Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,401)

Search Parameters:
Keywords = cucumber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 942 KiB  
Article
Microbial Indoor Air Quality Within Greenhouses and Polytunnels Is Crucial for Sustainable Horticulture (Malopolska Province, Poland Conditions)
by Jacek Kozdrój, Dariusz Roman Ropek, Krzysztof Frączek, Karol Bulski and Barbara Breza-Boruta
Sustainability 2024, 16(22), 10058; https://doi.org/10.3390/su162210058 (registering DOI) - 18 Nov 2024
Abstract
Sustainable horticulture is crucially based on the greenhouse production of vegetables under controlled conditions. In this study, we wanted to learn how cultivated plants may impact indoor air quality and whether the workers can be exposed to bioaerosols in a similar way in [...] Read more.
Sustainable horticulture is crucially based on the greenhouse production of vegetables under controlled conditions. In this study, we wanted to learn how cultivated plants may impact indoor air quality and whether the workers can be exposed to bioaerosols in a similar way in these settings. The study objective was to test the hypothesis that the microbial concentrations, distribution of bioaerosol particle sizes, and composition of the airborne microbiome are specific to greenhouses, polytunnels, and open-air sites. The air samples were collected to assess the concentration of total culturable bacteria (TCB), fungi, actinomycetes, and β-haemolytic bacteria and for the identification of bacterial and fungal strains. Higher concentrations of TCB and fungi were found in the greenhouse (log 3.71 and 3.49 cfu m−3, respectively) than in polytunnels (log 2.60–2.48 and 2.51–2.31 cfu m−3, respectively) during the vegetation of cucumbers. These airborne microbes were represented by a significant contribution of the respirable fraction with a distinct contribution of fine particles in size below 4.7 µm. Cultivation of cucumbers resulted in the higher emission of airborne microorganisms in contrast with growing herbs such as oregano and basil. In total, 35 different bacteria and 12 fungal species, including pathogenic or allergenic agents, were identified within the studied sites. The workers can be exposed to increased concentrations of TCB and fungi in the greenhouse during the plant vegetation. It might be recommended to properly manage greenhouses and polytunnels, dispose of dust sources, and maintain appropriate ventilation to sustain relevant air quality. Full article
(This article belongs to the Special Issue Soil, Plant and Human Health in Sustainable Environment)
19 pages, 9359 KiB  
Article
Transforming Irrigated Agriculture in Semi-Arid and Dry Subhumid Mediterranean Conditions: A Case of Protected Cucumber Cultivation
by Talal Darwish, Amin Shaban, Ghaleb Faour, Ihab Jomaa, Peter Moubarak and Roula Khadra
Sustainability 2024, 16(22), 10050; https://doi.org/10.3390/su162210050 - 18 Nov 2024
Abstract
Pressure from population growth and climate change stress the limited water resources in the Mediterranean region and threaten food security and social stability. Enhancing food production requires the transformation of irrigation systems and enhancement of local capacity for sustainable water and soil management [...] Read more.
Pressure from population growth and climate change stress the limited water resources in the Mediterranean region and threaten food security and social stability. Enhancing food production requires the transformation of irrigation systems and enhancement of local capacity for sustainable water and soil management in irrigated agriculture. The aim of this work is the conversion of traditional irrigation practices, by introducing the practice of optimal irrigation scheduling based on local ET estimation and soil moisture monitoring, and the use of continuous feeding by fertigation to enhance both water and nutrient use efficiency. For this, two trials were established between August and November 2023 in two different pedoclimatic zones (Serein and Sultan Yacoub) of the inner Bekaa Plain of Lebanon, characterized by semi-arid and dry subhumid conditions and different soil types. Greenhouse cucumber was tested to compare the prevailing traditional farmers’ practices with the advanced, technology-based, methods of water management. Results showed a significantly higher amount of water applied by the farmers to the protected cucumber, with a potential for average saving of 105 mm of water applied in each season by improved practices. Water input in the traditional practices revealed potential stress to plants. With more than 20% increase in cucumber yield by the transformed practices, a general trend was observed in the fertilization approach and amounts, resulting in lower nutrient recovery in the farmer’s plots. The science-based practices of water and nutrient management showed higher application and agronomic water use efficiency of full fertigation, exceeding 60%, associated with double and triple higher nitrogen use efficiency, compared to those results obtained by the traditional water and fertilizer application methods. The monitored factors can contribute to severe economic and environmental consequences from nutrient buildup or leaching in the soil–groundwater system in the Mediterranean region. Full article
Show Figures

