, Elham Bidar, Tammo Delhaas, Koen Reesink and Wouter Huberts
Bioengineering 2023, 10(7), 846; https://doi.org/10.3390/bioengineering10070846 - 17 Jul 2023
Cited by 2 | Viewed by 1400
Abstract
Mechanical properties of an aneurysmatic thoracic aorta are potential markers of future growth and remodelling and can help to estimate the risk of rupture. Aortic geometries obtained from routine medical imaging do not display wall stress distribution and mechanical properties. Mechanical properties for [...] Read more.
Mechanical properties of an aneurysmatic thoracic aorta are potential markers of future growth and remodelling and can help to estimate the risk of rupture. Aortic geometries obtained from routine medical imaging do not display wall stress distribution and mechanical properties. Mechanical properties for a given vessel may be determined from medical images at different physiological pressures using inverse finite element analysis. However, without considering pre-stresses, the estimation of mechanical properties will lack accuracy. In the present paper, we propose and evaluate a mechanical parameter identification technique, which recovers pre-stresses by determining the zero-pressure configuration of the aortic geometry. We first validated the method on a cylindrical geometry and subsequently applied it to a realistic aortic geometry. The verification of the assessed parameters was performed using synthetically generated reference data for both geometries. The method was able to estimate the true mechanical properties with an accuracy ranging from 98% to 99%. Full article
(This article belongs to the Special Issue Bioengineering in Cardiovascular Surgery)
Show Figures

Figure 1

32 pages, 3923 KiB  
Article
Design and Analysis of a Typical Vertical Pressure Vessel Using ASME Code and FEA Technique
by Kristaq Hazizi and Mohammad Ghaleeh
Designs 2023, 7(3), 78; https://doi.org/10.3390/designs7030078 - 16 Jun 2023
Cited by 3 | Viewed by 13665
Abstract
This study aims to address the hazards associated with the design and manufacture of pressure vessels used for storing dangerous liquids, specifically focusing on the increased demand for liquefied petroleum gas (LPG) worldwide. The construction of more LPG facilities necessitates the implementation of [...] Read more.
This study aims to address the hazards associated with the design and manufacture of pressure vessels used for storing dangerous liquids, specifically focusing on the increased demand for liquefied petroleum gas (LPG) worldwide. The construction of more LPG facilities necessitates the implementation of safer pressure vessels to mitigate risks such as explosions and leakage. The primary objective of this project is to design a vertical pressure vessel, in accordance with the American Society of Mechanical Engineers (ASME) code, capable of safely storing 10 m3 of pressurised LPG. To ensure the safety of the pressure vessel, the researchers employed Autodesk Inventor Professional 2023 for geometric modelling and utilised Inventor Nastran for finite element analysis (FEA) to investigate displacements, deflections, and von Mises stresses. The vessel is cylindrical in shape and features two elliptical heads, two nozzles, a manway, and four leg supports. The FEA analysis conducted using Autodesk Inventor Nastran enabled the researchers to identify areas where structural modifications were necessary to reduce stress within the vessel. The results revealed an inverse relationship between the displacement and the tank section shell thickness. Additionally, the factor of safety exhibited a linear increase as the shell thickness increased. The researchers carefully considered permissible pressures and determined the required wall thickness to maintain acceptable maximum stresses. The findings indicate that the design of the pressure vessel is safe from failure. Among the components, the manway experiences the highest stresses, followed by the shell, while the heads, nozzles, and leg supports experience lower stresses. The researchers also conducted theoretical calculations for the entire model and ensured that the results fell within acceptable limits, further validating their design approach. The research emphasised the importance of designing pressure vessels in compliance with ASME codes to ensure safety and prevent hazards associated with improper design and manufacturing. The combination of Autodesk Inventor Professional and Inventor Nastran proved to be an effective approach for simulating and evaluating the performance of the pressure vessel. Through the analysis, the researchers found that changes to the pressure vessel structure were necessary to reduce stress. They observed an inverse relationship between displacement and tank section shell thickness, while the factor of safety increased linearly with shell thickness. Stress distribution analysis revealed that the manway and shell experienced the highest stresses, while the heads, nozzles, and leg support exhibited lower stresses. Employing the finite element method, potential stress points within the pressure vessel were identified, enabling necessary modifications to enhance its safety. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

