Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,882)

Search Parameters:
Keywords = chaperone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5633 KiB  
Review
The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer’s Disease
by Karthikeyan Tangavelou and Kiran Bhaskar
Int. J. Mol. Sci. 2024, 25(22), 12335; https://doi.org/10.3390/ijms252212335 - 17 Nov 2024
Viewed by 301
Abstract
In Alzheimer’s disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, [...] Read more.
In Alzheimer’s disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin–proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD. Full article
(This article belongs to the Special Issue Proteasomes and Cellular Senescence: An Age-Related Connection)
Show Figures

Figure 1

15 pages, 8448 KiB  
Review
The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans
by Michael O. Daniyan, Harpreet Singh and Gregory L. Blatch
Int. J. Mol. Sci. 2024, 25(22), 12302; https://doi.org/10.3390/ijms252212302 - 16 Nov 2024
Viewed by 414
Abstract
Plasmodium knowlesi is a zoonotic form of human malaria, the pathology of which is poorly understood. While the J domain protein (JDP) family has been extensively studied in Plasmodium falciparum, and shown to contribute to malaria pathology, there is currently very limited [...] Read more.
Plasmodium knowlesi is a zoonotic form of human malaria, the pathology of which is poorly understood. While the J domain protein (JDP) family has been extensively studied in Plasmodium falciparum, and shown to contribute to malaria pathology, there is currently very limited information on the P. knowlesi JDPs (PkJDPs). This review provides a critical analysis of the literature and publicly available data on PkJDPs. Interestingly, the P. knowlesi genome encodes at least 31 PkJDPs, with well over half belonging to the most diverse types which contain only the signature J domain (type IIIs, 19) or a corrupted version of the J domain (type IVs, 2) as evidence of their membership. The more typical PkJDPs containing other domains typical of JDPs in addition to the J domain are much fewer in number (type IIs, 8; type Is, 2). This study indentifies PkJDPs that are potentially involved in: folding of newly synthesized or misfolded proteins within the P. knowlesi cytosol (a canonical type I and certain typical type IIs); protein translocation (a type III) and folding (a type II) in the ER; and protein import into mitochondria (a type III). Interestingly, a type II PkJDP is potentially exported to the host cell cytosol where it may recruit human HSP70 for the trafficking and folding of other exported P. knowlesi proteins. Experimental studies are required on this fascinating family of proteins, not only to validate their role in the pathology of knowlesi malaria, but also because they represent potential anti-malarial drug targets. Full article
Show Figures

Figure 1

18 pages, 3243 KiB  
Article
Integrated Transcriptome Profiling and Pan-Cancer Analyses Reveal Oncogenic Networks and Tumor-Immune Modulatory Roles for FABP7 in Brain Cancers
by Yool Lee, Carlos C. Flores, Micah Lefton, Sukanya Bhoumik, Yuji Owada and Jason R. Gerstner
Int. J. Mol. Sci. 2024, 25(22), 12231; https://doi.org/10.3390/ijms252212231 - 14 Nov 2024
Viewed by 358
Abstract
Fatty acid binding protein 7 (FABP7) is a multifunctional chaperone involved in lipid metabolism and signaling. It is primarily expressed in astrocytes and neural stem cells (NSCs), as well as their derived malignant glioma cells within the central nervous system. Despite growing evidence [...] Read more.
Fatty acid binding protein 7 (FABP7) is a multifunctional chaperone involved in lipid metabolism and signaling. It is primarily expressed in astrocytes and neural stem cells (NSCs), as well as their derived malignant glioma cells within the central nervous system. Despite growing evidence for FABP7’s tumor-intrinsic onco-metabolic functions, its mechanistic role in regulating the brain tumor immune microenvironment (TIME) and its impact on prognosis at the molecular level remain incompletely understood. Utilizing combined transcriptome profiling and pan-cancer analysis approaches, we report that FABP7 mediates the expression of multiple onco-immune drivers, collectively impacting tumor immunity and clinical outcomes across brain cancer subtypes. An analysis of a single-cell expression atlas revealed that FABP7 is predominantly expressed in the glial lineage and malignant cell populations in gliomas, with nuclear localization in their parental NSCs. Pathway and gene enrichment analysis of RNA sequencing data from wild-type (WT) and Fabp7-knockout (KO) mouse brains, alongside control (CTL) and FABP7-overexpressing (FABP7 OV) human astrocytes, revealed a more pronounced effect of FABP7 levels on multiple cancer-associated pathways. Notably, genes linked to brain cancer progression and tumor immunity (ENO1, MUC1, COL5A1, and IL11) were significantly downregulated (>2-fold) in KO brain tissue but were upregulated in FABP7 OV astrocytes. Furthermore, an analysis of data from The Cancer Genome Atlas (TCGA) showed robust correlations between the expression of these factors, as well as FABP7, and established glioma oncogenes (EGFR, BRAF, NF1, PDGFRA, IDH1), with stronger associations seen in low-grade glioma (LGG) than in glioblastoma (GBM). TIME profiling also revealed that the expression of FABP7 and the genes that it modulates was significantly associated with prognosis and survival, particularly in LGG patients, by influencing the infiltration of immunosuppressive cell populations within tumors. Overall, our findings suggest that FABP7 acts as an intracellular regulator of pro-tumor immunomodulatory genes, exerting a synergistic effect on the TIME and clinical outcomes in brain cancer subtypes. Full article
Show Figures