Figure 1

20 pages, 10468 KiB  
Article
Characterization of a Bacterium Isolated from Hydrolyzed Instant Sea Cucumber Apostichopus japonicus Using Whole-Genome Sequencing and Metabolomics
by Xin Luo, Zhixuan Zhang, Zhangyi Zheng, Wenwen Zhang, Tinghong Ming, Lefei Jiao, Xiurong Su, Jiajie Xu and Fei Kong
Foods 2024, 13(22), 3662; https://doi.org/10.3390/foods13223662 (registering DOI) - 17 Nov 2024
Viewed by 343
Abstract
Autolysis in the sea cucumber Apostichopus japonicus is typically triggered by degradation caused by microorganisms within their bodies. However, information on this topic remains limited. Recently, we isolated and purified a bacterial strain from hydrolyzed instant sea cucumber samples. To investigate its potential [...] Read more.
Autolysis in the sea cucumber Apostichopus japonicus is typically triggered by degradation caused by microorganisms within their bodies. However, information on this topic remains limited. Recently, we isolated and purified a bacterial strain from hydrolyzed instant sea cucumber samples. To investigate its potential role in the autolysis process, this study employed whole-genome sequencing and metabolomics to explore its genetic and metabolic characteristics. The identified strain was classified as Lysinibacillus xylanilyticus and designated with the number XL-2024. Its genome size is 5,075,210 bp with a GC content of 37.33%, encoding 5275 genes. Functional database comparisons revealed that the protein-coding genes were distributed among glucose metabolism hydrolase, metal hydrolase, lysozyme, cell wall hydrolase, and CAZymes. Compared to 20 closely related strains, L. xylanilyticus XL-2024 shared 1502 core homologous genes and had 707 specific genes. These specific genes were mainly involved in the carbohydrate metabolism pathway and exhibited glycosyl bond hydrolase activity. Metabolomic analysis showed that L. xlanilyticus XL-2024 produced several metabolites related to polysaccharide degradation, including peptidase, glucanase, and pectinase. Additionally, the presence of antibacterial metabolites such as propionic acid and ginkgo acid among its metabolites may enhance the stability of the sea cucumber hydrolysate. In summary, L. xylanilyticus XL-2024 may play a pivotal role in the autolysis of A. japonicus. The results of this study provide a strong foundation for understanding how to prevent autolysis in A. japonicus and for better utilizing L. xylanilyticus XL-2024. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

11 pages, 3326 KiB  
Article
One-Step Multiplex RT-PCR Method for Detection of Melon Viruses
by Sheng Han, Tingting Zhou, Fengqin Zhang, Jing Feng, Chenggui Han and Yushanjiang Maimaiti
Microorganisms 2024, 12(11), 2337; https://doi.org/10.3390/microorganisms12112337 - 15 Nov 2024
Viewed by 349
Abstract
This study presents a one-step multiplex reverse transcription polymerase chain reaction (RT-PCR) method for the simultaneous detection of multiple viruses affecting melon crops. Viruses such as Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Squash mosaic virus (SqMV), [...] Read more.
This study presents a one-step multiplex reverse transcription polymerase chain reaction (RT-PCR) method for the simultaneous detection of multiple viruses affecting melon crops. Viruses such as Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Squash mosaic virus (SqMV), Tobacco mosaic virus (TMV), Papaya ring spot virus (PRSV), and Melon yellow spot virus (MYSV) pose a great threat to melons. The mixed infection of these viruses is the most common observation in the melon-growing fields. In this study, we surveyed northern Xingjiang (Altay, Changji, Wujiaqu, Urumqi, Turpan, and Hami) and southern Xingjiang (Aksu, Bayingolin, Kashgar, and Hotan) locations in Xinjiang province and developed a one-step multiplex RT-PCR to detect these melon viruses. The detection limits of this multiplex PCR were 103 copies/μL for ZYMV and MYSV and 102 copies/μL for WMV, SqMV, PRSV, CMV, and TMV. The detection results in the field showed 242 samples were infected by one or more viruses. The multiplex RT-PCR protocol demonstrated rapid, simultaneous, and relatively effective detection of viruses such as WMV, CMV, ZYMV, SqMV, TMV, PRSV, and MYSV. The technique is designed to identify these melon viruses in a single reaction, enhancing diagnostic efficiency and reducing costs, thus serving as a reference for muskmelon anti-virus breeding in Xinjiang. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