11 pages, 3146 KiB  
Article
A Numerical Procedure for Shakedown Analysis of Thick Cylindrical Vessels with Crossholes under Dual Cyclic Loadings
by Yangxi Chen, Xin Jin, Yan Guo, Jian Zhao and Sujuan Guo
Materials 2023, 16(9), 3364; https://doi.org/10.3390/ma16093364 - 25 Apr 2023
Viewed by 1175
Abstract
A modified numerical procedure for the shakedown analysis of structures under dual cyclic loadings, based on the Abdalla method, is proposed in this paper. Based on the proposed numerical procedure, the shakedown analysis of the thick cylindrical vessels with crossholes (TCVCs) under cyclic [...] Read more.
A modified numerical procedure for the shakedown analysis of structures under dual cyclic loadings, based on the Abdalla method, is proposed in this paper. Based on the proposed numerical procedure, the shakedown analysis of the thick cylindrical vessels with crossholes (TCVCs) under cyclic internal pressure and cyclic thermal loading was carried out. The effects of material parameters (elastic modulus and thermal expansion coefficient) and crosshole radius on the elastic shakedown limit of TCVCs are discussed and, finally, normalized and formularized. Furthermore, the obtained shakedown limit boundary formulation is compared with FEA results and is verified to evaluate the shakedown behavior of TCVCs under cyclic internal pressure and cyclic thermal loading. Full article
(This article belongs to the Special Issue Fatigue Behavior, Lifetime Prediction and Modeling of Welding Process)
Show Figures

Figure 1

18 pages, 3327 KiB  
Article
Archaeological Evidence for the Dietary Practices and Lifestyle of 18th Century Lisbon, Portugal—Combined Steroidal Biomarker and Microparticle Analysis of the Carbonized Faecal Remains
by Ana Fundurulic, Ana Manhita, Vanessa Galiza Filipe, José Pedro Henriques, António Marques, Alessandra Celant, Donatella Magri and Cristina Barrocas Dias
Separations 2023, 10(2), 85; https://doi.org/10.3390/separations10020085 - 27 Jan 2023
Cited by 1 | Viewed by 2709
Abstract
The study of the urban context in the contemporary center of Portugal’s capital city uncovered traces of daily lives that were abruptly interrupted and utterly transformed by the Great Lisbon Earthquake on the morning of 1 November 1755. Charred organic residue was recovered [...] Read more.
The study of the urban context in the contemporary center of Portugal’s capital city uncovered traces of daily lives that were abruptly interrupted and utterly transformed by the Great Lisbon Earthquake on the morning of 1 November 1755. Charred organic residue was recovered from a cylindrical vessel excavated from the storage area of the town house at the Rossio square. The archaeological sample was studied through a multi-analytical approach based on microstructural, elemental and biomolecular characterization by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR), variable pressure scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (VP-SEM-EDS), and gas chromatography coupled with mass spectrometry (GC-MS). The residue was identified as human faeces collected in the ceramic vessel for disposal, and further analysis provided additional information about diet and the living conditions in the 18th century. Full article
Show Figures

Graphical abstract

14 pages, 10589 KiB  
Article
CFD Study on the Influence of Exostructure Elements on the Resistance of a Submarine
by Inno Gatin, Juvel Čokić, Darjan Romić and Joško Parunov
J. Mar. Sci. Eng. 2022, 10(10), 1542; https://doi.org/10.3390/jmse10101542 - 20 Oct 2022
Cited by 7 | Viewed by 2366
Abstract
Submersible vessels designed to operate at low speeds are often designed with an intricate exostructure, as well as other elements that are located outside of the main pressure hull. Exostructure elements are often of cylindrical or rectangular shape, positioned perpendicularly to the flow [...] Read more.
Submersible vessels designed to operate at low speeds are often designed with an intricate exostructure, as well as other elements that are located outside of the main pressure hull. Exostructure elements are often of cylindrical or rectangular shape, positioned perpendicularly to the flow direction. For this reason, their resistance coefficient is relatively large compared to the pressure hull or appendages of a classical submarine. In some cases, the exostructure can significantly increase the wetted surface of the vessel and dominate its resistance. This paper presents a study on how different exostructure elements impact the overall resistance of a submarine relative to the resistance of the cylindrical, smooth, pressure hull. Additionally, the effect of depth is also considered. The study is conducted using the RANS-based CFD method. The subject of the study is a 25 m long tourist submarine designed for depths up to 40 m and a speed of up to 3 knots. Full article
Show Figures

