Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (282)

Search Parameters:
Keywords = compressor blade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5923 KiB  
Article
Experimental Investigation of Synchronous-Flow-Induced Blade Vibrations on a Radial Turbine
by Marios Sasakaros, Markus Schafferus, Manfred Wirsum, Arthur Zobel, Damian Vogt, Alex Nakos and Bernd Beirow
Int. J. Turbomach. Propuls. Power 2024, 9(4), 35; https://doi.org/10.3390/ijtpp9040035 (registering DOI) - 8 Nov 2024
Viewed by 192
Abstract
In this study, a thorough experimental investigation of the synchronous blade vibrations of a radial turbine is performed for different IGV configurations. First, the blade modes are measured experimentally and calculated numerically. Subsequently, the vibrations are recorded with two redundant measurement systems during [...] Read more.
In this study, a thorough experimental investigation of the synchronous blade vibrations of a radial turbine is performed for different IGV configurations. First, the blade modes are measured experimentally and calculated numerically. Subsequently, the vibrations are recorded with two redundant measurement systems during real operation. Strain gauges were applied on certain blades, while a commercial blade-tip-timing system is used for the measurement of blade deflections. The experimentally determined vibration properties are compared with numerical estimations. Initially, the vibrations recorded with the “nominal” IGV were presented. This IGV primarily generates nodal diameter (ND) 0 vibrations. Subsequently, the impact of two different IGV configurations is examined. First, a mistuned IGV, which has the same number of vanes as the “nominal” IGV is examined. By intentionally varying the distance between the vanes, additional low engine order excitations are generated. Moreover, an IGV with a higher number of vanes is employed to induce excitations at higher frequency modes and ND6 vibrations. Certain vibrations are consistently measured across all IGV configurations, which cannot be attributed to the spiral turbine casing. In addition, a turbine–compressor interaction has been observed. Full article
Show Figures

Figure 1

17 pages, 6883 KiB  
Article
Parametric Analysis and Improvement of the Johnson-Cook Model for a TC4 Titanium Alloy
by Wangtian Yin, Yongbao Liu, Xing He and Zegang Tian
Metals 2024, 14(11), 1199; https://doi.org/10.3390/met14111199 - 22 Oct 2024
Viewed by 566
Abstract
Titanium alloys are widely used in the manufacture of gas turbines’ compressor blades. Elucidating their mechanical behavior and strength under damaged conditions is the key to evaluating the equipment’s reliability. However, the conventional Johnson-Cook (J-C) constitutive model has limitations in describing the dynamic [...] Read more.
Titanium alloys are widely used in the manufacture of gas turbines’ compressor blades. Elucidating their mechanical behavior and strength under damaged conditions is the key to evaluating the equipment’s reliability. However, the conventional Johnson-Cook (J-C) constitutive model has limitations in describing the dynamic response of titanium alloy materials under the impact of a high strain rate. In order to solve this problem, the mechanical behavior of a TC4 titanium alloy under high strain rate and different temperature conditions was analyzed by combining experiments and numerical simulations. In this study, the parameters of the J-C model were analyzed in detail, and an improved J-C constitutive model is proposed, based on the new mechanism of the strain rate strengthening effect and the temperature softening effect, which improves the accuracy of the description of strain sensitivity and temperature dependence. Finally, the VUMAT subroutine of ABAQUS software was used for numerical simulation, and the predictive ability of the improved model was verified. The simulation results showed that the maximum prediction error of the traditional J-C model was 23.6%, while the maximum error of the improved model was reduced to 5.6%. This indicates that the improved J-C constitutive model can more accurately predict the mechanical response of a titanium alloy under an impact load and provides a theoretical basis for the study of the mechanical properties of titanium alloy blades under subsequent conditions of foreign object damage. Full article
(This article belongs to the Section Structural Integrity of Metals)
Show Figures