23 pages, 3017 KiB  
Article
Structural Characterization and Profiles of Saponins from Two Algerian Sea Cucumbers
by Ihcene Khodja, Karim Mezali, Philippe Savarino, Pascal Gerbaux, Patrick Flammang and Guillaume Caulier
Molecules 2024, 29(22), 5346; https://doi.org/10.3390/molecules29225346 - 13 Nov 2024
Viewed by 520
Abstract
Sea cucumbers are benthic marine invertebrate members of the phylum Echinodermata. Due to the absence of a rigid skeleton, these species have developed chemical defenses based on the production of saponins (triterpene glycosides). These secondary metabolites are bioactive molecules with a broad biological, [...] Read more.
Sea cucumbers are benthic marine invertebrate members of the phylum Echinodermata. Due to the absence of a rigid skeleton, these species have developed chemical defenses based on the production of saponins (triterpene glycosides). These secondary metabolites are bioactive molecules with a broad biological, ecological, and pharmaceutical spectrum. However, the saponin profiles of several species of sea cucumbers are not known yet. The present study aims to highlight the mixture of saponins in two sea cucumber species from the Algerian coast, namely Holothuria (Holothuria) algeriensis, which has been recently described in central and western Algerian waters, and Holothuria (Roweothuria) arguinensis, originating from the Atlantic Ocean and reported in Algeria for the first time in 2014. Saponin extracts from three individuals of H. (H.) algeriensis and two individuals of H. (R.) arguinensis were analyzed using mass spectrometry, i.e., Matrix-assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS), MALDI-High Resolution MS (MALDI-HRMS), Liquid Chromatography MS (LC-MS) and tandem MS (LC-MS/MS). These analyses allow us to detect 11 and 18 elemental compositions for H. (H.) algeriensis and H. (R.) arguinensis, respectively, each presenting several isomers. In total, 13 new saponin structures are proposed, of which four are common between the two species, six are specific to H. (H.) algeriensis and three to H. (R.) arguinensis. The saponin profiles of the two species were compared to those of other species of the same genus existing on the Algerian coast and the results showed that they share non-sulfated saponins with Holothuria (Panningothuria) forskali and Holothuria (Platyperona) sanctori and sulfated saponins with Holothuria (Holothuria) tubulosa and Holothuria (Roweothuria) poli. Full article
Show Figures

Figure 1

15 pages, 38365 KiB  
Article
Functional Analysis of CsWOX4 Gene Mutation Leading to Maple Leaf Type in Cucumber (Cucumis sativus L.)
by Huizhe Wang, Bo Wang, Yiheng Wang, Qiang Deng, Guoqing Lu, Mingming Cao, Wancong Yu, Haiyan Zhao, Mingjie Lyu and Ruihuan Yang
Int. J. Mol. Sci. 2024, 25(22), 12189; https://doi.org/10.3390/ijms252212189 - 13 Nov 2024
Viewed by 262
Abstract
The leaf morphology is an important agronomic trait in crop production. Our study identified a maple leaf type (mlt) cucumber mutant and located the regulatory gene for leaf shape changes through BSA results. Hybrid F1 and F2 populations were generated by [...] Read more.
The leaf morphology is an important agronomic trait in crop production. Our study identified a maple leaf type (mlt) cucumber mutant and located the regulatory gene for leaf shape changes through BSA results. Hybrid F1 and F2 populations were generated by F1 self-crossing, and the candidate mlt genes were identified within the 2.8 Mb region of chromosome 2 using map cloning. Through the sequencing and expression analysis of genes within the bulk segregant analysis (BSA) region, we identified the target gene for leaf shape regulation as CsWOX4 (CsaV3_2G026510). The change from base C to T in the original sequence led to frameshift mutations and the premature termination of translation, resulting in shortened encoded proteins and conserved WUSCHEL (WUS) box sequence loss. The specific expression analysis of the CsWOX4/Cswox4 genes in the roots, stems, leaves and other tissue types of wild-type (WT) and mutant plants revealed that CsWOX4 was higher in the root, but Cswox4 (mutant gene) was significantly higher in the leaf. Subcellular localization analysis revealed that CsWOX4 was localized in the nucleus. RNA-seq analysis revealed that the differentially expressed genes were mainly enriched in the mitochondrial cell cycle phase transition, nucleosome and microtubule binding pathways. Simultaneously, the quantitative analysis of the expression trends of 25 typical genes regulating the leaf types revealed the significant upregulation of CsPIN3. In our study, we found that the conserved domain of CsWOX4 was missing in the mutant, and the transcriptome data revealed that the expression of some genes, such as CsPIN3, changed simultaneously, thereby jointly regulating changes in the cucumber leaf type. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics, 3rd Edition)
Show Figures