Figure 1

15 pages, 5610 KiB  
Article
Simulation Analysis of Delamination Damage for the Thick-Walled Composite-Overwrapped Pressure Vessels
by Houcheng Fang and Di Wang
Materials 2022, 15(19), 6880; https://doi.org/10.3390/ma15196880 - 3 Oct 2022
Cited by 6 | Viewed by 2006
Abstract
In order to verify the delamination damage occurring in thick-walled composite-overwrapped pressure vessels, firstly, for composite delamination damage, a composite laminate model was established. Model I and model II delamination failure processes of composite structures were simulated and verified based on a tiebreak [...] Read more.
In order to verify the delamination damage occurring in thick-walled composite-overwrapped pressure vessels, firstly, for composite delamination damage, a composite laminate model was established. Model I and model II delamination failure processes of composite structures were simulated and verified based on a tiebreak contact algorithm for different mesh sizes, respectively, and the approximate equivalent results were achieved by correcting the inter-ply strength. Then, for in-plane damage to composite materials, the elastic–plastic process was verified by selecting a progressive damage model, with quasistatic nonlinear tensile shear of sample specimens as an example. Further, under the purpose of generality and simplicity, the location of the first occurrence of delamination failure was simulated and analyzed with the tiebreak contact algorithm and a reasonable mesh size, using quasistatic loading of a thick composite-overwrapped pressure vessel cylindrical section as an example. The results showed that delamination occurred at approximately the center, which is in general agreement with the experimentally observed phenomenon. On this basis, the locations of the first significant delamination phenomena in composite-overwrapped vessels under three different ratios of plus or minus 45-degree layup angles were predicted. Finally, the differences in structural strength between the single laying methods and the combined laying method were compared. The results showed that the ratio of 50% had a higher modulus value than a pure 0° ply, but too large a ratio was detrimental to the improvement of structural properties. Full article
(This article belongs to the Special Issue Mechanical Behavior of Composite Materials II)
Show Figures

Figure 1

17 pages, 4345 KiB  
Article
The Laminar Burning Velocities of Stoichiometric Methane–Air Mixture from Closed Vessels Measurements
by Maria Mitu, Codina Movileanu and Venera Giurcan
Energies 2022, 15(14), 5058; https://doi.org/10.3390/en15145058 - 11 Jul 2022
Cited by 4 | Viewed by 1615
Abstract
The present work aims to evaluate the performance of the constant-volume method by several sets of experiments carried out in three different closed vessels (a sphere and two cylinders) analyzing the obtained results in order to obtain accurate laminar burning velocities. Accurate laminar [...] Read more.
The present work aims to evaluate the performance of the constant-volume method by several sets of experiments carried out in three different closed vessels (a sphere and two cylinders) analyzing the obtained results in order to obtain accurate laminar burning velocities. Accurate laminar burning velocities can be used in the development of computational fluid dynamics models in order to design new internal combustion engines with a higher efficiency and lower fuel consumption leading to a lower degree of environmental pollution. The pressure-time histories obtained at various initial pressures from 0.4 to 1.4 bar and ambient initial temperature were analyzed and processed using two different correlations (one implying the cubic low coefficient and the other implying the burnt mass fraction). The laminar burning velocities obtained at various initial pressures are necessary for the realization of a complete kinetic study regarding the combustion reaction and testing the actual reaction mechanisms. Data obtained from measurements were completed and compared with data obtained from runs using two different detailed chemical kinetic mechanisms (GRI 3.0 and Warnatz) and with laminar burning velocities from literature. Our experimental burning velocities ranging from 35.3 cm/s (data from spherical vessel S obtained using the burnt mass fraction) to 37.5 cm/s (data from cylindrical vessel C1 obtained using the cubic law) are inside the interval of confidence as reported by other researchers. From the dependence of the laminar burning velocity on the initial pressure, the baric coefficients were obtained. These coefficients were further used to obtain the overall reaction orders. The baric coefficients (ranging between −0.349 and −0.212) and the overall reaction orders (ranging between 1.42 and 1.50) obtained in this study fall within the reference range of data specific to methane–air mixtures examined at ambient initial temperature. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process)
Show Figures