Figure 1

24 pages, 10038 KiB  
Article
The Influence of Bleed Position on the Stability Expansion Effect of Self-Circulating Casing Treatment
by Haoguang Zhang, Jinhang Xiao, Xinyi Zhong, Yiming Feng and Wuli Chu
Aerospace 2024, 11(10), 852; https://doi.org/10.3390/aerospace11100852 - 16 Oct 2024
Viewed by 458
Abstract
The self-circulating casing treatment can effectively expand the stable working range of the compressor, with little impact on its efficiency. With a single-stage transonic axial flow compressor NASA (National Aeronautics and Space Administration) Stage 35 as the research object, a multi-channel unsteady numerical [...] Read more.
The self-circulating casing treatment can effectively expand the stable working range of the compressor, with little impact on its efficiency. With a single-stage transonic axial flow compressor NASA (National Aeronautics and Space Administration) Stage 35 as the research object, a multi-channel unsteady numerical calculation method was used here to design three types of self-circulating casing treatment structures: 20% Ca (axial chord length of the rotor blade tip), 60% Ca, and 178% Ca (at this time, the bleed position is at the stator channel casing) from the leading edge of the blade tip. The effects of these three bleed positions on the self-circulating stability expansion effect and compressor performance were studied separately. The calculation results indicate that the further the bleed position is from the leading edge of the blade tip, the weaker the expansion ability of the self-circulating casing treatment, and the greater the negative impact on the peak efficiency and design point efficiency of the compressor. This is because the air inlet of the self-circulating casing with an air intake position of 20% Ca is located directly above the core area of the rotor blade top blockage, which can more effectively extract low-energy fluid from the blockage area. Compared to the other two bleed positions, it has the greatest inhibitory effect on the leakage vortex in the rotor blade tip gap and has the strongest ability to improve the blockage at the rotor blade tip. Therefore, 20% Ca from the leading edge of the blade tip has the strongest stability expansion ability, achieving a stall margin improvement of 11.28%. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 2743 KiB  
Article
Experimental Study on Ice Shedding Behaviors for Aero-Engine Fan Blade Icing during Ground Idle
by Liping Wang, Kun Yang, Fang Yu and Fuxin Wang
Aerospace 2024, 11(10), 853; https://doi.org/10.3390/aerospace11100853 - 16 Oct 2024
Viewed by 537
Abstract
Fan blade icing can affect efficiency and aerodynamic stability, and the shed ice may be sucked into the core of the engine, causing adverse effects or even damage to the compressor components. Ice accretion and shedding are among the key issues in engine [...] Read more.
Fan blade icing can affect efficiency and aerodynamic stability, and the shed ice may be sucked into the core of the engine, causing adverse effects or even damage to the compressor components. Ice accretion and shedding are among the key issues in engine design and tests. But they have not been clearly understood. In this work, ice shedding from rotating aero-engine fan blades during continuous icing is experimentally investigated under the relevant airworthiness requirements. The phenomena of icing and ice shedding under different ambient temperatures and engine speeds are recorded to obtain the ice-shedding time and the characteristic length of the residual ice. Force analysis is used to understand the corresponding behavior. The degree of ice-shedding balance Db is defined to explore the symmetry of ice shedding. The results show that the shedding time is significantly affected by the rotational speed, and the characteristic length will first shorten and then grow as the ambient temperature decreases. When the ice shedding is completed instantaneously, Db will show a violent shock. There is a critical ambient temperature, below which the ice accretion will worsen significantly as temperature decreases. For aero-engine fan blade icing tests during ground idle, the critical ambient temperature ranges from −5 C to −9 C. In order for the ice to shed faster, the engine speed has to reach a threshold. This study can shed light on the preliminary characteristics of ice shedding from rotating components and provide guidance and a data basis for the numerical simulation of fan blade icing and the design of an aero-engine. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 5177 KiB  
Article
Study on Rain Absorption Performance and Flow Field of Transonic Compressor under Different Working Conditions
by Shamiao Luo, Shaobin Li and Xizhen Song
Aerospace 2024, 11(10), 829; https://doi.org/10.3390/aerospace11100829 - 9 Oct 2024
Viewed by 430
Abstract
Taking a four-stage transonic compressor as the research object, the Lagrange particle tracking method was used to simulate the multiphase flow by considering the particle fragmentation, collision and evaporation models, and the influence of different inlet conditions (raindrop diameter, velocity, temperature and flow [...] Read more.
Taking a four-stage transonic compressor as the research object, the Lagrange particle tracking method was used to simulate the multiphase flow by considering the particle fragmentation, collision and evaporation models, and the influence of different inlet conditions (raindrop diameter, velocity, temperature and flow rate) on the compressor’s performance and stable working range was studied. The results show that inlet rain absorption can weaken the clearance leakage vortex make the shock wave move downstream, thus increasing the inlet flow rate, resulting in a decrease in stability margin and the highest efficiency point moving in the direction of flow increase. With the decrease in raindrop diameter, the pressure ratio and wet compression efficiency increase, and the stability margin decreases. With the increase in inlet raindrop velocity, the degree of pneumatic breakage increases and the raindrop diameter becomes smaller, which leads to the decrease in pressure ratio and efficiency. The influence of the mass flow rate of imported raindrops on the stable working range is significant. When the mass flow rate of imported raindrops accounts for 5% of the design flow, the stable working range can be reduced by more than half. Rain absorption increases the reaction force of the compressor and increases the load of the rotor blade. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 6867 KiB  
Article
Study on the Influence of Different Slot Sizes on the Flow Field of Transonic Compressor Rotors
by Yu Gao, Xiaodong Li and Jingjun Zhong
Aerospace 2024, 11(10), 825; https://doi.org/10.3390/aerospace11100825 - 8 Oct 2024
Viewed by 376
Abstract
Blade slotting technology is an effective measure to improve the flow structure on the suction surface of a blade and enhance the performance of turbomachinery. To investigate the impact of various slot sizes on the flow field of a single-stage transonic compressor rotor, [...] Read more.
Blade slotting technology is an effective measure to improve the flow structure on the suction surface of a blade and enhance the performance of turbomachinery. To investigate the impact of various slot sizes on the flow field of a single-stage transonic compressor rotor, seven kinds of slot schemes were designed and calculated by numerical simulations. The results show that the above slotting schemes significantly enhance the stability margin of the compressor. In particular, the slotting scheme H9W3 increases the surge margin by 60.9% and slightly reduces peak efficiency by 0.3%, with an almost identical maximum pressure ratio. Slotting promotes high-energy fluid to generate jets from the slot located at the exit of the suction side, effectively controlling blade surface flow separation and reducing channel blockage. Square slots are more effective than elongated slots for controlling separation when using differently shaped slots with equal areas. Increasing slot area gradually decreases outlet total pressure at a constant aspect ratio. A slight increase in the overall blade load causes a backward shift in the front portion load. Full article
Show Figures

