Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = cecum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1359 KiB  
Article
Effect of Moringa oleifera Leaf Powder Supplementation on Growth Performance, Digestive Enzyme Activity, Meat Quality, and Cecum Microbiota of Ningdu Yellow Chickens
by Qiongli Song, Zhiheng Zou, Xiaolian Chen, Gaoxiang Ai, Pingwen Xiong, Wenjing Song, Guohua Liu, Aijuan Zheng and Jiang Chen
Agriculture 2024, 14(9), 1523; https://doi.org/10.3390/agriculture14091523 - 4 Sep 2024
Viewed by 348
Abstract
This study aimed to investigate the impact of dietary supplementation with Moringa oleifera leaf powder (MOLP) on the growth performance, digestive enzyme activity, meat quality, and cecum microbiota of Ningdu yellow chickens. A total of 300 78-day-old Ningdu yellow chickens with similar initial [...] Read more.
This study aimed to investigate the impact of dietary supplementation with Moringa oleifera leaf powder (MOLP) on the growth performance, digestive enzyme activity, meat quality, and cecum microbiota of Ningdu yellow chickens. A total of 300 78-day-old Ningdu yellow chickens with similar initial body weights were randomly distributed into five treatments consisting of six replicates of 10 birds. The control group (M0) was fed a basal diet, and the experimental groups were fed diets supplemented with 0.5% (M0.5), 1% (M1), 2% (M2), and 4% (M4) of MOLP, respectively. Our results showed that dietary supplementation with 2% MOLP significantly (p < 0.05) decreased the feed to gain (F/G) and showed a quadratic (p < 0.05) decrease with the level of MOLP. Dietary supplementation with 1~4% MOLP resulted in a significant increase (p < 0.05) in serum total superoxide dismutase (T-SOD) activity and total antioxidant capacity (T-AOC). Furthermore, both serum T-SOD and T-AOC exhibited linear and quadratic increases (p < 0.01) in response to the supplementation with MOLP in the diets. Dietary supplementation with 1~4% MOLP significantly (p < 0.05) decreased serum uric acid (UA) level. Additionally, 4% MOLP significantly (p < 0.05) decreased triglycerides (TG), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels, and showed linear and quadratic effects. The activity of lipase in the duodenum showed a linear decreasing trend (p < 0.05) with the level of MOLP, while the activities of α-amylase (both in duodenum and jejunum) showed a linear and quadratic increasing trend (p < 0.05). In addition, there was a linear decrease response in abdominal fat (p < 0.05) to MOLP supplementation levels in the diets. In terms of meat quality, dietary supplementation with 4% MOLP significantly reduced (p < 0.05) the L*45 min and L*24 h values of the breast muscle, and drip loss had a linear decreasing trend (p < 0.05). In terms of cecum microbiota, dietary supplementation with 1~4% MOLP significantly increased the Bacteroidota abundance but decreased the Firmicutes abundance (p < 0.05). Overall, dietary supplementation with MOLP improved the growth performance and meat quality of Ningdu yellow chickens through improving the antioxidant function, intestinal digestive enzyme activity, and the cecal microbial structure. The optimum level of MOLP in the diet of Nindu yellow chicken is recommended to be 2.59%. Full article
Show Figures

Figure 1

16 pages, 10537 KiB  
Article
Widely Targeted Lipidomics and Microbiomics Perspectives Reveal the Mechanism of Auricularia auricula Polysaccharide’s Effect of Regulating Glucolipid Metabolism in High-Fat-Diet Mice
by Li Wu, Yibin Li, Shouhui Chen, Yanrong Yang, Baosha Tang, Minjie Weng, Hengsheng Shen, Junchen Chen and Pufu Lai
Foods 2024, 13(17), 2743; https://doi.org/10.3390/foods13172743 - 29 Aug 2024
Viewed by 428
Abstract
The role of Auricularia auricula polysaccharide (AP) in the regulation of glycolipid metabolism was investigated using a high-fat-diet-induced hyperlipidemic mouse model. In a further step, its potential mechanism of action was investigated using microbiome analysis and widely targeted lipidomics. Compared to high-fat mice, [...] Read more.
The role of Auricularia auricula polysaccharide (AP) in the regulation of glycolipid metabolism was investigated using a high-fat-diet-induced hyperlipidemic mouse model. In a further step, its potential mechanism of action was investigated using microbiome analysis and widely targeted lipidomics. Compared to high-fat mice, dietary AP supplementation reduced body weight by 13.44%, liver index by 21.30%, epididymal fat index by 50.68%, fasting blood glucose (FBG) by 14.27%, serum total cholesterol (TC) by 20.30%, serum total triglycerides (TGs) by 23.81%, liver non-esterified fatty acid (NEFA) by 20.83%, liver TGs by 20.00%, and liver malondialdehyde (MDA) by 21.05%, and increased liver glutathione oxidase (GSH-PX) activity by 52.24%, total fecal bile acid (TBA) by 46.21%, and fecal TG by 27.16%, which significantly regulated glucose and lipid metabolism. Microbiome analysis showed that AP significantly downregulated the abundance of the Desulfobacterota phylum, as well as the genii Desulfovibrio, Bilophila, and Oscillbacter in the cecum of hyperlipidemic mice, which are positively correlated with high lipid indexes, while it upregulated the abundance of the families Eubacterium_coprostanoligenes_group and Ruminococcaceae, as well as the genii Eubacterum_xylanophilum_group, Lachnospiraceae_NK4A136_group, Eubacterium_siraeum_group, and Parasutterella, which were negatively correlated with high lipid indexes. In addition, AP promoted the formation of SCFAs by 119.38%. Widely targeted lipidomics analysis showed that AP intervention regulated 44 biomarkers in metabolic pathways such as sphingolipid metabolism and the AGE-RAGE signaling pathway in the hyperlipidemic mice (of which 15 metabolites such as unsaturated fatty acids, phosphatidylserine, and phosphatidylethanolamine were upregulated, and 29 metabolites such as phosphatidylcholine, ceramide, carnitine, and phosphatidylinositol were downregulated), thereby correcting glucose and lipid metabolism disorders. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

20 pages, 6791 KiB  
Article
Quercetin Supplementation Improves Intestinal Digestive and Absorptive Functions and Microbiota in Rats Fed Protein-Oxidized Soybean Meal: Transcriptomics and Microbiomics Insights
by Zhiyong Wang, Peng Wang, Yanmin Zhou and Su Zhuang
Animals 2024, 14(16), 2326; https://doi.org/10.3390/ani14162326 - 12 Aug 2024
Viewed by 445
Abstract
To clarify the nutritional mechanisms of quercetin mitigation in the digestive and absorptive functions in rats fed protein-oxidized soybean meal, 48 three-week-old male SD rats were randomly allocated into a 2 × 2 factorial design with two soybean meal types (fresh soybean meal [...] Read more.
To clarify the nutritional mechanisms of quercetin mitigation in the digestive and absorptive functions in rats fed protein-oxidized soybean meal, 48 three-week-old male SD rats were randomly allocated into a 2 × 2 factorial design with two soybean meal types (fresh soybean meal or protein-oxidized soybean meal) and two quercetin levels (0 or 400 mg/kg) for a 28-day feeding trial. The protein-oxidized soybean meal treatment decreased (p < 0.05) the relative weights of the pancreas, stomach, and cecum, duodenal villus height, pancreatic and jejunal lipase activities, apparent ileal digestibility of amino acids, and apparent total tract digestibility of dry matter, crude protein, and ether extract. The supplementation of quercetin in the protein-oxidized soybean meal diet reversed (p < 0.05) the decreases in the duodenal length, ileal villus height, lipase activity, apparent ileal digestibility of amino acids, and apparent total tract digestibility of dry matter, crude protein, and ether extract. Transcriptomics revealed that the “alanine transport” and “lipid digestion and absorption” pathways were downregulated by the protein-oxidized soybean meal compared with fresh soybean meal, while the “basic amino acid transmembrane transporter activity” and “lipid digestion and absorption” pathways were upregulated by the quercetin supplementation. Microbiomics revealed that the protein-oxidized soybean meal increased the protein-degrading and inflammation-triggering bacteria in the cecum, while the relative abundances of beneficial bacteria were elevated by the quercetin supplementation. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
Show Figures

Figure 1

18 pages, 4176 KiB  
Article
Identification and Functional Analysis of Novel Long Intergenic RNA in Chicken Macrophages Infected with Avian Pathogenic Escherichia coli
by Yuyi Ma, Xinqi Cao, Sumayya, Yue Lu, Wei Han, Susan J. Lamont and Hongyan Sun
Microorganisms 2024, 12(8), 1594; https://doi.org/10.3390/microorganisms12081594 - 6 Aug 2024
Viewed by 502
Abstract
Avian pathogenic E. coli (APEC), a widespread bacterium, results in serious economic losses to the poultry industry annually, and it poses a threat to human health due to the contaminated retail poultry meat and eggs. Recently, it has been demonstrated that long non-coding [...] Read more.
Avian pathogenic E. coli (APEC), a widespread bacterium, results in serious economic losses to the poultry industry annually, and it poses a threat to human health due to the contaminated retail poultry meat and eggs. Recently, it has been demonstrated that long non-coding RNAs played important roles in regulating gene expression and the animal immune response. This study aimed to systematically explore the function of the novel long intergenic non-coding transcript, lincRNA-73240, upon APEC infection. A bioinformatics analysis indicated that lincRNA-73240 had no coding ability and a relative stable secondary structure with multiple hairpin rings. Moreover, the RT-qPCR results showed that lincRNA-73240 was highly expressed in lungs, heart, liver, spleen, cecum tonsils, thymus, ileum, bursa of Fabricius, harderian gland, and muscles in comparison to the cerebrum. Additionally, overexpression of lincRNA-73240 can promote the expression levels of inflammation, apoptosis, autophagy, and oxidative stress-related genes, as well as the production of reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO) upon APEC infection, which lead to cellular injury and apoptosis. These findings collectively establish a foundation for the study of the biological function of chicken lincRNA-73240 and provide a theoretical basis for further research on the molecular mechanisms of the chicken immune response. Full article
Show Figures

Figure 1

11 pages, 1735 KiB  
Article
Microbial Biogeography along the Gastrointestinal Tract of a Wild Chinese Muntjac (Muntiacus reevesi)
by Yuan Liu, Yan Shu, Yuling Huang, Jinchao Tan, Fengmei Wang, Lin Tang, Tingting Fang, Shibin Yuan and Le Wang
Microorganisms 2024, 12(8), 1587; https://doi.org/10.3390/microorganisms12081587 - 4 Aug 2024
Viewed by 772
Abstract
The gut microbiota plays an important role in host nutrient absorption, immune function, and behavioral patterns. Much research on the gut microbiota of wildlife has focused on feces samples, so the microbial composition along the gastrointestinal tract of wildlife is not well reported. [...] Read more.
The gut microbiota plays an important role in host nutrient absorption, immune function, and behavioral patterns. Much research on the gut microbiota of wildlife has focused on feces samples, so the microbial composition along the gastrointestinal tract of wildlife is not well reported. To address this gap, we performed high-throughput sequencing of 16s rRNA genes and ITs rRNA genes in the gastrointestinal contents of a wild adult male Chinese muntjac (Muntiacus reevesi) to comparatively analyze the microbial diversity of different gastrointestinal regions. The results showed that the dominant bacterial phyla were Firmicutes (66.19%) and Bacteroidetes (22.7%), while the dominant fungal phyla were Ascomycetes (72.81%). The highest bacterial diversity was found in the stomach, and the highest fungal diversity was found in the cecum. The microbial communities of the large intestine and small intestine were of similar structures, which were distinct from that of the stomach. These results would facilitate the continued exploration of the microbial composition and functional diversity of the gastrointestinal tract of wild Chinese muntjacs and provide a scientific basis for microbial resource conservation of more wildlife. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

11 pages, 824 KiB  
Article
Using Different Cage Enrichments to Improve Rabbits’ Performance, Behavior, and Welfare
by Menna Elsayed, Farid Soliman, Osama Elghalid and Karim El-Sabrout
Animals 2024, 14(15), 2271; https://doi.org/10.3390/ani14152271 - 4 Aug 2024
Cited by 1 | Viewed by 981
Abstract
Environmental enrichment is about improving the surroundings in which your animal lives by providing opportunities to express behavioral activity normally, which in turn has a great impact on the animal’s welfare and productivity. The aim of the present study is to investigate the [...] Read more.
Environmental enrichment is about improving the surroundings in which your animal lives by providing opportunities to express behavioral activity normally, which in turn has a great impact on the animal’s welfare and productivity. The aim of the present study is to investigate the impact of using different enrichment cage tools (a rubber floor, plastic-colored balls, and a mirror) on rabbits’ physiology, productivity, carcass quality, behavior, and welfare. A total of 84 weaned rabbits (V-line) were randomly and equally assigned to 4 groups, each with 7 replicates (3 rabbits/replicate). The 1st rabbit group (T1) served as a control, while the 2nd group (T2) was enriched with rubber floors. The 3rd group (T3) was enriched with plastic-colored balls, and the 4th group (T4) was enriched with mirrors. Productive traits, including the weekly body weight and feed intake, as well as the carcass characteristics, were measured. Hematological parameters and biochemical constituents were determined according to the reference’s description. Furthermore, behavioral activities, such as walking, resting, feeding, and drinking, were observed. According to the results, enriching the rabbit cages with plastic-colored balls and mirrors improved the marketing body weight and feed conversion rate. It also improved carcass quality characteristics, such as the carcass weight and dressing percentage. The T3 and T4 rabbits had higher RBCS, Hb, and hematocrit levels as well as lower WBCS levels. They also had significantly higher total protein, globulin, glucose, AST, and IgG values than other treatments. In addition, they had significantly lower corticosterone levels and fear responses. Therefore, it is recommended to use plastic-colored balls and mirrors for rabbit farming for better productivity, behavior, and welfare. Full article
(This article belongs to the Special Issue Environmental Enrichment in Farm Animals)
Show Figures