Figure 1

14 pages, 2113 KiB  
Article
An Innovative Failure Criterion for Metal Cylindrical Shells under Explosive Loads
by Yan Li, Wen Wang and Zhanfeng Chen
Materials 2022, 15(13), 4376; https://doi.org/10.3390/ma15134376 - 21 Jun 2022
Cited by 3 | Viewed by 1409
Abstract
Metal cylindrical shells are widely used to store and transport highly hazardous chemicals. The impact resistance of metal cylindrical shells under an explosive load is a concern for researchers. In this paper, an innovative failure criterion considering the time effect is proposed for [...] Read more.
Metal cylindrical shells are widely used to store and transport highly hazardous chemicals. The impact resistance of metal cylindrical shells under an explosive load is a concern for researchers. In this paper, an innovative failure criterion considering the time effect is proposed for metal cylindrical shells under explosive loads. Firstly, based on the maximum shear stress criterion, an innovative failure criterion containing the time effect is provided. Then, a metal cylindrical shell model is established. Next, a failure pressure equation for metal shells under an explosive load is proposed based on the innovative failure criterion. Lastly, the proposed equation is verified by numerical simulation. The results indicate the failure pressure equation for a metal cylindrical shell under an explosive load uses the finite element method. Our research is of significance for fully understanding the failure mechanism of piping and pressure vessels under impact load. Full article
Show Figures

Figure 1

18 pages, 11321 KiB  
Article
An Advanced TRACE Modeling Approach: Automatic Connection of 3D Cartesian and Cylindrical VESSEL Components in Integral Plant Models
by Kanglong Zhang and Victor Hugo Sanchez-Espinoza
Energies 2022, 15(12), 4384; https://doi.org/10.3390/en15124384 - 16 Jun 2022
Viewed by 1437
Abstract
Best estimate system thermal-hydraulic codes in the nuclear engineering community, e.g., TRACE, RELAP3D, CATHARE-3, etc., were extended with 3D coarse-mesh components to better describe the 3D Thermal-Hydraulic (TH) phenomena taking place within the Reactor Pressure Vessel (RPV) and the core. The RPV is [...] Read more.
Best estimate system thermal-hydraulic codes in the nuclear engineering community, e.g., TRACE, RELAP3D, CATHARE-3, etc., were extended with 3D coarse-mesh components to better describe the 3D Thermal-Hydraulic (TH) phenomena taking place within the Reactor Pressure Vessel (RPV) and the core. The RPV is usually shaped like a cylinder while the core is mostly a cube. Hence, the TRACE code is equipped with a Cylindrical VESSEL and a Cartesian VESSEL. The former one is to represent the RPV (including core), pressurizer, and steam generator. The latter one is more appropriate to represent the core. The two components are connected by two Vessel-Junctions (VJ) at the core inlet and outlet. Due to the different nodalization between the two VESSELs, the analyst needs to do repetitive and error-prone work defining the cell-to-cell junctions and their TH parameters. To facilitate this process, the Karlsruhe Institute of Technology (KIT) has developed an automatic approach based on a mesh-constructing and field-mapping library, namely the MEDCoupling. These new capabilities of TRACE are demonstrated by the analysis of the coolant mixing for an academic case and the AP1000 reactor. Full article
(This article belongs to the Special Issue Advanced Numerical Modelling Techniques for Nuclear Reactors)
Show Figures