Figure 1

15 pages, 4422 KiB  
Article
Aerodynamic Analysis of Blade Stall Flutter Prediction for Transonic Compressor Using Energy Method
by Ali Arshad and Akshay Murali
Aerospace 2024, 11(10), 815; https://doi.org/10.3390/aerospace11100815 - 6 Oct 2024
Viewed by 484
Abstract
In this study, stall flutter onset prediction in a transonic compressor is carried out using the (uncoupled) energy method with Fourier transform. As the study is conducted computationally using computational fluid dynamics (CFD)-based simulations, the energy method was employed due to its higher [...] Read more.
In this study, stall flutter onset prediction in a transonic compressor is carried out using the (uncoupled) energy method with Fourier transform. As the study is conducted computationally using computational fluid dynamics (CFD)-based simulations, the energy method was employed due to its higher computational efficiency by implementing the one-way FSI (Fluid Structure Interaction) model. The energy method is relatively uncommon for determining the aerodynamic damping and flutter prediction, specifically in blade stall conditions for the 3D blade passages. The NASA Rotor 67 was chosen for the validation of the study due to the availability of a wide range of experimental data. A flutter prediction analysis was performed computationally using CFD for the two-blade passages of the rotor in the peak efficiency and stall regions. Prior to this, the modal analysis on the prestressed blade was conducted, considering the centrifugal effects. The modal analysis provided accurate blade frequency and amplitude, which were the inputs of the flutter analysis. The first three modes of blade resonance were studied with a range of nodal diameters within near-peak efficiency and stall regions. The energy method implemented in this study for the flutter analysis was successfully able to predict the aerodynamic damping coefficients of the first three modes for a range of nodal diameters from the periodic-unsteady solution of the defined blade oscillation within the regions of interest (peak efficiency and stall point). The results of the study confirm the rotor blade’s stability within the near-peak region and, most importantly, the prediction of the flutter onset in the stall region. The study concluded that the computationally inexpensive and time-efficient energy method is capable of predicting the stall flutter onset. In the future, further validations of the energy method and investigations related to flow mechanism of stall flutter onset are planned. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

