Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (373)

Search Parameters:
Keywords = charge pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 12684 KiB  
Article
Creation of Bessel–Gaussian Beams from Necklace Beams via Second-Harmonic Generation
by Nikolay Dimitrov, Kiril Hristov, Maya Zhekova and Alexander Dreischuh
Photonics 2025, 12(2), 119; https://doi.org/10.3390/photonics12020119 - 28 Jan 2025
Viewed by 245
Abstract
The interest in (quasi-)nondiffracting beams is rooted in applications spanning from secure sharing cryptographic keys real-world free-space optical communications and high-order harmonic generation to high-aspect-ratio nanochannel machining, photopolymerization, and nanopatterning, just to mention a few. In this work, we explore the robustness of [...] Read more.
The interest in (quasi-)nondiffracting beams is rooted in applications spanning from secure sharing cryptographic keys real-world free-space optical communications and high-order harmonic generation to high-aspect-ratio nanochannel machining, photopolymerization, and nanopatterning, just to mention a few. In this work, we explore the robustness of the approach for generating Bessel–Gaussian beams by Fourier transforming ring-shaped beams and push the limits further. Here, instead of ring-shaped beams, we use strongly azimuthally modulated necklace beams. Necklace structures are generated by interference of OV beams that carry equal topological charges of opposite signs. In order to effectively account for the azimuthal π-phase jumps in the necklace beams, we first generate their second harmonic, thereafter focusing (i.e., Fourier transforming) them with a thin lens. In this way, we successfully create Bessel–Gaussian beams in the second harmonic of a pump beam with strong azimuthal modulation. The experimental data presented are in good agreement with the developed analytical model. Full article
38 pages, 1871 KiB  
Article
Reduced-Order Model for Cell Volume Homeostasis: Application to Aqueous Humor Production
by Riccardo Sacco, Greta Chiaravalli, Giovanna Guidoboni, Anita Layton, Gal Antman, Keren Wood Shalem, Alice Verticchio, Brent Siesky and Alon Harris
Math. Comput. Appl. 2025, 30(1), 13; https://doi.org/10.3390/mca30010013 - 24 Jan 2025
Viewed by 276
Abstract
The ability of a cell to keep its volume constant irrespective of intra- and extracellular conditions is essential for cellular homeostasis and survival. The purpose of this study is to elaborate a theoretical model of cell volume homeostasis and to apply it to [...] Read more.
The ability of a cell to keep its volume constant irrespective of intra- and extracellular conditions is essential for cellular homeostasis and survival. The purpose of this study is to elaborate a theoretical model of cell volume homeostasis and to apply it to a simulation of human aqueous humor (AH) production. The model assumes a cell with a spherical shape and only radial deformation satisfying the property that the cell volume in rest conditions equals that of the cell couplets constituting the ciliary epithelium of the human eye. The cytoplasm is described as a homogeneous mixture containing fluid, ions, and neutral solutes whose evolution is determined by net production mechanisms occurring in the intracellular volume and by water and solute exchange across the membrane. Averaging the balance equations over the cell volume leads to a coupled system of nonlinear ordinary differential equations (ODEs) which are solved using the θ-method and the Matlab function ode15s. Simulation tests are conducted to characterize the set of parameters corresponding to baseline conditions in AH production. The model is subsequently used to investigate the relative importance of (a) impermeant charged proteins; (b) sodium–potassium (Na+/K+) pumps; (c) carbonic anhydrase (CA) in the AH production process; and (d) intraocular pressure. Results suggest that (a) and (b) play a role; (c) lacks significant weight, at least for low carbon dioxide values; and (d) plays a role for the elevated values of intraocular pressure. Model results describe a higher impact from charged proteins and Na+/K+ ATPase than CA on AH production and cellular volume. The computational virtual laboratory provides a method to further test in vivo experiments and machine learning-based data analysis toward the prevention and cure of ocular diseases such as glaucoma. Full article
19 pages, 1138 KiB  
Article
Dual-Loop Charge Management for Space-Based Gravitational Wave Detection
by Tao Yu, Zihan Zhao, Yongkun Chen, Huadong Li and Zhi Wang
Aerospace 2025, 12(2), 82; https://doi.org/10.3390/aerospace12020082 - 24 Jan 2025
Viewed by 270
Abstract
In space-based gravitational wave detection missions, inertial sensors act as the inertial reference, requiring the test mass (TM) to maintain exceptionally low residual acceleration noise. High-energy particles, cosmic rays, and ion pumps during ground tests can quickly lead to charge accumulation on the [...] Read more.
In space-based gravitational wave detection missions, inertial sensors act as the inertial reference, requiring the test mass (TM) to maintain exceptionally low residual acceleration noise. High-energy particles, cosmic rays, and ion pumps during ground tests can quickly lead to charge accumulation on the TM surface, necessitating a charge management system to regulate surface charges. To manage the TM surface potential, this paper develops a mathematical model of the charge management system using established ultraviolet (UV) discharge simulation methods. The model describes how photoelectron emission or absorption on the TM surface varies with UV light-emitting diodes (LEDs) power and bias voltage. For the first time, a dual-loop control method is implemented for charge control, highlighting its practical significance. The controller precisely regulates the TM surface potential and residual charges to specified values, achieving a control accuracy of 1.1×106e, meeting the stringent requirements of space-based gravitational wave detection missions. This approach offers a closed-loop charge management solution and provides valuable insights for designing future charge management systems. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 1349 KiB  
Article
Enhancing Mass Transport in Organic Redox Flow Batteries Through Electrode Obstacle Design
by Joseba Martínez-López, Unai Fernández-Gamiz, Eduardo Sánchez-Díez, Aitor Beloki-Arrondo and Íñigo Ortega-Fernández
Batteries 2025, 11(1), 29; https://doi.org/10.3390/batteries11010029 - 16 Jan 2025
Viewed by 473
Abstract
This study examines the impact of incorporating obstacles in the electrode structure of an organic redox flow battery with a flow-through configuration. Two configurations were compared: A control case without obstacles (Case 1) and a modified design with obstacles to enhance mass transport [...] Read more.
This study examines the impact of incorporating obstacles in the electrode structure of an organic redox flow battery with a flow-through configuration. Two configurations were compared: A control case without obstacles (Case 1) and a modified design with obstacles to enhance mass transport and uniformity (Case 2). While Case 1 exhibited marginally higher discharge voltages (average difference of 0.18%) due to reduced hydraulic resistance and lower Ohmic losses, Case 2 demonstrated significant improvements in concentration uniformity, particularly at low state-of-charge (SOC) levels. The obstacle design mitigated local depletion of active species, thereby enhancing limiting current density and improving minimum concentration values across the studied SOC range. However, the introduction of obstacles increased flow resistance and pressure drops, indicating a trade-off between electrochemical performance and pumping energy requirements. Notably, Case 2 performed better at lower flow rates, showcasing its potential to optimize efficiency under varying operating conditions. At higher flow rates, the advantages of Case 2 diminished but remained evident, with better concentration uniformity, higher minimum concentration values, and a 1% average increase in limiting current density. Future research should focus on optimizing obstacle geometry and positioning to further enhance performance. Full article
(This article belongs to the Special Issue Towards a Smarter Battery Management System: 2nd Edition)
Show Figures

Figure 1

24 pages, 3302 KiB  
Article
Techno-Economic Analysis of Waste Heat Recovery in Automotive Manufacturing Plants
by Putu Diah Prajna Paramita, Sindu Daniarta, Attila R. Imre and Piotr Kolasiński
Appl. Sci. 2025, 15(2), 569; https://doi.org/10.3390/app15020569 - 9 Jan 2025
Viewed by 808
Abstract
This study proposes an innovative system for recovering waste heat from exhaust air after a regenerative thermal oxidiser process, integrating a Carnot battery and photovoltaic (PV) modules. The Carnot battery incorporates an organic Rankine cycle (ORC) with a recuperator, thermal energy storage (TES), [...] Read more.
This study proposes an innovative system for recovering waste heat from exhaust air after a regenerative thermal oxidiser process, integrating a Carnot battery and photovoltaic (PV) modules. The Carnot battery incorporates an organic Rankine cycle (ORC) with a recuperator, thermal energy storage (TES), and heat pump. Waste heat is initially captured in TES, with additional energy extracted by a heat pump to increase the temperature of a secondary fluid, effectively charging TES from both direct and indirect sources. The stored heat enables electricity generation via ORC. The result of this study shows a heat pump COP between 2.55 and 2.87, the efficiency of ORC ranging from 0.125 to 0.155, and the power-to-power of the Carnot battery between 0.36 and 0.40. Moreover, PV generates 1.35 GWh annually, primarily powering the heat pump and ORC system pump. The proposed system shows a total annual net generation of 4.30 GWh. Economic evaluation across four configurations demonstrates favourable outcomes, with a return on investment between 25% and 160%. The economic evaluation examined configurations with and without the PV system and recuperation process in the ORC. Results indicate that incorporating the PV system and recuperator significantly increases power output, offering a highly viable and sustainable energy solution. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

25 pages, 17672 KiB  
Article
An Integrated Strategy for Hybrid Energy Storage Systems to Stabilize the Frequency of the Power Grid Through Primary Frequency Regulation
by Dan Zhou, Zhiwei Zou, Yangqing Dan, Chenxuan Wang, Chenyuan Teng and Yuanlong Zhu
Energies 2025, 18(2), 246; https://doi.org/10.3390/en18020246 - 8 Jan 2025
Viewed by 405
Abstract
As the penetration of renewable energy sources (RESs) in power systems continues to increase, their volatility and unpredictability have exacerbated the burden of frequency regulation (FR) on conventional generator units (CGUs). Therefore, to reduce frequency deviations caused by comprehensive disturbances and improve system [...] Read more.
As the penetration of renewable energy sources (RESs) in power systems continues to increase, their volatility and unpredictability have exacerbated the burden of frequency regulation (FR) on conventional generator units (CGUs). Therefore, to reduce frequency deviations caused by comprehensive disturbances and improve system frequency stability, this paper proposes an integrated strategy for hybrid energy storage systems (HESSs) to participate in primary frequency regulation (PFR) of the regional power grid. Once the power grid frequency exceeds the deadband (DB) of the HESS, the high-frequency signs of the power grid frequency are managed by the battery energy storage system (BESS) through a division strategy, while the remaining parts are allocated to pumped hydroelectric energy storage (PHES). By incorporating positive and negative virtual inertia control and adaptive droop control, the BESS effectively maintains its state of charge (SOC), reduces the steady-state frequency deviation of the system, and provides rapid frequency support. When the system frequency lies within the DB of the HESS, an SOC self-recovery strategy restores the BESS SOC to an ideal range, further enhancing its long-term frequency regulation (FR) capability. Finally, a regional power grid FR model is established in the RT-1000 real-time simulation system. Simulation validation is conducted under three scenarios: step disturbances, short-term continuous disturbances, and long-term RES disturbances. The results show that the proposed integrated strategy for HESS participation in PFR not only significantly improves system frequency stability but also enhances the FR capability of the BESS. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

23 pages, 6551 KiB  
Article
Anomalous Polarization in One-Dimensional Aperiodic Insulators
by Anouar Moustaj, Julius Krebbekx and Cristiane Morais Smith
Condens. Matter 2025, 10(1), 3; https://doi.org/10.3390/condmat10010003 - 6 Jan 2025
Viewed by 363
Abstract
Multilevel charge pumping is a feature that was recently observed in quasiperiodic systems. In this work, we show that it is more generic and appears in different aperiodic systems. Additionally, we show that for aperiodic systems admitting arbitrarily long palindromic factors, the charge [...] Read more.
Multilevel charge pumping is a feature that was recently observed in quasiperiodic systems. In this work, we show that it is more generic and appears in different aperiodic systems. Additionally, we show that for aperiodic systems admitting arbitrarily long palindromic factors, the charge pumping protocol connects two topologically distinct insulating phases. This confirms the existence of topological phases in aperiodic systems whenever their finite-size realizations admit inversion symmetry. These phases are characterized by an anomalous edge response resulting from the bulk–boundary correspondence. We show that these signatures are all present in various chains, each representing a different class of structural aperiodicity: the Fibonacci quasicrystal, the Tribonacci quasicrystal, and the Thue–Morse chain. More specifically, we calculate three quantities: the Berry phase of the periodic approximation of the finite-size systems, the polarization response to an infinitesimal static and constant electric field in systems with open boundary conditions, and the degeneracy of the entanglement spectrum. We find that all of them provide signatures of a topologically nontrivial phase. Full article
(This article belongs to the Section Condensed Matter Theory)
Show Figures

Figure 1

21 pages, 6786 KiB  
Article
A Novel Multi-Mode Charge Pump in Word Line Driver for Compute-in-Memory Arrays
by Zhengyuan Lin, Xiaoyu Zhong, Zhiguo Yu, Yating Dong, Zengqi Huang and Xiaofeng Gu
Electronics 2025, 14(1), 175; https://doi.org/10.3390/electronics14010175 - 3 Jan 2025
Viewed by 495
Abstract
Flash memory, as the core unit of a compute-in-memory (CIM) array, requires multiple positive and negative (PN) high voltages (HVs) for word lines (WLs) to operate during storage and computation. A traditional WL driver generates these voltages using several charge pumps (CPs), leading [...] Read more.
Flash memory, as the core unit of a compute-in-memory (CIM) array, requires multiple positive and negative (PN) high voltages (HVs) for word lines (WLs) to operate during storage and computation. A traditional WL driver generates these voltages using several charge pumps (CPs), leading to significant area overhead. This paper presents a novel multi-mode CP (MMCP) that generates all required HVs for a CIM array under a single CP, supporting CIM unit operation in programming, readout, and erase modes. Unlike traditional voltage multipliers, the MMCP eliminates the need for multiple CPs, reducing area and pump capacitor usage. Compared to a PN CP that drives a common load, the MMCP can provide multiple PN HVs by using level shifters (LSs) and switches. The MMCP is designed in a 55 nm standard CMOS process with an area of only 0.021 mm2. Additionally, this paper proposes global PN HV switches, which can correctly deliver the PN HVs generated by the MMCP from the same port (at different times) to the upper and lower power rails of WL driver circuits. Simulation results show that with a 2.5 V supply, 100 pF load, and 50 μA current, the maximum error due to ripple is only 0.28%. Full article
Show Figures

Figure 1

26 pages, 8196 KiB  
Article
Control Strategy for DC Micro-Grids in Heat Pump Applications with Renewable Integration
by Claude Bertin Nzoundja Fapi, Mohamed Lamine Touré, Mamadou-Baïlo Camara and Brayima Dakyo
Electronics 2025, 14(1), 150; https://doi.org/10.3390/electronics14010150 - 2 Jan 2025
Viewed by 586
Abstract
DC micro-grids are emerging as a promising solution for efficiently integrating renewable energy into power systems. These systems offer increased flexibility and enhanced energy management, making them ideal for applications such as heat pump (HP) systems. However, the integration of intermittent renewable energy [...] Read more.
DC micro-grids are emerging as a promising solution for efficiently integrating renewable energy into power systems. These systems offer increased flexibility and enhanced energy management, making them ideal for applications such as heat pump (HP) systems. However, the integration of intermittent renewable energy sources with optimal energy management in these micro-grids poses significant challenges. This paper proposes a novel control strategy designed specifically to improve the performance of DC micro-grids. The strategy enhances energy management by leveraging an environmental mission profile that includes real-time measurements for energy generation and heat pump performance evaluation. This micro-grid application for heat pumps integrates photovoltaic (PV) systems, wind generators (WGs), DC-DC converters, and battery energy storage (BS) systems. The proposed control strategy employs an intelligent maximum power point tracking (MPPT) approach that uses optimization algorithms to finely adjust interactions among the subsystems, including renewable energy sources, storage batteries, and the load (heat pump). The main objective of this strategy is to maximize energy production, improve system stability, and reduce operating costs. To achieve this, it considers factors such as heating and cooling demand, power fluctuations from renewable sources, and the MPPT requirements of the PV system. Simulations over one year, based on real meteorological data (average irradiance of 500 W/m2, average annual wind speed of 5 m/s, temperatures between 2 and 27 °C), and carried out with Matlab/Simulink R2022a, have shown that the proposed model predictive control (MPC) strategy significantly improves the performance of DC micro-grids, particularly for heat pump applications. This strategy ensures a stable DC bus voltage (±1% around 500 V) and maintains the state of charge (SoC) of batteries between 40% and 78%, extending their service life by 20%. Compared with conventional methods, it improves energy efficiency by 15%, reduces operating costs by 30%, and cuts CO2; emissions by 25%. By incorporating this control strategy, DC micro-grids offer a sustainable and reliable solution for heat pump applications, contributing to the transition towards a cleaner and more resilient energy system. This approach also opens new possibilities for renewable energy integration into power grids, providing intelligent and efficient energy management at the local level. Full article
(This article belongs to the Special Issue Innovative Technologies in Power Converters, 2nd Edition)
Show Figures

Figure 1

21 pages, 7222 KiB  
Article
Design of Multi-Time Programmable Intellectual Property with Built-In Error Correction Code Function Based on Bipolar–CMOS–DMOS Process
by Longhua Li, Soonwoo Kwon, Dohoon Kim, Dongseob Kim, Panbong Ha, Doojin Lee and Younghee Kim
Electronics 2025, 14(1), 68; https://doi.org/10.3390/electronics14010068 - 27 Dec 2024
Viewed by 933
Abstract
The coupling capacitor of the MTP cell used in this paper is an NCAP-type capacitor that has only a source contact, and the layout size of the unit cell is 6.184 μm × 6.295 μm (=38.93 μm2), which is 0.44% smaller [...] Read more.
The coupling capacitor of the MTP cell used in this paper is an NCAP-type capacitor that has only a source contact, and the layout size of the unit cell is 6.184 μm × 6.295 μm (=38.93 μm2), which is 0.44% smaller than the MTP cell that uses the coupling capacitor of the conventional NMOS transistor type that has both a source contact and a drain contact. In addition, a 4 Kb MTP IP with a built-in ECC function using an extended Hamming code capable of single-error correction and double-error detection was designed for safety considerations. In this paper, a new test algorithm is proposed to test whether the ECC function operates normally in the MTP IP with a built-in ECC function, and it is confirmed through a test using logic tester equipment that the output data DOUT[7:0] and the error flag ERROR_FLAG[1:0] are exactly the same in the cases of no error, a single-bit error, and a double-bit error. In addition, by sharing a current-controlled ring oscillator circuit that uses a current-starved inverter in the VPP, VNN, and VNNL charge pumping circuits that share a single ring oscillator in the erase and program operation modes of the MTP IP and using the regulated VPVR as power, the pumping capacitor size is reduced, and a new technology to reduce ripple voltage variation is proposed. Meanwhile, in the VNN level detector circuit that detects whether the VNN has reached the target voltage, a folded-cascode CMOS OP-AMP whose output swing voltage is almost VDD is used instead of a differential amplifier circuit with a PMOS differential input pair to ensure that normal VNN level detection operation occurs. Full article
Show Figures

Figure 1

17 pages, 481 KiB  
Article
Angular Distributions and Polarization of Fluorescence in an XUV Pump–XUV Probe Scheme
by Cristian Iorga and Viorica Stancalie
Viewed by 331
Abstract
This work provides theoretical calculations of fluorescence angular distribution and polarization within an XUV pump–XUV probe scheme designed for determining ultra-short lifetimes of highly charged heavy ions. The initial pumping leads to a non-zero alignment in the excited levels. After the probing stage, [...] Read more.
This work provides theoretical calculations of fluorescence angular distribution and polarization within an XUV pump–XUV probe scheme designed for determining ultra-short lifetimes of highly charged heavy ions. The initial pumping leads to a non-zero alignment in the excited levels. After the probing stage, the anisotropies in angular distribution and polarization of subsequent fluorescence are significantly enhanced due to the existence of a previous alignment. Furthermore, two-photon sequential excitation from a ground state with zero angular momentum to a level with angular momentum one by two aligned linearly polarized photon beams is strictly prohibited by the selection rules and may be used as a diagnostic tool to determine beam misalignment. The present approach is based on the density matrix and statistical tensor framework. We provide the analytical form for the alignment parameters caused by successive photoexcitation either with linearly polarized photon beams, or with unpolarized photons. The analytical results can generally be used to compute angular distribution asymmetry parameters and linear polarization of subsequent fluorescence for a large array of atomic systems used in pump–probe experiments. Full article
Show Figures

Figure 1

11 pages, 2574 KiB  
Article
Photo-Excited Carrier Dynamics in Ammonothermal Mn-Compensated GaN Semiconductor
by Patrik Ščajev, Paweł Prystawko, Robert Kucharski and Irmantas Kašalynas
Materials 2024, 17(23), 5995; https://doi.org/10.3390/ma17235995 - 7 Dec 2024
Viewed by 672
Abstract
We investigated the carrier dynamics of ammonothermal Mn-compensated gallium nitride (GaN:Mn) semiconductors by using sub-bandgap and above-bandgap photo-excitation in a photoluminescence analysis and pump–probe measurements. The contactless probing methods elucidated their versatility for the complex analysis of defects in GaN:Mn crystals. The impurities [...] Read more.
We investigated the carrier dynamics of ammonothermal Mn-compensated gallium nitride (GaN:Mn) semiconductors by using sub-bandgap and above-bandgap photo-excitation in a photoluminescence analysis and pump–probe measurements. The contactless probing methods elucidated their versatility for the complex analysis of defects in GaN:Mn crystals. The impurities of Mn were found to show photoconductivity and absorption bands starting at the 700 nm wavelength threshold and a broad peak located at 800 nm. Here, we determined the impact of Mn-induced states and Mg acceptors on the relaxation rates of charge carriers in GaN:Mn based on a photoluminescence analysis and pump–probe measurements. The electrons in the conduction band tails were found to be responsible for both the photoconductivity and yellow luminescence decays. The slower red luminescence and pump–probe decays were dominated by Mg acceptors. After photo-excitation, the electrons and holes were quickly thermalized to the conduction band tails and Mg acceptors, respectively. The yellow photoluminescence decays exhibited a 1 ns decay time at low laser excitations, whereas, at the highest ones, it increased up to 7 ns due to the saturation of the nonradiative defects, resembling the photoconductivity lifetime dependence. The fast photo-carrier decay time observed in ammonothermal GaN:Mn is of critical importance in high-frequency and high-voltage device applications. Full article
(This article belongs to the Special Issue Optical Properties of Crystalline Semiconductors and Nanomaterials)
Show Figures

Figure 1

20 pages, 4761 KiB  
Article
Geostress-Adaptive Charge Structure Design and Field Validation for Machinery Room Excavation
by Xiaocui Chen, Yuan Mi, Xinru Shuai, Yuan Zheng and Wenhu Zhao
Sensors 2024, 24(23), 7738; https://doi.org/10.3390/s24237738 - 3 Dec 2024
Viewed by 441
Abstract
The application of blasting in modern engineering construction is prized for its speed, efficiency, and cost-effectiveness. However, the resultant vibrations can have significant adverse effects on surrounding buildings and residents. The challenge of optimizing blasting procedures to satisfy excavation needs while minimizing vibration [...] Read more.
The application of blasting in modern engineering construction is prized for its speed, efficiency, and cost-effectiveness. However, the resultant vibrations can have significant adverse effects on surrounding buildings and residents. The challenge of optimizing blasting procedures to satisfy excavation needs while minimizing vibration impacts is a critical concern in blasting excavation. This research addresses this challenge through the development of a 3D simulation and analysis model for an underground pumped storage power plant in East China, utilizing the LS-DYNA finite element analysis software. To explore the influence of charging structures on rock fragmentation and vibration propagation, three distinct blasting programs were formulated, each featuring varied configurations within the machinery room. The analysis revealed that the adoption of an optimized charging structure can significantly decrease damage to the protective layer by approximately 40%, while also reducing the impact on the upstream and downstream side walls by 27.25% and 12.03%, respectively, without compromising the efficacy of the main blast zone. Moreover, the vibration velocities at the remote measurement point were found to be reduced across multiple directions, indicating effective control of the vibration effects. The post-implementation of the optimized blasting strategy at the site, the assessment of the retained surrounding rock integrity, and the impact on protected structures demonstrated that the proposed solution met satisfactory outcomes. This study underscores the potential of simulation-based optimization in managing vibration risks during blasting operations, offering a valuable tool for engineers and practitioners in the field of underground construction. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

13 pages, 6810 KiB  
Article
Open-Source Equipment Design for Cost-Effective Redox Flow Battery Research
by Trinh V. Dung, Nguyen T. T. Huyen, Nguyen L. T. Huynh, Nguyen T. Binh, Nguyen T. Dat, Nguyen T. T. Nga, Nguyen T. Lan, Hoang V. Tran, Nguyen T. T. Mai and Chinh D. Huynh
ChemEngineering 2024, 8(6), 120; https://doi.org/10.3390/chemengineering8060120 - 28 Nov 2024
Viewed by 797
Abstract
Redox flow batteries (RFBs), with distinct characteristics that are suited for grid-scale applications, stand at the forefront of potential energy solutions. However, progress in RFB technology is often impeded by their prohibitive cost and the limited availability of essential research and development test [...] Read more.
Redox flow batteries (RFBs), with distinct characteristics that are suited for grid-scale applications, stand at the forefront of potential energy solutions. However, progress in RFB technology is often impeded by their prohibitive cost and the limited availability of essential research and development test cells. Addressing this bottleneck, we present herein an open-source device tailored for RFB laboratory research. Our proposed device significantly lowers the financial barriers to research and enhances the accessibility of vital equipment for RFB studies. Employing innovative fabrication methods such as laser cutting, 3D printing, and CNC machining, a versatile and efficient flow cell has been designed and fabricated. Furthermore, our open laboratory research equipment comprises the Opensens potentiostat, charge/discharge testing devices, peristaltic pumps, and inexpensive rotating electrodes. Every individual element contributes significantly to the establishment of an all-encompassing experimental configuration that is both economical and efficient, thereby facilitating expedited progress in RFB research and development. Full article
Show Figures

Figure 1

12 pages, 4124 KiB  
Article
Investigation on Influence Factors of Photo-Induced PLZT-Based Ion Drag Pump
by Xinjie Wang, Zhen Lv, Yuming Shao, Yujie Shi, Yao Yao and Jiong Wang
Micromachines 2024, 15(12), 1424; https://doi.org/10.3390/mi15121424 - 27 Nov 2024
Viewed by 488
Abstract
The ion drag pump, as one kind of electrohydrodynamic pump, has received considerable attention in fluid applications due to its excellent pumping flow rate and pressure. However, there is a lack of systematic research about the factors that influence pumping performance of the [...] Read more.
The ion drag pump, as one kind of electrohydrodynamic pump, has received considerable attention in fluid applications due to its excellent pumping flow rate and pressure. However, there is a lack of systematic research about the factors that influence pumping performance of the ion drag pump. Here, a photo-induced ion drag pump based on the PLZT ceramic is proposed by combining the photoelectric effect and field emission phenomenon. The EHD model of this ion drag pump is constructed based on the mathematical model of the photovoltage of the PLZT ceramic, through which a series of finite element simulations are carried out to comprehensively investigate the factors that influence the pumping performance. The results demonstrate that such an ion drag pump is able to be improved by optimizing the electrode structure and fluid channel; increasing the light intensity; and providing a basic design guideline for applications of ion drag pumps in microfluidics, soft robots, and heat dissipation in micro devices. Full article
(This article belongs to the Special Issue Advanced Microfluidic Chips: Optical Sensing and Detection)
Show Figures

Figure 1

Back to TopTop