Figure 1

27 pages, 2212 KiB  
Article
C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones
by Irina Shilenok, Ksenia Kobzeva, Vladislav Soldatov, Alexey Deykin and Olga Bushueva
Biomedicines 2024, 12(11), 2603; https://doi.org/10.3390/biomedicines12112603 - 14 Nov 2024
Viewed by 318
Abstract
Background: Recently identified Hero proteins, which possess chaperone-like functions, are promising candidates for research into atherosclerosis-related diseases, including ischemic stroke (IS). Methods: 2204 Russian subjects (917 IS patients and 1287 controls) were genotyped for fifteen common SNPs in Hero20 gene C11orf58 [...] Read more.
Background: Recently identified Hero proteins, which possess chaperone-like functions, are promising candidates for research into atherosclerosis-related diseases, including ischemic stroke (IS). Methods: 2204 Russian subjects (917 IS patients and 1287 controls) were genotyped for fifteen common SNPs in Hero20 gene C11orf58 using probe-based PCR and the MassArray-4 system. Results: Six C11orf58 SNPs were significantly associated with an increased risk of IS in the overall group (OG) and significantly modified by smoking (SMK) and low fruit/vegetable intake (LFVI): rs10766342 (effect allele (EA) A; P(OG = 0.02; SMK = 0.009; LFVI = 0.04)), rs11024032 (EA T; P(OG = 0.01; SMK = 0.01; LFVI = 0.036)), rs11826990 (EA G; P(OG = 0.007; SMK = 0.004; LFVI = 0.03)), rs3203295 (EA C; P(OG = 0.016; SMK = 0.01; LFVI = 0.04)), rs10832676 (EA G; P(OG = 0.006; SMK = 0.002; LFVI = 0.01)), rs4757429 (EA T; P(OG = 0.02; SMK = 0.04; LFVI = 0.04)). The top ten intergenic interactions of Hero genes (two-, three-, and four-locus models) involved exclusively polymorphic loci of C11orf58 and C19orf53 and were characterized by synergic and additive (independent) effects between SNPs. Conclusions: Thus, C11orf58 gene polymorphism represents a major risk factor for IS. Bioinformatic analysis showed the involvement of C11orf58 SNPs in molecular mechanisms of IS mediated by their role in the regulation of redox homeostasis, inflammation, vascular remodeling, apoptosis, vasculogenesis, neurogenesis, lipid metabolism, proteostasis, hypoxia, cell signaling, and stress response. In terms of intergenic interactions, C11orf58 interacts most closely with C19orf53. Full article
Show Figures