12 pages, 2353 KiB  
Article
Performance Evaluation of CO2 + SiCl4 Binary Mixture in Recompression Brayton Cycle for Warm Climates
by Muhammad Ehtisham Siddiqui and Khalid H. Almitani
Processes 2024, 12(10), 2155; https://doi.org/10.3390/pr12102155 - 2 Oct 2024
Viewed by 542
Abstract
This work demonstrates the potential of CO2 + SiCl4 binary mixture as a working fluid for power generation cycle. Recompression Brayton cycle configuration is considered due to its proven record of high performance for medium- to high-temperature sources. The objective of [...] Read more.
This work demonstrates the potential of CO2 + SiCl4 binary mixture as a working fluid for power generation cycle. Recompression Brayton cycle configuration is considered due to its proven record of high performance for medium- to high-temperature sources. The objective of this study is to assess the thermodynamic performance of a recompression Brayton cycle using a CO2 + SiCl4 binary mixture as a working fluid, particularly under warm climate conditions. The cycle is simulated using the Peng–Robinson equation of state in Aspen Hysys (v11) software, and the model is validated by comparing VLE data against experimental data from the literature. The analysis involves the assessment of cycle’s thermal efficiency and exergy efficiency under warm climatic conditions, with a minimum cycle temperature of 40 °C. The results demonstrate a notable improvement in the cycle’s thermodynamic performance with CO2 + SiCl4 binary mixture compared to pure CO2. A small concentration (5%) of SiCl4 in CO2 increases the thermal efficiency of the cycle from 41.7% to 43.4%. Moreover, irreversibility losses in the cooler and the heat recovery unit are significantly lower with the CO2 + SiCl4 binary mixture than with pure CO2. This improvement enhances the overall exergy efficiency of the cycle, increasing it from 62.1% to 70.2%. The primary reason for this enhancement is the substantial reduction in irreversibility losses in both the cooler and the HTR. This study reveals that when using a CO2 + SiCl4 mixture, the concentration must be optimized to avoid condensation in the compressor, which can cause physical damage to the compressor blades and other components, as well as increase power input. This issue arises from the higher glide temperature of the mixture at increased SiCl4 concentrations and the limited heat recovery from the cycle. Full article
Show Figures

Figure 1

15 pages, 10063 KiB  
Article
Characteristics of Differential Entropy Generation in a Transonic Rotor and Its Applications to Casing Treatment Designs
by Jingyuan Ma, Yongsheng Wang and Feng Lin
Machines 2024, 12(10), 673; https://doi.org/10.3390/machines12100673 - 26 Sep 2024
Viewed by 390
Abstract
Casing treatments improve compressor stability but often at the expense of compressor efficiency. In this study, the differential entropy generation rate (DEGR) was applied to both efficiency evaluation and stall margin estimation. Rotor 67 was used as the compressor in this study and [...] Read more.
Casing treatments improve compressor stability but often at the expense of compressor efficiency. In this study, the differential entropy generation rate (DEGR) was applied to both efficiency evaluation and stall margin estimation. Rotor 67 was used as the compressor in this study and the simulation results were analyzed to correlate the distribution of the DEGR with the flow structures in the rotor at three rotating speeds. The characteristics of the DEGR at each speed were analyzed, exhibiting the characteristics of the flow structures at peak efficiency (PE) and near stall (NS) flow conditions. Loss analysis was conducted on the peak efficiency operating condition, particularly at 100% rotating speed. The critical state of the DEGR was investigated to identify stall occurrences on the near-stall condition. It was thus concluded that the DEGR can be a unified measure of both efficiency and stall margin. This theoretical exploration was subsequently applied to the design of casing treatments with two objectives: enhancing peak efficiency at 100% rotating speed and improving stability margins at all speeds. Two casing treatments were designed, with two circumferential grooves positioned axially at different locations. Their mechanisms for reducing the high DEGR area in the peak efficiency condition of 100% speed and suppressing an increase in DEGR during approaching stall were investigated, respectively. The results indicated that the presence of a groove near the leading edge of the blade tip can effectively suppress stall at all speeds. In order to achieve peak efficiency at high speeds, the extent of casing treatment coverage above the shock wave plays a crucial role in minimizing losses. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