Figure 1

28 pages, 3802 KiB  
Article
Effect of Probiotic and β-Mannanase Supplementation on the Productive Performance and Intestinal Health of Broiler Chickens Challenged by Eimeria maxima and Clostridium perfringens
by Larissa Pereira Maria, Rony Riveros Lizana, Rosiane de Souza Camargos, Bruno Balbino Leme, Bárbara Vitória Marçal, Nilva Kazue Sakomura and Marcos Kipper
Poultry 2024, 3(3), 239-266; https://doi.org/10.3390/poultry3030019 - 1 Aug 2024
Viewed by 550
Abstract
The use of antibiotics in poultry farming has been associated with bacterial resistance in humans, leading to a ban on their inclusion in chicken diets. Therefore, the objective was to evaluate the effects of probiotics and β-mannanase on the growth performance and intestinal [...] Read more.
The use of antibiotics in poultry farming has been associated with bacterial resistance in humans, leading to a ban on their inclusion in chicken diets. Therefore, the objective was to evaluate the effects of probiotics and β-mannanase on the growth performance and intestinal health of broiler chickens challenged by Eimeria maxima and Clostridium perfringens. For this, 2100 one-day-old male Ross 308 chicks were used. The treatments were as follows: T1—Negative control (NC) unchallenged birds; T2—Positive control (PC) challenged with E. maxima + C. perfringens; T3—PC + Antibiotic (Enramycin 8%-125 g/ton); T4—PC + β-mannanase (HemicellHT; 300 g/ton); T5—PC + probiotic (ProtexinTM; 150 g/ton); T6—PC + β-mannanase + probiotic. Significant differences (p < 0.05) were observed from 1 to 42 days in the variables body weight, body weight gain and feed intake, and the NC treatment presented higher values compared to the PC and PC + probiotic groups. The villus/crypt ratio in the duodenum increased in the PC + β-man + prob treatment, differing from the NC, PC and PC + probiotic (p < 0.05) treatments. The use of β-mannanase, probiotics or both together is effective to mitigate the effects of production challenges, through the maintenance of the intestine by modulating action on the cecum microbiome and intestinal morphometry. Full article
(This article belongs to the Special Issue Feature Papers of Poultry)
Show Figures

Figure 1

25 pages, 6667 KiB  
Article
Lactobacillus crispatus-Mediated Gut–Reproductive Tract Axis-Alleviated Microbial Dysbiosis and Oviductal Inflammation in a Laying Hen Model
by Shinuo Li, Qingfeng Wang, Jinqiu Mi, Haotian Chen, Tianhao Yuan, Yue Wang, Lihong Zhao, Qiugang Ma and Shimeng Huang
Microorganisms 2024, 12(8), 1559; https://doi.org/10.3390/microorganisms12081559 - 30 Jul 2024
Viewed by 512
Abstract
Oviductal inflammation (OI) significantly reduces the egg production and economic returns in poultry farming. While Lactobacillus crispatus (LAC) is effective against inflammation, its role in treating or preventing oviductal inflammation is understudied. In this study, we investigated the therapeutic mechanisms of LAC on [...] Read more.
Oviductal inflammation (OI) significantly reduces the egg production and economic returns in poultry farming. While Lactobacillus crispatus (LAC) is effective against inflammation, its role in treating or preventing oviductal inflammation is understudied. In this study, we investigated the therapeutic mechanisms of LAC on oviductal inflammation, with a focus on reproductive tract health, microbiome, gene expression, and cytokine levels. This study involved 24 Jingfen No. 6 laying hens aged 60 weeks, divided into four groups: the CON, OI, OI + LAC, and OI + heat-killed Lactobacillus crispatus (HLAC) groups. And it included a 10-day adaptation, a 7-day period for the development of OI using inflammation-inducing drugs (the control received saline), followed by an 8-day treatment in which the CON and OI groups received 1 mL of MRS broth daily, and the OI + LAC and OI + HLAC groups were treated with live and heat-killed Lactobacillus crispatus (109 CFUs/mL), respectively, with six hens in each group. This study showed that Lactobacillus crispatus supplementation significantly reduced the oviductal inflammation and atrophy in the hens, with the affected hens showing markedly lower egg production rates (p < 0.001) compared to the control and treated groups (OI + HLAC and OI + LAC). The daily intake of fresh (OI + LAC, p = 0.076) or heat-killed (OI + HLAC, p < 0.01) Lactobacillus crispatus notably enhanced the feed conversion efficiency. The OI group suffered significant ovarian damage and vascular rupture, more so than the CON group, while Lactobacillus crispatus supplementation mitigated this damage. The IL-1β, IL-6, and IL-8 levels were significantly elevated in the OI group compared to those in the OI + LAC group (p < 0.05), with a significant reduction in the TNF-α levels in the latter (p < 0.001). The supplementation improved the microbial composition in the cecum, isthmus, and shell gland, enriching the cecum with beneficial bacteria, such as Ruminococcus_torques_group and Megamonas. This approach fostered ovarian health and follicle differentiation and preserved the epithelial cell barrier function in the shell gland, reducing inflammatory damage in the genital tract. This dual efficacy underscores the role of the probiotic in diminishing oviductal inflammation, regardless of its state. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

49 pages, 2800 KiB  
Review
Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer
by Camelia Munteanu and Betty Schwartz
Int. J. Mol. Sci. 2024, 25(15), 8250; https://doi.org/10.3390/ijms25158250 - 28 Jul 2024
Viewed by 1543
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the [...] Read more.
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer. Full article
Show Figures

Figure 1

14 pages, 3861 KiB  
Article
Peritoneal Infusion of Oxygen Microbubbles Alters the Metabolomic Profile of the Lung and Spleen in Acute Hypoxic Exposure
by Christina Lisk, Alex Fan, Francesca I. Cendali, Kenta Kakiuchi, Delaney Swindle, David I. Pak, Robert Tolson, Abby Grier, Keely Buesing, Seth Zaeske, Angelo D’Alessandro, Mark A. Borden and David C. Irwin
Bioengineering 2024, 11(8), 761; https://doi.org/10.3390/bioengineering11080761 - 27 Jul 2024
Viewed by 1084
Abstract
Administration of oxygen microbubbles (OMBs) has been shown to increase oxygen and decrease carbon dioxide in systemic circulation, as well as reduce lung inflammation and promote survival in preclinical models of hypoxia caused by lung injury. However, their impact on microenvironmental oxygenation remains [...] Read more.
Administration of oxygen microbubbles (OMBs) has been shown to increase oxygen and decrease carbon dioxide in systemic circulation, as well as reduce lung inflammation and promote survival in preclinical models of hypoxia caused by lung injury. However, their impact on microenvironmental oxygenation remains unexplored. Herein, we investigated the effects of intraperitoneal administration of OMBs in anesthetized rats exposed to hypoxic ventilation (FiO2 = 0.14). Blood oxygenation and hemodynamics were evaluated over a 2 h time frame, and then organ and tissue samples were collected for hypoxic and metabolic analyses. Data showed that OMBs improved blood SaO2 (~14%) and alleviated tissue hypoxia within the microenvironment of the kidney and intestine at 2 h of hypoxia. Metabolomic analysis revealed OMBs induced metabolic differences in the cecum, liver, kidney, heart, red blood cells and plasma. Within the spleen and lung, principal component analysis showed a metabolic phenotype more comparable to the normoxic group than the hypoxic group. In the spleen, this shift was characterized by reduced levels of fatty acids and 2-hydroxygluterate, alongside increased expression of antioxidant enzymes such as glutathione and hypoxanthine. Interestingly, there was also a shuttle effect within the metabolism of the spleen from the tricarboxylic acid cycle to the glycolysis and pentose phosphate pathways. In the lung, metabolomic analysis revealed upregulation of phosphatidylethanolamine and phosphatidylcholine synthesis, indicating a potential indirect mechanism through which OMB administration may improve lung surfactant secretion and prevent alveolar collapse. In addition, cell-protective purine salvage was increased within the lung. In summary, oxygenation with intraperitoneal OMBs improves systemic blood and local tissue oxygenation, thereby shifting metabolomic profiles of the lung and spleen toward a healthier normoxic state. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

17 pages, 2317 KiB  
Article
Screening of Organic Acid Type and Dosage in Drinking Water for Young Rabbits
by Adrián Ramón-Moragues, Chiara María Vaggi, Jorge Franch-Dasí, Eugenio Martínez-Paredes, Catarina Peixoto-Gonçalves, Luis Ródenas, Maria del Carmen López-Luján, Pablo Jesús Marín-García, Enrique Blas, Juan José Pascual and María Cambra-López
Animals 2024, 14(15), 2177; https://doi.org/10.3390/ani14152177 - 26 Jul 2024
Viewed by 405
Abstract
Organic acids (OAs) are employed in animal feed to regulate gastrointestinal disorders and diarrhoea thanks to their ability to modulate the gastrointestinal environment and their antimicrobial capacity. However, there is not enough evidence regarding the most adequate OA and its effectiveness in rabbit [...] Read more.
Organic acids (OAs) are employed in animal feed to regulate gastrointestinal disorders and diarrhoea thanks to their ability to modulate the gastrointestinal environment and their antimicrobial capacity. However, there is not enough evidence regarding the most adequate OA and its effectiveness in rabbit farming. Therefore, the aim of this study was to screen and evaluate the response of young rabbits to six OAs, administered via drinking water, at three different concentrations (pH levels). Organic acids (acetic, ACET; formic, FOR; propionic, PROP; lactic, LAC; citric, CIT; and butyric, BUT) were tested at three concentrations (pH 3, 4, and 5). A negative control (CON; non-acidified water) was also included. We used 240 weaned rabbits (28 days old) divided into 2 batches. In each batch, animals were randomly allocated to 1 of the 19 experimental treatments and were housed in group cages of 6 animals per cage, treatment, and batch. Among the 240 rabbits, an additional cage with 6 animals was included to determine the initial physiological state of the animals. All animals were fed with commercial pelleted feed throughout the whole experiment. The duration of the study was 7 days, until 35 days of age. At 31 and 35 days of age, in each batch, three animals per day and treatment were slaughtered. The pH of the digestive contents in the fundus, antrum, duodenum, jejunum, ileum, and cecum, as well as the gastric pepsin enzyme activity, was measured. Water and feed consumption per cage and individual body weight (BW) were recorded daily. The type and dosage of OAs affected water intake. ACET 3, PROP 3, and BUT 3 reduced water intake compared to CON, negatively impacting feed intake and weight gain. FOR and CIT acids led to the highest BW and weight gain at 35 days, compared to PROP, LAC, and BUT (p < 0.05); showing ACET intermediate values. While OAs had limited effects on gastric and small intestine pH, acidified water at pH 4 and 5 lowered ileum and caecum pH (p < 0.05) compared to pH 3. Acidified water at pH 4 showed the highest (p < 0.05) pepsin activity compared to pH 3 and pH 5. Considering the limited sample size and short-term assessment period of our screening test, the OAs with the highest potential for use in post-weaning rabbits were FOR, ACET, and CIT at pH 4. The selected combinations did not exhibit any early adverse effects in young rabbits. These results should be further confirmed in a broader population of animals. It would also be advisable to extend the application of OAs over longer periods to evaluate their effects throughout the entire growing period of rabbits. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

11 pages, 2601 KiB  
Article
Colonic Adenosquamous Carcinoma: A Single-Center Review of Patient Clinicopathologic Characteristics, Genetics, and Clinical Outcomes
by David A. Lieb, Hannah M. Thompson, Floris S. Verheij, Jinru Shia, Francisco Sanchez-Vega, Georgios Karagkounis, Maria Widmar, Iris H. Wei, J. Joshua Smith, Garrett M. Nash, Martin R. Weiser, Philip B. Paty, Andrea Cercek, Leonard B. Saltz, Julio Garcia-Aguilar and Emmanouil Pappou
Cancers 2024, 16(15), 2641; https://doi.org/10.3390/cancers16152641 - 25 Jul 2024
Viewed by 598
Abstract
(1) Background: Adenosquamous carcinoma (ASC) is a rare subtype of colon cancer. Its rarity makes characterization challenging, although colonic ASC is believed to present at more advanced stages and have worse outcomes versus adenocarcinoma. This study aims to characterize the clinicopathological characteristics and [...] Read more.
(1) Background: Adenosquamous carcinoma (ASC) is a rare subtype of colon cancer. Its rarity makes characterization challenging, although colonic ASC is believed to present at more advanced stages and have worse outcomes versus adenocarcinoma. This study aims to characterize the clinicopathological characteristics and clinical outcomes of colonic ASC. (2) Methods: This is a single-center, retrospective review of patients diagnosed with colonic ASC from 2000 to 2020. Data extracted included patient demographics, staging at diagnosis, tumor clinicopathologic and genetic characteristics, and clinical outcomes. (3) Results: Among 61,126 patients with colorectal cancer, 13 (0.02%) had colonic ASC, with a mean age at diagnosis of 48.7 years. The cecum/ascending colon was the most common primary site (6/13, 46.2%), and all except one patient was diagnosed with Stage III or IV disease. Among the eight patients with mismatch repair genetics available, only one was mismatch repair deficient. Eleven patients (84.6%) underwent surgery, and 11 likewise received some form of chemotherapy. Recurrence occurred in 7 of 13 patients (53.8%), and the overall five-year survival rate was 38.5%. The median survival rate was 39.4 months overall (30.5 months for Stage III, 23.7 months for Stage IV). (4) Conclusions: Overall, colonic ASC is rare, and this cohort of colonic ASC patients demonstrated advanced stage at diagnosis, frequent recurrence, and poor overall survival. Additional research remains to compare these characteristics with those of comparably staged adenocarcinoma and to develop specific management recommendations. Full article
(This article belongs to the Special Issue Surgery for Colorectal Cancer)
Show Figures