Figure 1

15 pages, 3310 KiB  
Article
Levilactobacillus brevis 47f: Bioadaptation to Low Doses of Xenobiotics in Aquaculture
by Diana Reznikova, Nikita Kochetkov, Alexey Vatlin, Dmitry Nikiforov-Nikishin, Olesya Galanova, Anastasia Klimuk, Svetlana Smorodinskaya, Daria Matyushkina, Alexey Kovalenko, Ivan Butenko, Maria Marsova and Valery Danilenko
Biology 2024, 13(11), 925; https://doi.org/10.3390/biology13110925 - 14 Nov 2024
Viewed by 345
Abstract
Agricultural and industrial activities are increasing pollution of water bodies with low doses of xenobiotics that have detrimental effects on aquaculture. The aim of this work was to determine the possibility of using Levilactobacillus brevis 47f culture in fish aquaculture under the influence [...] Read more.
Agricultural and industrial activities are increasing pollution of water bodies with low doses of xenobiotics that have detrimental effects on aquaculture. The aim of this work was to determine the possibility of using Levilactobacillus brevis 47f culture in fish aquaculture under the influence of low doses of xenobiotics as an adaptogen. An increase in the survival of Danio rerio individuals exposed to the xenobiotic bisphenol A solution and fed with the L. brevis 47f was shown compared to control groups and, at the same time, the cytokine profile in the intestinal tissues of Danio rerio was also investigated. Analysis of differential gene expression of the L. brevis 47f grown under the action of high concentrations of bisphenol A showed changes in mRNA levels of a number of genes, including genes of various transport proteins, genes involved in fatty acid synthesis, genes of transcriptional regulators, genes of the arabinose operon, and the oppA gene. The identification of L. brevis 47f proteins from polyacrylamide gel by mass spectrometry revealed L-arabinose isomerase, Clp chaperone subunit, ATP synthase subunits, pentose phosphate pathway and glycolysis enzyme proteins, which are likely part of the L. brevis 47f strain’s anti-stress response, but probably do not affect its adaptogenic activity toward Danio rerio. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

24 pages, 2240 KiB  
Article
The Transcriptomic Response of Cells of the Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation
by Sergey Peltek, Svetlana Bannikova, Tamara M. Khlebodarova, Yulia Uvarova, Aleksey M. Mukhin, Gennady Vasiliev, Mikhail Scheglov, Aleksandra Shipova, Asya Vasilieva, Dmitry Oshchepkov, Alla Bryanskaya and Vasily Popik
Int. J. Mol. Sci. 2024, 25(22), 12059; https://doi.org/10.3390/ijms252212059 - 9 Nov 2024
Viewed by 480
Abstract
As areas of application of terahertz (THz) radiation expand in science and practice, evidence is accumulating that this type of radiation can affect not only biological molecules directly, but also cellular processes as a whole. In this study, the transcriptome in cells of [...] Read more.
As areas of application of terahertz (THz) radiation expand in science and practice, evidence is accumulating that this type of radiation can affect not only biological molecules directly, but also cellular processes as a whole. In this study, the transcriptome in cells of the thermophilic bacterium Geobacillus icigianus was analyzed immediately after THz irradiation (0.23 W/cm2, 130 μm, 15 min) and at 10 min after its completion. THz irradiation does not affect the activity of heat shock protein genes and diminishes the activity of genes whose products are involved in peptidoglycan recycling, participate in redox reactions, and protect DNA and proteins from damage, including genes of chaperone protein ClpB and of DNA repair protein RadA, as well as genes of catalase and kinase McsB. Gene systems responsible for the homeostasis of transition metals (copper, iron, and zinc) proved to be the most sensitive to THz irradiation; downregulation of these systems increased significantly 10 min after the end of the irradiation. It was also hypothesized that some negative effects of THz radiation on metabolism in G. icigianus cells are related to disturbances in activities of gene systems controlled by metal-sensitive transcription factors. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