27 pages, 3505 KiB  
Article
A Novel Direct-Expansion Radiant Floor System Utilizing Water (R-718) for Cooling and Heating
by Fadi Alsouda, Nick S. Bennett, Suvash C. Saha and Mohammad S. Islam
Energies 2024, 17(17), 4520; https://doi.org/10.3390/en17174520 - 9 Sep 2024
Viewed by 532
Abstract
While forced-air convective systems remain the predominant method for heating and cooling worldwide, radiant cooling and heating systems are emerging as a more efficient alternative. Current radiant cooling systems primarily rely on hydronic chilled water systems. This study introduces direct-expansion radiant cooling as [...] Read more.
While forced-air convective systems remain the predominant method for heating and cooling worldwide, radiant cooling and heating systems are emerging as a more efficient alternative. Current radiant cooling systems primarily rely on hydronic chilled water systems. This study introduces direct-expansion radiant cooling as a novel technique that could enhance the efficiency of radiant cooling and reduce its environmental impact. Water (R-718) has been tested as a refrigerant due to its favorable thermodynamic properties and environmental advantages; however, to the author’s knowledge, it has yet to be tested in direct-expansion radiant cooling. This research investigated several refrigerants, including water (R-718), ammonia (R-717), R-410a, R-32, R-134a, and R-1234yf, for this application. The findings indicate that water demonstrates efficiency comparable to other non-natural refrigerants, making it a promising candidate, given its favorable thermodynamic properties and substantial environmental benefits. Despite challenges such as a high compression ratio necessitating multi-stage compression, a high compressor discharge temperature exceeding 300 °C and requiring specialized blade materials, and a high suction volume flow rate, direct-expansion radiant cooling operates within a different temperature range. Consequently, the compressor discharge temperature can be reduced to 176 °C, and the compression ratio can be lowered to approximately 3.5, making water a more viable refrigerant option for this application. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

11 pages, 2495 KiB  
Article
Vibration and Fault Analysis of a Rotor System of a Twin-Spool Turbo-Jet Engine in Ground Test
by Jingjing Huang, Yirong Yang, Bilian Peng and Suobin Li
Aerospace 2024, 11(9), 724; https://doi.org/10.3390/aerospace11090724 - 4 Sep 2024
Viewed by 613
Abstract
According to the characteristics of the rotor system in an aero-engine and the vibrational test requirements of the aero-engine ground test, suitable vibration measurement sensors and test positions were selected. The vibration signals at the casings for the compressor and turbine of a [...] Read more.
According to the characteristics of the rotor system in an aero-engine and the vibrational test requirements of the aero-engine ground test, suitable vibration measurement sensors and test positions were selected. The vibration signals at the casings for the compressor and turbine of a twin-spool turbo-jet engine were collected under the states of maximum power and afterburning respectively, and the power spectrum analysis was carried out to determine the positions and causes of vibration. Furthermore, methods and preventive measures for eliminating vibration have been proposed. The results indicated that the main rotor vibration excited by mass imbalance in the twin-spool turbo-jet engine was significant. Rotor spindle misalignment or rotor radial stiffness unevenness also induced the vibration. The aerodynamic pulse vibration formed by the rotor blades of the first stage of the low pressure compressor was large, and rub induced vibration fault may occur at the turbine rotor seals. Based on the power spectrum analysis technology, the rotor system faults information including the type, position, and the degree can be quickly identified, and useful attempts and explorations have been made to reduce the vibration faults of the twin-spool turbo-jet engine. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 6376 KiB  
Article
Strength and Vibration Analysis of Axial Flow Compressor Blades Based on the CFD-CSD Coupling Method
by Haiwei Lin, Hong Bao, Huaihuai Zhang, Feifei Zhao and Junli Wang
Appl. Sci. 2024, 14(16), 7432; https://doi.org/10.3390/app14167432 - 22 Aug 2024
Viewed by 846
Abstract
During the operational process of an axial-flow compressor, the blade structure is simultaneously subjected to both aerodynamic loads and centrifugal loads, posing significant challenges to the safe and reliable operation of the blades. Considering both centrifugal loads and aerodynamic loads comprehensively, a bidirectional [...] Read more.
During the operational process of an axial-flow compressor, the blade structure is simultaneously subjected to both aerodynamic loads and centrifugal loads, posing significant challenges to the safe and reliable operation of the blades. Considering both centrifugal loads and aerodynamic loads comprehensively, a bidirectional CFD-CSD coupling analysis method for blade structure was established. The Navier–Stokes governing equations were utilized to solve the internal flow field of the axial-flow compressor. The conservative interpolation method was utilized to couple and solve the blade’s static equilibrium equation, and the deformation, stress distribution, and prestress modal behavior of compressor blades were mainly analyzed. The research results indicate that the maximum deformation of the blades occurred at the lead edge tip, while stress predominantly concentrated approximately 33% upward from the blade root, exhibiting a radial distribution that gradually decreased. As the rotational speed increased, the maximum deformation of the blades continuously increased. Furthermore, at a constant rotational speed, the maximum deformation of the blade exhibited a trend of first increasing and then decreasing with the increase in mass flow. In contrast, the maximum stress showed a trend of first increasing, then decreasing, and finally increasing again as the rotational speed continuously increased. Centrifugal loads are the primary factor influencing blade stress and natural frequency. During operation, the blades exhibited two resonance points, approximately occurring at 62% and 98% of the design rotational speed. Full article
(This article belongs to the Topic Fluid Mechanics, 2nd Edition)
Show Figures