Figure 1

18 pages, 3612 KiB  
Article
Electrostatic Simulations for the DUNE ND-GAr Field Cage
by Christopher Hayes and Jon Urheim
Particles 2022, 5(2), 110-127; https://doi.org/10.3390/particles5020010 - 6 Apr 2022
Viewed by 2282
Abstract
ND-GAr is one of three detector systems in the design of the DUNE Near Detector complex, which will be located on the Fermilab campus, sixty meters underground and 570 m from the source of an intense neutrino beam. ND-GAr will consist of a [...] Read more.
ND-GAr is one of three detector systems in the design of the DUNE Near Detector complex, which will be located on the Fermilab campus, sixty meters underground and 570 m from the source of an intense neutrino beam. ND-GAr will consist of a cylindrical 10-bar gaseous Argon Time Projection Chamber (TPC) and a surrounding sampling electromagnetic calorimeter embedded within a superconducting solenoid, the cryostat and yoke for which together serve as the pressure vessel. While various options for the specific configuration of ND-GAr are being explored, essential design work for the detector has moved forward in recent months. This document describes basic mechanical, electrostatic, and gas flow design features of the ND-GAr TPC and presents results of electrostatic simulations of the interior of the pressure vessel for both single and dual-anode arrangements. Simulations are implemented with the Elmer finite-element software suite and related programs. Full article
(This article belongs to the Special Issue Selected Papers from "New Horizons in Time Projection Chambers")
Show Figures

Figure 1

22 pages, 13931 KiB  
Article
Development of Numerical Modelling Techniques for Composite Cylindrical Structures under External Pressure
by Jung Min Sohn, Spyros Hirdaris, Jani Romanoff and Sang Jin Kim
J. Mar. Sci. Eng. 2022, 10(4), 466; https://doi.org/10.3390/jmse10040466 - 25 Mar 2022
Cited by 6 | Viewed by 2468
Abstract
Submarine hulls are pressure vessels for which excellent structural integrity under underwater pressure loads is essential. The use of light-weight materials contributes to reduced fuel consumption, improved speed, and increased payload while strength properties are retained. The focus of this paper is on [...] Read more.
Submarine hulls are pressure vessels for which excellent structural integrity under underwater pressure loads is essential. The use of light-weight materials contributes to reduced fuel consumption, improved speed, and increased payload while strength properties are retained. The focus of this paper is on the collapse behavior of a filament-wound cylindrical structure that serves as the main hull of a submarine subject to hydrostatic pressure loads. This paper presents a computational modelling approach for the prediction of the collapse behavior mechanism using a commercial finite element (FE) solver. The collapse strength obtained from the numerical model corresponded closely to available experimental data. The composite and aluminum material models were compared and the effects of stacking angle and thickness portion in the ply sequence on collapse strength were investigated. The advantages and disadvantages of available design codes (i.e., American Society of Mechanical Engineers (ASME) BPVC-X and National Aeronautics and Space Administration (NASA) SP-8007) were reviewed by direct comparison with numerical results. It is concluded that the application of effective engineering constants for the prediction of the collapse pressure of submarine hulls may be feasible. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 11097 KiB  
Article
A Low-Cost Filament Winding Technology for University Laboratories and Startups
by Artem Andrianov, Erika Kamada Tomita, Carlos Alberto Gurgel Veras and Bruno Telles
Polymers 2022, 14(5), 1066; https://doi.org/10.3390/polym14051066 - 7 Mar 2022
Cited by 12 | Viewed by 6002
Abstract
This paper systematically explains the methodology and results of empirical work on the development of a low-cost filament winding technology for manufacturing axisymmetric polymer composite structures with a high length-to-diameter ratio, such as tubes, motor casings, and pressure vessels. The principal objective was [...] Read more.
This paper systematically explains the methodology and results of empirical work on the development of a low-cost filament winding technology for manufacturing axisymmetric polymer composite structures with a high length-to-diameter ratio, such as tubes, motor casings, and pressure vessels. The principal objective was to examine the experiences and most optimal practices in the development of computer-controlled equipment and auxiliary tooling for the wet filament-winding process. To preclude expensive commercial software for the automated control of a winding machine, analytical equations were derived for the winding trajectory of a four-axis filament-winding machine. The feasibility of the proposed equations was successfully validated by laying the fiber along the geodesic path marked on the surface of a cylindrical mandrel with hemispherical ends. Moreover, the carbon/epoxy cylindrical casings with hemispherical ends and port openings of the same diameter were wound to determine the thickness distribution in the hemispherical dome. The fiber volume ratio in the wound composite parts was evaluated using an optical technique. Full article
Show Figures

Figure 1

Back to TopTop