27 pages, 1737 KiB  
Review
Functional Role of Hepatitis C Virus NS5A in the Regulation of Autophagy
by Po-Yuan Ke and Chau-Ting Yeh
Pathogens 2024, 13(11), 980; https://doi.org/10.3390/pathogens13110980 - 8 Nov 2024
Viewed by 628
Abstract
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining [...] Read more.
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining cellular homeostasis. The HCV non-structural 5A (NS5A) protein is a phosphoprotein required for viral RNA replication, virion assembly, and the determination of interferon (IFN) sensitivity. Recently, increasing evidence has shown that HCV NS5A can induce autophagy to promote mitochondrial turnover and the degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) and diacylglycerol acyltransferase 1 (DGAT1). In this review, we summarize recent progress in understanding the detailed mechanism by which HCV NS5A triggers autophagy, and outline the physiological significance of the balance between host–virus interactions. Full article
Show Figures

Graphical abstract

13 pages, 788 KiB  
Article
Driving Forces in the Formation of Biocondensates of Highly Charged Proteins: A Thermodynamic Analysis of the Binary Complex Formation
by Matthias Ballauff
Biomolecules 2024, 14(11), 1421; https://doi.org/10.3390/biom14111421 - 8 Nov 2024
Viewed by 394
Abstract
A thermodynamic analysis of the binary complex formation of the highly positively charged linker histone H1 and the highly negatively charged chaperone prothymosin α (ProTα) is detailed. ProTα and H1 have large opposite net charges (−44 and +53, respectively) and form complexes at [...] Read more.
A thermodynamic analysis of the binary complex formation of the highly positively charged linker histone H1 and the highly negatively charged chaperone prothymosin α (ProTα) is detailed. ProTα and H1 have large opposite net charges (−44 and +53, respectively) and form complexes at physiological salt concentrations with high affinities. The data obtained for the binary complex formation are analyzed by a thermodynamic model that is based on counterion condensation modulated by hydration effects. The analysis demonstrates that the release of the counterions mainly bound to ProTα is the main driving force, and effects related to water release play no role within the limits of error. A strongly negative Δcp (=−0.87 kJ/(K mol)) is found, which is due to the loss of conformational degrees of freedom. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

20 pages, 5113 KiB  
Article
Genome-Wide Identification of the DnaJ Gene Family in Citrus and Functional Characterization of ClDJC24 in Response to Citrus Huanglongbing
by Yuzhen Tian, Xizi Wang, Huoqing Huang, Xin Deng, Baihong Zhang, Yixuan Meng, Libo Wu, Hang Chen, Yun Zhong and Wenli Chen
Int. J. Mol. Sci. 2024, 25(22), 11967; https://doi.org/10.3390/ijms252211967 - 7 Nov 2024
Viewed by 441
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide. The etiological agent responsible for this disease is “Candidatus Liberibacter asiaticus” (CLas), a phloem-restricted bacterium transmitted by psyllid vectors. To date, effective practical strategies for curing Citrus HLB remain elusive. [...] Read more.
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide. The etiological agent responsible for this disease is “Candidatus Liberibacter asiaticus” (CLas), a phloem-restricted bacterium transmitted by psyllid vectors. To date, effective practical strategies for curing Citrus HLB remain elusive. Additionally, no susceptibility genes associated with HLB have been identified in Citrus species, thereby complicating the application of gene-editing techniques such as CRISPR-Cas9 to enhance resistance to HLB. The co-chaperone DnaJ plays a crucial role in protein folding and the regulation of various physiological activities, and it is also associated with multiple pathological processes. DnaJ has been extensively studied in many species, including Arabidopsis, rice, and wheat. However, there is limited information available regarding the DnaJ gene family in citrus. In this study, we conducted a comprehensive genome-wide analysis of the DnaJ family genes in various Citrus species. The Citrus genome was identified to contain 86 DnaJ genes, which were unevenly distributed across nine chromosomes. Phylogenetic analysis indicated that these genes could be classified into six distinct groups. Furthermore, transcriptomic analysis revealed that nine DnaJ genes exhibited significantly higher induction in HLB-infected samples relative to non-HLB-infected Citrus. Cis-acting elements within the promoters of DnaJ genes were also examined, revealing the presence of hormone and defense/stress responsiveness elements (TC-rich) distributed on the ClDJC24 gene. The results were validated using quantitative real-time PCR (qRT-PCR). Additionally, the silencing of ClDJC24 suggested that this gene negatively regulates disease resistance in Citrus. Our study provided useful clues for further functional characterization and constructed a theoretical foundation for disease-resistant breeding in Citrus. Full article
(This article belongs to the Special Issue Genetic Engineering of Plants for Stress Tolerance)
Show Figures