Figure 1

15 pages, 5773 KiB  
Article
Integrated Metagenomic and Metabolomics Profiling Reveals Key Gut Microbiota and Metabolites Associated with Weaning Stress in Piglets
by Xianrui Zheng, Liming Xu, Qingqing Tang, Kunpeng Shi, Ziyang Wang, Lisha Shi, Yueyun Ding, Zongjun Yin and Xiaodong Zhang
Genes 2024, 15(8), 970; https://doi.org/10.3390/genes15080970 - 23 Jul 2024
Viewed by 623
Abstract
(1) Background: Weaning is a challenging and stressful event in the pig’s life, which disrupts physiological balance and induces oxidative stress. Microbiota play a significant role during the weaning process in piglets. Therefore, this study aimed to investigate key gut microbiota and metabolites [...] Read more.
(1) Background: Weaning is a challenging and stressful event in the pig’s life, which disrupts physiological balance and induces oxidative stress. Microbiota play a significant role during the weaning process in piglets. Therefore, this study aimed to investigate key gut microbiota and metabolites associated with weaning stress in piglets. (2) Methods: A total of ten newborn piglet littermates were randomly assigned to two groups: S (suckling normally) and W (weaned at 21 d; all euthanized at 23 d). Specimens of the cecum were dehydrated with ethanol, cleared with xylene, embedded in paraffin, and cut into 4 mm thick serial sections. After deparaffinization, the sections were stained with hematoxylin and eosin (H&E) for morphometric analysis. Cecal metagenomic and liver LC-MS-based metabolomics were employed in this study. Statistical comparisons were performed by a two-tailed Student’s t-test, and p < 0.05 indicated statistical significance. (3) Results: The results showed that weaning led to intestinal morphological damage in piglets. The intestinal villi of suckling piglets were intact, closely arranged in an orderly manner, and finger-shaped, with clear contours of columnar epithelial cells. In contrast, the intestines of weaned piglets showed villous atrophy and shedding, as well as mucosal bleeding. Metagenomics and metabolomics analyses showed significant differences in composition and function between suckling and weaned piglets. The W piglets showed a decrease and increase in the relative abundance of Bacteroidetes and Proteobacteria (p < 0.05), respectively. The core cecal flora in W piglets were Campylobacter and Clostridium, while those in S piglets were Prevotella and Lactobacillus. At the phylum level, the relative abundance of Bacteroidetes significantly decreased (p < 0.05) in weaned piglets, while Proteobacteria significantly increased (p < 0.05). Significant inter-group differences were observed in pathways and glycoside hydrolases in databases, such as the KEGG and CAZymes, including fructose and mannose metabolism, salmonella infection, antifolate resistance, GH135, GH16, GH32, and GH84. We identified 757 differential metabolites between the groups through metabolomic analyses—350 upregulated and 407 downregulated (screened in positive ion mode). In negative ion mode, 541 differential metabolites were identified, with 270 upregulated and 271 downregulated. Major differential metabolites included glycerophospholipids, histidine, nitrogen metabolism, glycine, serine, threonine, β-alanine, and primary bile acid biosynthesis. The significant differences in glycine, serine, and threonine metabolites may be potentially related to dysbiosis caused by weaning stress. Taken together, the identification of microbiome and metabolome signatures of suckling and weaned piglets has paved the way for developing health-promoting nutritional strategies, focusing on enhancing bacterial metabolite production in early life stages. Full article
(This article belongs to the Special Issue Advances in Pig Genetics and Breeding)
Show Figures

Figure 1

16 pages, 494 KiB  
Article
Combined Effect of Nigella sativa and Kefir on the Live Performance and Health of Broiler Chickens Affected by Necrotic Enteritis
by Vishal Manjunatha, Julian E. Nixon, Greg F. Mathis, Brett S. Lumpkins, Zeynep B. Güzel-Seydim, Atif C. Seydim, Annel K. Greene and Xiuping Jiang
Animals 2024, 14(14), 2074; https://doi.org/10.3390/ani14142074 - 15 Jul 2024
Viewed by 639
Abstract
Coccidiosis and necrotic enteritis (NE) are prevalent poultry ailments worldwide, leading to decreased live performance and elevated mortality rates without antibiotic usage. This study evaluated Nigella sativa (black cumin) seeds (BCS) and kefir as alternatives to antibiotics for broilers. An in vivo study [...] Read more.
Coccidiosis and necrotic enteritis (NE) are prevalent poultry ailments worldwide, leading to decreased live performance and elevated mortality rates without antibiotic usage. This study evaluated Nigella sativa (black cumin) seeds (BCS) and kefir as alternatives to antibiotics for broilers. An in vivo study over a 28-day period, using 384 Cobb 500 male broilers organized into six treatment groups as part of a completely randomized block experimental design was conducted. Each treatment group included eight replicates, with each replicate containing eight birds. The treatments included positive control, negative control, antibiotic control, 5% BCS in feed, 20% kefir in drinking water, and a combination of 5% BCS and 20% kefir. NE was induced in broilers by administering ~5000 oocysts of Eimeria maxima orally on day 14, followed by inoculation with about 108 CFU/mL of Clostridium perfringens (Cp) (strain Cp#4) on days 19, 20, and 21. Live performance metrics including feed intake, body weight gain, and feed conversion were assessed in broilers. Additionally, NE disease outcomes such as lesion scores, mortality rates, and Cp populations in cecum were determined during the study. The BCS, kefir, and the combination had no detrimental effect on broiler live performance. BCS-treated and combination groups had lower NE scores (p > 0.05) in comparison to the positive control and exhibited no significant difference (p > 0.05) from antibiotic control. Additionally, treatment groups and antibiotic control were not significantly different (p > 0.05) in mortality, whereas the BCS and kefir combination significantly reduced (p < 0.05) mortality to 14.1% compared to 31.3% for the positive control. C. perfringens vegetative cells significantly decreased (p < 0.05) in treatments with BCS, kefir, and their combination on days 22 and 28 compared to the positive control. On day 22, Cp sores were significantly lower (p < 0.05) for the kefir and combination treatments compared to the positive control. In conclusion, BCS and kefir successfully reduced C. perfringens infection and mortality without any detrimental impact on broiler live performance with the combined treatment being the most effective. These results suggest that BCS and kefir could serve as potential alternatives to antibiotics in managing NE. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

24 pages, 9238 KiB  
Article
Region-Specific Effects of Metformin on Gut Microbiome and Metabolome in High-Fat Diet-Induced Type 2 Diabetes Mouse Model
by Meihui Cheng, Xianxian Jia, Lili Ren, Siqian Chen, Wei Wang, Jianwei Wang and Bin Cong
Int. J. Mol. Sci. 2024, 25(13), 7250; https://doi.org/10.3390/ijms25137250 - 30 Jun 2024
Viewed by 1083
Abstract
The glucose-lowering drug metformin alters the composition of the gut microbiome in patients with type 2 diabetes mellitus (T2DM) and other diseases. Nevertheless, most studies on the effects of this drug have relied on fecal samples, which provide limited insights into its local [...] Read more.
The glucose-lowering drug metformin alters the composition of the gut microbiome in patients with type 2 diabetes mellitus (T2DM) and other diseases. Nevertheless, most studies on the effects of this drug have relied on fecal samples, which provide limited insights into its local effects on different regions of the gut. Using a high-fat diet (HFD)-induced mouse model of T2DM, we characterize the spatial variability of the gut microbiome and associated metabolome in response to metformin treatment. Four parts of the gut as well as the feces were analyzed using full-length sequencing of 16S rRNA genes and targeted metabolomic analyses, thus providing insights into the composition of the microbiome and associated metabolome. We found significant differences in the gut microbiome and metabolome in each gut region, with the most pronounced effects on the microbiomes of the cecum, colon, and feces, with a significant increase in a variety of species belonging to Akkermansiaceae, Lactobacillaceae, Tannerellaceae, and Erysipelotrichaceae. Metabolomics analysis showed that metformin had the most pronounced effect on microbiome-derived metabolites in the cecum and colon, with several metabolites, such as carbohydrates, fatty acids, and benzenoids, having elevated levels in the colon; however, most of the metabolites were reduced in the cecum. Thus, a wide range of beneficial metabolites derived from the microbiome after metformin treatment were produced mainly in the colon. Our study highlights the importance of considering gut regions when understanding the effects of metformin on the gut microbiome and metabolome. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

Back to TopTop