Figure 1

27 pages, 13198 KiB  
Article
An Evaluation of Passive Wall Treatment with Circumferential Grooves at the Casing of the First and Second Blade Rotor Rows of a High-Performance Multi-Stage Axial Compressor
by Ruben Bruno Diaz, Jesuino Takachi Tomita, Cleverson Bringhenti, Franco Jefferds dos Santos Silva and Diogo Ferraz Cavalca
Aerospace 2024, 11(8), 662; https://doi.org/10.3390/aerospace11080662 - 12 Aug 2024
Viewed by 555
Abstract
The internal losses in the tip clearance region strongly influence the compressor performance and its operational range. Previous research proved that passive wall treatments with circumferential grooves in axial compressors effectively increase the compressor stall margin. The vortex generated inside the circumferential grooves [...] Read more.
The internal losses in the tip clearance region strongly influence the compressor performance and its operational range. Previous research proved that passive wall treatments with circumferential grooves in axial compressors effectively increase the compressor stall margin. The vortex generated inside the circumferential grooves creates a resistance to the flow that leaks into the tip clearance region of the compressor. However, most works found in the literature on circumferential grooves in axial compressors deal only with high-performance single-stage axial compressors. Therefore, there is a need to investigate and analyze the behavior of circumferential grooves in a multi-stage environment. In the present work, a passive wall treatment with circumferential grooves was implemented in a multi-stage axial compressor. Different configurations of circumferential grooves were created at the casing of the first and second rotor rows used in a four-stage axial flow compressor. Numerical simulations were performed to evaluate the influence of the circumferential grooves on the performance of a multi-stage axial compressor. The results obtained after the simulations for the different circumferential groove configurations were compared with the results obtained for the compressor without casing treatment (smooth wall) for different rotational speeds. Furthermore, the complete compressor map characteristics were simulated for the different casing treatment configurations, and the results were compared with the compressor characteristics of the smooth wall case. The passive wall treatment with circumferential grooves produced changes in the multi-stage axial compressor flow field, especially in the tip clearance region, improving the compressor stability mainly for part load speeds. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 7409 KiB  
Article
Influence of Herringbone Grooves Inspired by Bird Feathers on Aerodynamics of Compressor Cascade under Different Reynolds Number Conditions
by Shaobing Han, Zhijie Yang, Jingjun Zhong and Yuying Yan
Aerospace 2024, 11(8), 626; https://doi.org/10.3390/aerospace11080626 - 31 Jul 2024
Viewed by 712
Abstract
Nowadays, high aerodynamic load has made blade separation an issue for compact axial compressors under high-altitude low-Reynolds-number conditions. In this study, herringbone grooves inspired by bird feathers were applied to suppress the suction side separation and reduce loss. To study the effect of [...] Read more.
Nowadays, high aerodynamic load has made blade separation an issue for compact axial compressors under high-altitude low-Reynolds-number conditions. In this study, herringbone grooves inspired by bird feathers were applied to suppress the suction side separation and reduce loss. To study the effect of bio-inspired herringbone grooves on the aerodynamic performance of compressor cascades, a high subsonic compressor cascade was taken as the research object. Under the conditions of different Reynolds numbers, the effects of herringbone grooves of different depths on the flow separation were numerically studied. The research results show that at a high-Reynolds-number condition (Re = 5.6 × 105), the sawtooth-shaped wake induced by herringbone grooves increases the turbulent mixing loss near the suction surface, and the blade performance deteriorates. At a low-Reynolds-number condition (Re = 1.3 × 105), the span-wise secondary flow and micro-vortex structure induced by the herringbone grooves effectively suppress the laminar separation on the suction surface of the blade, and there is an optimal depth for the herringbone grooves that reduces the profile loss by 8.33% and increases the static pressure ratio by 0.55%. The selection principle of the optimal groove depth with the Re is discussed based on the research results under six low-Reynolds-number conditions. Full article
Show Figures

Figure 1

15 pages, 6721 KiB  
Article
Twist Angle Error Statistical Analysis and Uncertain Influence on Aerodynamic Performance of Three-Dimensional Compressor Rotor
by Yue Dan, Ruiyu Li, Limin Gao, Huawei Yu and Yuyang Hao
Aerospace 2024, 11(8), 614; https://doi.org/10.3390/aerospace11080614 - 26 Jul 2024
Viewed by 735
Abstract
Twist angle errors along the blade radial direction are uncertain and affected by cutting force, tool wear, and other factors. In this paper, the measured twist angle errors of 13 sections of 72 rotor blades were innovatively analyzed to obtain the rational statistical [...] Read more.
Twist angle errors along the blade radial direction are uncertain and affected by cutting force, tool wear, and other factors. In this paper, the measured twist angle errors of 13 sections of 72 rotor blades were innovatively analyzed to obtain the rational statistical distribution. It is surprisingly found that the under-deflection systematic deviation of twist angle errors shows a gradually increasing W-shaped distribution along the radial direction, while the scatter is nearly linear. Logically, the statistical model is established based on the linear correlation of the scatter by regression analysis to reduce variable dimension from 13 to 1. The influence of the radial non-uniform twist angle errors’ uncertainty on the aerodynamic performance of the three-dimensional compressor rotor is efficiently quantified combining the non-intrusive polynomial chaos method. The results show that the mean values of mass flow rate, total pressure ratio, and isentropic efficiency at the typical operating conditions are lower than the nominal values due to the systematic deviation, indicating that the under-deflection twist angle errors lead to the decrease in compressor thrust. The compressor’s stable operating range is more sensitive to the scatter of twist angle errors, which is up to an order of magnitude greater than that of the total pressure ratio and isentropic efficiency, indicating the compressor’s safe and stable operation risk increases. Additionally, the flow field at the tip region is significantly affected by twist angle errors, especially at the shock wave position of the near-stall condition. Full article
Show Figures

Figure 1

Back to TopTop