Figure 1

20 pages, 7684 KiB  
Article
Genome-Wide Analysis of Heat Shock Protein Family and Identification of Their Functions in Rice Quality and Yield
by Hong Wang, Sidra Charagh, Nannan Dong, Feifei Lu, Yixin Wang, Ruijie Cao, Liuyang Ma, Shiwen Wang, Guiai Jiao, Lihong Xie, Gaoneng Shao, Zhonghua Sheng, Shikai Hu, Fengli Zhao, Shaoqing Tang, Long Chen, Peisong Hu and Xiangjin Wei
Int. J. Mol. Sci. 2024, 25(22), 11931; https://doi.org/10.3390/ijms252211931 - 6 Nov 2024
Viewed by 481
Abstract
Heat shock proteins (Hsps), acting as molecular chaperones, play a pivotal role in plant responses to environmental stress. In this study, we found a total of 192 genes encoding Hsps, which are distributed across all 12 chromosomes, with higher concentrations on chromosomes 1, [...] Read more.
Heat shock proteins (Hsps), acting as molecular chaperones, play a pivotal role in plant responses to environmental stress. In this study, we found a total of 192 genes encoding Hsps, which are distributed across all 12 chromosomes, with higher concentrations on chromosomes 1, 2, 3, and 5. These Hsps can be divided into six subfamilies (sHsp, Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100) based on molecular weight and homology. Expression pattern data indicated that these Hsp genes can be categorized into three groups: generally high expression in almost all tissues, high tissue-specific expression, and low expression in all tissues. Further analysis of 15 representative genes found that the expression of 14 Hsp genes was upregulated by high temperatures. Subcellular localization analysis revealed seven proteins localized to the endoplasmic reticulum, while others localized to the mitochondria, chloroplasts, and nucleus. We successfully obtained the knockout mutants of above 15 Hsps by the CRISPR/Cas9 gene editing system. Under natural high-temperature conditions, the mutants of eight Hsps showed reduced yield mainly due to the seed setting rate or grain weight. Moreover, the rice quality of most of these mutants also changed, including increased grain chalkiness, decreased amylose content, and elevated total protein content, and the expressions of starch metabolism-related genes in the endosperm of these mutants were disturbed compared to the wild type under natural high-temperature conditions. In conclusion, our study provided new insights into the HSP gene family and found that it plays an important role in the formation of rice quality and yield. Full article
(This article belongs to the Special Issue Gene Mining and Germplasm Innovation for the Important Traits in Rice)
Show Figures

Figure 1

34 pages, 3816 KiB  
Review
The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases
by Mousumi Ghosh and Damien D. Pearse
Cells 2024, 13(22), 1834; https://doi.org/10.3390/cells13221834 - 6 Nov 2024
Viewed by 547
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that [...] Read more.
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury—whether beneficial or harmful—largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma. Full article
Show Figures