Figure 1

16 pages, 6553 KiB  
Article
Cucumber Leaf Segmentation Based on Bilayer Convolutional Network
by Tingting Qian, Yangxin Liu, Shenglian Lu, Linyi Li, Xiuguo Zheng, Qingqing Ju, Yiyang Li, Chun Xie and Guo Li
Agronomy 2024, 14(11), 2664; https://doi.org/10.3390/agronomy14112664 - 12 Nov 2024
Viewed by 415
Abstract
When monitoring crop growth using top-down images of the plant canopies, leaves in agricultural fields appear very dense and significantly overlap each other. Moreover, the image can be affected by external conditions such as background environment and light intensity, impacting the effectiveness of [...] Read more.
When monitoring crop growth using top-down images of the plant canopies, leaves in agricultural fields appear very dense and significantly overlap each other. Moreover, the image can be affected by external conditions such as background environment and light intensity, impacting the effectiveness of image segmentation. To address the challenge of segmenting dense and overlapping plant leaves under natural lighting conditions, this study employed a Bilayer Convolutional Network (BCNet) method for accurate leaf segmentation across various lighting environments. The major contributions of this study are as follows: (1) Utilized Fully Convolutional Object Detection (FCOS) for plant leaf detection, incorporating ResNet-50 with the Convolutional Block Attention Module (CBAM) and Feature Pyramid Network (FPN) to enhance Region of Interest (RoI) feature extraction from canopy top-view images. (2) Extracted the sub-region of the RoI based on the position of the detection box, using this region as input for the BCNet, ensuring precise segmentation. (3) Utilized instance segmentation of canopy top-view images using BCNet, improving segmentation accuracy. (4) Applied the Varifocal Loss Function to improve the classification loss function in FCOS, leading to better performance metrics. The experimental results on cucumber canopy top-view images captured in glass greenhouse and plastic greenhouse environments show that our method is highly effective. For cucumber leaves at different growth stages and under various lighting conditions, the Precision, Recall and Average Precision (AP) metrics for object recognition are 97%, 94% and 96.57%, respectively. For instance segmentation, the Precision, Recall and Average Precision (AP) metrics are 87%, 83% and 84.71%, respectively. Our algorithm outperforms commonly used deep learning algorithms such as Faster R-CNN, Mask R-CNN, YOLOv4 and PANet, showcasing its superior capability in complex agricultural settings. The results of this study demonstrate the potential of our method for accurate recognition and segmentation of highly overlapping leaves in diverse agricultural environments, significantly contributing to the application of deep learning algorithms in smart agriculture. Full article
(This article belongs to the Special Issue AI, Sensors and Robotics for Smart Agriculture—2nd Edition)
Show Figures

Figure 1

14 pages, 2450 KiB  
Article
Application of the Electrical Microbial Growth Analyzer Method for Efficiently Quantifying Viable Bacteria in Ready-to-Eat Sea Cucumber Products
by Xiaoyang Wang, Ruohan Liang, Xiaodan Pu, Yuanyuan Zhang, Feng Lu, Qianqian Yang, Xueting Zhu, Qing Kong and Xuzhi Zhang
Microorganisms 2024, 12(11), 2301; https://doi.org/10.3390/microorganisms12112301 - 12 Nov 2024
Viewed by 532
Abstract
Accurate and efficient quantification of viable bacteria in ready-to-eat food products is crucial for food safety and public health. The rapid and accurate assessment of foodborne bacteria in complex food matrices remains a significant challenge. Herein a culture-based approach was established for easily [...] Read more.
Accurate and efficient quantification of viable bacteria in ready-to-eat food products is crucial for food safety and public health. The rapid and accurate assessment of foodborne bacteria in complex food matrices remains a significant challenge. Herein a culture-based approach was established for easily quantifying viable bacteria in ready-to-eat sea cucumber (RSC) products. Samples of the liquid companion within the package were directly transferred into test tubes to determine bacterial growth curves and growth rate curves, utilizing the electrical microbial growth analyzer. Viable bacteria in the samples were then quantified based on the time required to attain the maximum growth rate indicated on the growth rate curve. At a concentration of 5.0 × 103 CFU/mL of viable bacteria in the liquid companion, the recovery rates were 108.85–112.77% for Escherichia coli (E. coli) and 107.01–130.54% for Staphylococcus aureus (S. aureus), with standard deviations of 1.60 and 3.92, respectively. For the solid content in the package, the quantification was performed using the same methodology following an additional homogenization step. At a concentration of 5.0 × 103 CFU/mL of viable bacteria in the sample, the recovery rates were 91.94–102.24% for E. coli and 81.43–104.46% for S. aureus, with standard deviations of 2.34 and 2.38, respectively. In instances where the viable bacterial concentration was 5.0 × 103 CFU/mL in RSC products, the total time required for the quantification did not exceed 10.5 h. This method demonstrated advantages over traditional plate counting and PCR methods regarding simplicity and efficiency, representing a promising alternative for the quantification of viable bacteria in food like RSC products. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 3247 KiB  
Review
Matrikines of Sea Cucumbers: Structure, Biological Activity and Mechanisms of Action
by Aleksandr Popov, Emma Kozlovskaya, Tatyana Rutckova, Olga Styshova, Vyacheslav Makhankov, Aleksey Vakhrushev, Dmitry Hushpulian, Irina Gazaryan, Oksana Son and Ludmila Tekutyeva
Int. J. Mol. Sci. 2024, 25(22), 12068; https://doi.org/10.3390/ijms252212068 - 10 Nov 2024
Viewed by 338
Abstract
Matrikines (MKs), the products of enzymatic fragmentation of various extracellular matrix (ECM) proteins, regulate cellular activity by interacting with specific receptors. MKs affect cell growth, proliferation, and migration, can induce apoptosis and autophagy, and are also effectively used in biomedicine and functional nutrition. [...] Read more.
Matrikines (MKs), the products of enzymatic fragmentation of various extracellular matrix (ECM) proteins, regulate cellular activity by interacting with specific receptors. MKs affect cell growth, proliferation, and migration, can induce apoptosis and autophagy, and are also effectively used in biomedicine and functional nutrition. Recently, there has been great interest in the structural features and biological activity of MKs from various sources. This review summarized and analyzed the results of modern research on MKs from sea cucumbers, primarily from trepang (MKT). Particular attention is paid to the analysis of the existing knowledge on the antioxidant, anti-inflammatory and adaptogenic activities of these MKs and the possible mechanisms of their protective action. Full article
Show Figures

Figure 1

16 pages, 310 KiB  
Review
The Effectiveness of Biofloc Technology and Its Application Prospects in Sea Cucumber (Apostichopus japonicus) Aquaculture: A Review
by Haoran Xiao, Shufeng Li, Zitong Wang, Ye Tian, Qiwei Zuo, Fenglin Tian, Yongjie Wang, Chong Zhao and Jun Ding
Fishes 2024, 9(11), 457; https://doi.org/10.3390/fishes9110457 - 10 Nov 2024
Viewed by 565
Abstract
This review aims to advance the development of biofloc technology (BFT), providing more sustainable and efficient practices for the farming of the Japanese sea cucumber (Apostichopus japonicus). BFT is a sustainable aquaculture method that promotes nutrient recycling and effective carbon source [...] Read more.
This review aims to advance the development of biofloc technology (BFT), providing more sustainable and efficient practices for the farming of the Japanese sea cucumber (Apostichopus japonicus). BFT is a sustainable aquaculture method that promotes nutrient recycling and effective carbon source management, offering significant advantages such as improving water quality, enhancing growth performance, and boosting the physiological activity and disease resistance of cultured animals. In A. japonicus farming, the optimal carbon source is glucose, and the ideal carbon-to-nitrogen (C/N) ratio ranges between 15 and 20. Microbial additives, such as the Bacillus species, have been shown to enhance biofloc formation and growth, as well as the immune responses in A. japonicus. However, the technology also faces limitations, including finding suitable biofloc culture protocols that match the physiological habits of A. japonicus and potential challenges with biofloc stability under varying environmental conditions. Based on existing research, this review discusses these limitations in the farming of A. japonicus. Additionally, it compares biofloc farming models for other economically important aquatic species. By addressing these key aspects, this review offers insights to enhance BFT performance, ultimately contributing to more efficient and sustainable A. japonicus aquaculture practices. Full article
(This article belongs to the Special Issue Biofloc Technology in Aquaculture)
18 pages, 3714 KiB  
Article
Effects of Biochar on the Growth and Physiological and Mechanical Properties of Cucumber Plug Seedlings Before and After Transplanting
by Guoxin Ma, Qiang Shi, Yuanchao Wu, Yang Liu, Lvhua Han, Jianping Hu, Hanping Mao and Zhiyu Zuo
Agriculture 2024, 14(11), 2012; https://doi.org/10.3390/agriculture14112012 - 8 Nov 2024
Viewed by 382
Abstract
Since the characteristics of plug seedlings affect the effectiveness of automatic transplanting, this study aimed to explore the effect of the addition of biochar into substrates on the growth of plug seedlings before and after transplanting. The physicochemical properties of substrates with 0%, [...] Read more.
Since the characteristics of plug seedlings affect the effectiveness of automatic transplanting, this study aimed to explore the effect of the addition of biochar into substrates on the growth of plug seedlings before and after transplanting. The physicochemical properties of substrates with 0%, 5%, 10%, 15%, 20%, and 25% biochar addition all met the requirements of seedling cultivation. The growth trend, root systems, and mechanical properties of seedlings before transplanting and the leaf gas exchange parameters of seedlings after transplanting were measured in this study. The results indicated that the seedlings cultivated with 10% biochar added to the substrate achieved the best growth trend and physiological indices, and the root systems under this treatment were also stronger than those of other treatments, while the seedlings cultivated with 25% biochar treatment were the worst, with less than 22.23% of the growth seen in the 10% biochar treatment, and even less than 1.5% of the growth of the seedlings cultivated without biochar treatment. Since the strong root systems could enhance the mechanical properties of seedling pots, the seedling pots cultivated with 10% biochar added into the substrate possessed the best compression resistance properties, with the maximum value of 49.52 N, and could maintain maximum completeness after free-fall impacting, wherein the loss of root and substrate was only 8.22%. The analysis results of seedlings cultivated after impacting proposed that the seedlings with better growth trends and root systems before transplanting could obtain better leaf gas exchange parameters during the flower stage after transplanting, so the seedlings cultivated with 5%~10% biochar added into the substrate grew better after impacting and then transplanting. It was noticed that the seedlings cultivated with appropriate biochar added into the substrate were able to achieve the optimal growth parameters and mechanical properties before and after transplanting, which were better able to meet the requirements of automatic transplanting. Thus, this study can promote the development of automatic transplanting technology to some extent. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 849 KiB  
Article
The Evaluation of Compost Maturity and Ammonium Toxicity Using Different Plant Species in a Germination Test
by Zdenko Lončarić, Vlatko Galić, Franjo Nemet, Katarina Perić, Lucija Galić, Péter Ragályi, Nikolett Uzinger and Márk Rékási
Agronomy 2024, 14(11), 2636; https://doi.org/10.3390/agronomy14112636 - 8 Nov 2024
Viewed by 430
Abstract
The determination of the maturity of compost and other organic fertilizers is very important because of possible phytotoxic or phytostimulating effects. The maturity of compost can be assessed on the basis of chemical analyses, and a germination test with different test plants is [...] Read more.
The determination of the maturity of compost and other organic fertilizers is very important because of possible phytotoxic or phytostimulating effects. The maturity of compost can be assessed on the basis of chemical analyses, and a germination test with different test plants is most often used to determine phytotoxicity. In this research, the maturity of compost produced from the plant residues subsequent to the maintenance of green public areas was assessed using the results of chemical analyses. Simultaneously, a germination test was carried out with the four test plant species (cucumber, garden cress, triticale, and barley) to determine the phytotoxicity of compost extract in a ratio of 1:2.5 v/v (1:3.3 w/v) and 1:10 v/v (1:13.3 w/v) and the three ammonium N solutions (in the concentrations of 200, 400, and 600 mg/L NH4-N). According to the chemical properties of compost (primarily the C/N, NH4-N/NO3-N ratios, and the NH4-N concentration) and the germination test with cucumber and garden cress, we may conclude that the tested compost was mature and that we did not expect a phytotoxic effect. The choice of a plant is very significant because the germination test with a compost extract demonstrated an undoubted phytostimulating effect on the garden cress and cucumber, with a more pronounced phytostimulating effect of the 1:10 than that of the 1:2.5 v/v compost extract. No such effect was detected on the monocotyledonous test plants triticale and barley since the 1:10 v/v extract had no significant effect, and the 1:2.5 v/v extract had a phytotoxic effect, moderate on the triticale and high on barley. The conclusion is that garden cress and cucumber are suitable test plants for the determination of compost’s phytostimulative effect, but they are not suitable for the determination of phytotoxicity for monocotyledonous plants, especially if the cause of phytotoxicity is a non-ammonium component. Barley is the most suitable species for the determination of compost’s non-ammonium phytotoxicity and nitrogen’s ammonium-form phytostimulative or phytotoxic effect. It would be very useful to conduct a comparative germination test with the compost extracts in the ratios 1:2.5 and 1:10, whereby the 1:2.5 extract would be used as a test of phytotoxicity, and the 1:10 extract for the test of a phytostimulating effect. Full article
Show Figures

Figure 1

11 pages, 1094 KiB  
Article
Factors Influencing Cucurbitacin-E-Glycoside Content in Bitter Hawkesbury Watermelon as Potential Synergist in Cucurbit Pest Management
by Anna Wallingford, Christopher Hernandez, Fathi Halaweish, Trevor Ostlund, Brent Short and Donald C. Weber
Horticulturae 2024, 10(11), 1182; https://doi.org/10.3390/horticulturae10111182 - 8 Nov 2024
Viewed by 394
Abstract
Bitter Hawkesbury watermelon (BHW) Citrullus lanatus (Thunb.) Matsum. and Nakai (syn. Citrullus vulgaris Schad) contain high concentrations of cucurbitacin-E-glycoside (CEG), a compound that acts as an arrestant and feeding stimulant for diabroticine leaf beetles that are corn (maize) and cucurbit pests. Juice from [...] Read more.
Bitter Hawkesbury watermelon (BHW) Citrullus lanatus (Thunb.) Matsum. and Nakai (syn. Citrullus vulgaris Schad) contain high concentrations of cucurbitacin-E-glycoside (CEG), a compound that acts as an arrestant and feeding stimulant for diabroticine leaf beetles that are corn (maize) and cucurbit pests. Juice from BHW is used as feedstock to produce an insecticide synergist for improved chemical control of pests in cucurbit cropping systems. A positive linear relationship was observed between the CEG concentration of parent and offspring grown in open-pollinated field plots. However, subsequent experiments that explored the influence of parent and fruit maturity on CEG concentration did not confirm a relationship between accumulation patterns among offspring of half-sibling families. An effect of maturity was observed in that earlier harvested fruit had greater CEG concentrations than ripe or overripe fruit. In a field study, CIDETRAK L (active ingredient is BHW juice) was mixed with commonly used insecticides to enhance behavioral control of striped cucumber beetle Acalymma vittatum (F.) and squash vine borer Melittia cucurbitae (Harris). Equivalent control of A. vittatum and M. cucurbitae was observed on zucchini when treated with foliar applications of spinosad, acetamiprid, or lambda-cyhalothrin versus ground applications of the same products mixed with CIDETRAK L. Full article
Show Figures

Figure 1

20 pages, 376 KiB  
Review
Climate Change Effects on Cucumber Viruses and Their Management
by Zhimin Yin, Bartłomiej Zieniuk and Magdalena Pawełkowicz
Agriculture 2024, 14(11), 1999; https://doi.org/10.3390/agriculture14111999 - 7 Nov 2024
Viewed by 665
Abstract
The agricultural sector is facing unprecedented challenges as a result of climate change. As temperatures continue to rise and weather patterns shift, the dynamics of plant–virus interactions are significantly altered, requiring innovative solutions to ensure global food security. This review article examines the [...] Read more.
The agricultural sector is facing unprecedented challenges as a result of climate change. As temperatures continue to rise and weather patterns shift, the dynamics of plant–virus interactions are significantly altered, requiring innovative solutions to ensure global food security. This review article examines the relationship between climate change and the prevalence and severity of cucumber viral diseases, their impact on cucumber yield and quality, and the subsequent economic implications, focusing on critical pathogens such as cucumber mosaic virus (CMV), cucumber leaf spot virus (CLSV), or cucumber vein yellowing virus (CVYV). It also aims to provide a comprehensive overview of the current state of knowledge and identify critical areas for future research and development in response to climate change. The review examines potential solutions to address these challenges. These include exploring the development of virus-resistant cucumber varieties and the use of RNA-based technologies for virus control. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
10 pages, 695 KiB  
Article
In Situ Nitrate Monitoring for Improved Fertigation in On-Demand Coupled Aquaponic Systems
by Sofia Faliagka, Ioannis Naounoulis, Eleftheria Maria Pechlivani and Nikolaos Katsoulas
Nitrogen 2024, 5(4), 1048-1057; https://doi.org/10.3390/nitrogen5040067 - 7 Nov 2024
Viewed by 442
Abstract
Fertigation practices in soilless crop cultivation often rely on predetermined recipes, which may lead to suboptimal nutrient concentrations due to inherent human error or environmental fluctuations. To address this challenge, the integration of in situ real-time nutrient analyzers becomes imperative for ensuring the [...] Read more.
Fertigation practices in soilless crop cultivation often rely on predetermined recipes, which may lead to suboptimal nutrient concentrations due to inherent human error or environmental fluctuations. To address this challenge, the integration of in situ real-time nutrient analyzers becomes imperative for ensuring the delivery of high-quality supply solutions. This study assesses the effectiveness of a real-time nitrate (NO3) analyzer in optimizing the mineral composition of the nutrient solution for fertigating a decoupled aquaponic cucumber crop. The analyzer was integrated into the programmable logic controller of the greenhouse’s hydroponic system. The NO3 analyzer was activated during solution preparation, dynamically adjusting the NO3 concentration based on real-time measurements from either the aquaculture or drainage solution by adding the necessary water or/and nutrients in order to prepare a solution to meet the needs of the crop. Four treatments were evaluated: hydroponics (HP), coupled aquaponics (CAP), decoupled aquaponics (DCAP) with EC adjustment, and decoupled aquaponics with NO3 adjustment (DCAP_N). Results indicated that the DCAP_N treatment, with NO3 adjustment, yielded the highest crop productivity, outperforming DCAP, HP, and CAP treatments by 7.4%, 21.2%, and 56.1%, respectively. Additionally, DCAP_N demonstrated superior water use efficiency (WUE) and fertilizer use efficiency (FUE), exhibiting a 21.5% and 52.5% increase over the HP treatment, respectively. These findings align with the European Green Deal’s objectives by enhancing nutrient management practices, which are crucial for minimizing nutrient loss and ensuring the sustainable and efficient use of fertilizers. Full article
Show Figures

Figure 1

Back to TopTop