Figure 1

17 pages, 4947 KiB  
Article
Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast
by Pengxi Wang, Jan Novák, Romana Kopecká, Petr Čičmanec and Martin Černý
Plants 2024, 13(22), 3121; https://doi.org/10.3390/plants13223121 - 6 Nov 2024
Viewed by 446
Abstract
Heavy water (D2O) is scarce in nature, and despite its physical similarity to water, D2O disrupts cellular function due to the isotope effect. While microbes can survive in nearly pure D2O, eukaryotes such as Arabidopsis thaliana are [...] Read more.
Heavy water (D2O) is scarce in nature, and despite its physical similarity to water, D2O disrupts cellular function due to the isotope effect. While microbes can survive in nearly pure D2O, eukaryotes such as Arabidopsis thaliana are more sensitive and are unable to survive higher concentrations of D2O. To explore the underlying molecular mechanisms for these differences, we conducted a comparative proteomic analysis of E. coli, S. cerevisiae, and Arabidopsis after 180 min of growth in a D2O-supplemented media. Shared adaptive mechanisms across these species were identified, including changes in ribosomal protein abundances, accumulation of chaperones, and altered metabolism of polyamines and amino acids. However, Arabidopsis exhibited unique vulnerabilities, such as a muted stress response, lack of rapid activation of reactive oxygen species metabolism, and depletion of stress phytohormone abscisic acid signaling components. Experiments with mutants show that modulating the HSP70 pool composition may promote D2O resilience. Additionally, Arabidopsis rapidly incorporated deuterium into sucrose, indicating that photosynthesis facilitates deuterium intake. These findings provide valuable insights into the molecular mechanisms that dictate differential tolerance to D2O across species and lay the groundwork for further studies on the biological effects of uncommon isotopes, with potential implications for biotechnology and environmental science. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

23 pages, 7171 KiB  
Article
In Silico Discovery and Evaluation of Inhibitors of the SARS-CoV-2 Spike Protein–HSPA8 Complex Towards Developing COVID-19 Therapeutic Drugs
by Liberty T. Navhaya, Thabe M. Matsebatlela, Mokgerwa Z. Monama and Xolani H. Makhoba
Viruses 2024, 16(11), 1726; https://doi.org/10.3390/v16111726 - 31 Oct 2024
Viewed by 555
Abstract
The SARS-CoV-2 spike protein is pivotal in the COVID-19 virus’s life cycle, facilitating viral attachment to host cells. It is believed that targeting this viral protein could be key to developing effective COVID-19 prophylactics. Using in silico techniques, this study sought to virtually [...] Read more.
The SARS-CoV-2 spike protein is pivotal in the COVID-19 virus’s life cycle, facilitating viral attachment to host cells. It is believed that targeting this viral protein could be key to developing effective COVID-19 prophylactics. Using in silico techniques, this study sought to virtually screen for compounds from the literature that strongly bind and disrupt the stability of the HSPA8–spike protein complex. To evaluate the interactions between the individual proteins and the protein complex attained from protein–protein docking using BioLuminate, molecular docking was performed using the Maestro Schrodinger Suite. The screened small molecules met all bioavailability conditions, Lipinski’s and Veber’s rules, and the required medicinal chemistry properties. Protein–protein docking of the spike protein and HSPA8 identified the optimal pose with a PIPER cluster size of 65, a PIPER pose energy of −748.301 kcal/mol, and a PIPER pose score of −101.189 kcal/mol. Two small molecules, NSC36398 and NSC281245, showed promising docking scores against the spike protein individually and in a complex with HSPA8. NSC36398 had a docking score of −7.934 kcal/mol and a binding free energy of −39.52 kcal/mol with the viral spike protein and a docking score of −8.029 kcal/mol and binding free energy of −38.61 with the viral protein in complex with HSPA8, respectively. Mevastatin had a docking score of −5.099 kcal/mol and a binding free energy of −44.49 kcal/mol with the viral protein and a docking score of −5.285 kcal/mol and binding free energy of −36.65 kcal/mol with the viral protein in complex with HSPA8, respectively. These results, supported by extensive 2D interaction diagrams, suggest that NSC36398 and NSC281245 are potential drug candidates targeting SARS-CoV-2 spike protein. Full article
Show Figures

Figure 1

25 pages, 7729 KiB  
Article
Tetradecyl 2,3-Dihydroxybenzoate Improves Cognitive Function in AD Mice by Modulating Autophagy and Inflammation Through IPA and Hsc70 Targeting
by Opeyemi B. Fasina, Lanjie Li, Danni Chen, Meijuan Yi, Lan Xiang and Jianhua Qi
Int. J. Mol. Sci. 2024, 25(21), 11719; https://doi.org/10.3390/ijms252111719 - 31 Oct 2024
Viewed by 537
Abstract
Drug development for Alzheimer’s disease (AD) treatment is challenging due to its complex pathogenesis. Tetradecyl 2,3-dihydroxybenzoate (ABG-001), a leading compound identified in our prior research, has shown promising NGF-mimicking activity and anti-aging properties. In the present study, both high-fat diet (HFD)-induced AD mice [...] Read more.
Drug development for Alzheimer’s disease (AD) treatment is challenging due to its complex pathogenesis. Tetradecyl 2,3-dihydroxybenzoate (ABG-001), a leading compound identified in our prior research, has shown promising NGF-mimicking activity and anti-aging properties. In the present study, both high-fat diet (HFD)-induced AD mice and naturally aging AD mice were used to evaluate anti-AD effects. Meanwhile, RNA-sequences, Western blotting, immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), cellular thermal shift assay (CETSA), drug affinity-responsive target stability (DARTS) assay, construction of expression plasmid and protein purification, surface plasmon resonance (SPR) analysis, and 16S rRNA sequence analysis were used to identify the target protein of ABG-001 and clarify the mechanism of action for this molecule. ABG-001 effectively mitigates the memory dysfunction in both HFD-induced AD mice and naturally aging AD mice. The therapeutic effect of ABG-001 is attributed to its ability to promote neurogenesis, activate chaperone-mediated autophagy (CMA), and reduce neuronal inflammation. Additionally, ABG-001 positively influenced the gut microbiota, enhancing the production of indole-3-propionic acid (IPA), which is capable of crossing the blood–brain barrier (BBB) and contributes to neuronal regeneration. Furthermore, our research revealed that IPA, linked to the anti-AD properties of ABG-001, targets the heat shock cognate 70 kDa protein (Hsc70) and regulates the Hsc70/PKM2/HK2/LC3 and FOXO3a/SIRT1 signaling pathways. ABG-001 improves the memory dysfunction of AD mice by modulating autophagy and inflammation through IPA and Hsc70 targeting. These findings offer a novel approach for treating neurodegenerative diseases, focusing on the modification of the gut microbiota and metabolites coupled with anti-aging strategies. Full article
Show Figures

Figure 1

26 pages, 1860 KiB  
Review
Recent Advances in Therapeutics for the Treatment of Alzheimer’s Disease
by Amin Mahmood Thawabteh, Aseel Wasel Ghanem, Sara AbuMadi, Dania Thaher, Weam Jaghama, Donia Karaman and Rafik Karaman
Molecules 2024, 29(21), 5131; https://doi.org/10.3390/molecules29215131 - 30 Oct 2024
Viewed by 1077
Abstract
The most prevalent chronic neurodegenerative illness in the world is Alzheimer’s disease (AD). It results in mental symptoms including behavioral abnormalities and cognitive impairment, which have a substantial financial and psychological impact on the relatives of the patients. The review discusses various pathophysiological [...] Read more.
The most prevalent chronic neurodegenerative illness in the world is Alzheimer’s disease (AD). It results in mental symptoms including behavioral abnormalities and cognitive impairment, which have a substantial financial and psychological impact on the relatives of the patients. The review discusses various pathophysiological mechanisms contributing to AD, including amyloid beta, tau protein, inflammation, and other factors, while emphasizing the need for effective disease-modifying therapeutics that alter disease progression rather than merely alleviating symptoms. This review mainly covers medications that are now being studied in clinical trials or recently approved by the FDA that fall under the disease-modifying treatment (DMT) category, which alters the progression of the disease by targeting underlying biological mechanisms rather than merely alleviating symptoms. DMTs focus on improving patient outcomes by slowing cognitive decline, enhancing neuroprotection, and supporting neurogenesis. Additionally, the review covers amyloid-targeting therapies, tau-targeting therapies, neuroprotective therapies, and others. This evaluation specifically looked at studies on FDA-approved novel DMTs in Phase II or III development that were carried out between 2021 and 2024. A thorough review of the US government database identified clinical trials of biologics and small molecule drugs for 14 agents in Phase I, 34 in Phase II, and 11 in Phase III that might be completed by 2028. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop