Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,213)

Search Parameters:
Keywords = cancer therapeutics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2280 KiB  
Article
Clinical and Technical Validation of OncoIndx® Assay—A Comprehensive Genome Profiling Assay for Pan-Cancer Investigations
by Aarthi Ramesh, Atul Bharde, Alain D’Souza, Bhagwat Jadhav, Sangeeta Prajapati, Kanchan Hariramani, Madhura Basavalingegowda, Sandhya Iyer, Sumit Halder, Mahesh Deochake, Hrishita Kothavade, Aravindan Vasudevan, Mohan Uttarwar, Jayant Khandare and Gowhar Shafi
Cancers 2024, 16(19), 3415; https://doi.org/10.3390/cancers16193415 (registering DOI) - 8 Oct 2024
Abstract
Comprehensive next-generation sequencing (NGS) assays enable the identification of clinically relevant mutations, enhancing the capability for targeted therapeutic interventions. In addition, genomic alterations driving the oncogenic roadmap and leading to resistance mechanisms are reshaping precision oncology. We report the workflow and clinical and [...] Read more.
Comprehensive next-generation sequencing (NGS) assays enable the identification of clinically relevant mutations, enhancing the capability for targeted therapeutic interventions. In addition, genomic alterations driving the oncogenic roadmap and leading to resistance mechanisms are reshaping precision oncology. We report the workflow and clinical and technical validation of the OncoIndx® NGS platform—a comprehensive genomic profiling (CGP)-based assay for pan-cancer investigation. We evaluated the concordance between the OncoIndx® test findings and clinically established hotspot detection using SeraSeq reference standards. OncoIndx is a hybridization capture-based NGS assay for the targeted deep sequencing of all exons and selected introns of 1080 cancer-related genes. We show the outcome in the form of tier I and tier II single nucleotide variants (SNVs), copy number alterations (CNAs), and specific gene fusions. OncoIndx® also informs genome-wide tumor mutational burden (TMB), microsatellite instability (MSI), homologous recombination deficiency (HRD), and genomic loss of heterozygosity (gLOH). A total of 63 samples were utilized for validation with reference standards, clinical samples, and orthogonal assessment for genomic alterations. In addition, 49 cross-laboratory samples were validated for microsatellite instability (MSI), and for the tumor mutation burden (TMB), 18 samples as reference standards, 6 cross-laboratory samples, and 29 TCGA samples were utilized. We show a maximum clinical sensitivity of 98% and a positive predictive value (PPV) of 100% for the clinically actionable genomic variants detected by the assay. In addition, we demonstrate analytical validation with the performance of the assay, limit of detection (LoD), precision, and orthogonal concordance for various types of SVs, CNAs, genomic rearrangements, and complex biomarkers like TMB, MSI, and HRD. The assay offers reliable genomic predictions with the high-precision detection of actionable variants, validated by established reference standards. Full article
(This article belongs to the Special Issue Application of Genomic Testing in Precision Oncology)
Show Figures

Figure 1

17 pages, 4237 KiB  
Article
Upregulation of Fatty Acid Synthase Increases Activity of β-Catenin and Expression of NOTUM to Enhance Stem-like Properties of Colorectal Cancer Cells
by Courtney O. Kelson, Josiane Weber Tessmann, Mariah E. Geisen, Daheng He, Chi Wang, Tianyan Gao, B. Mark Evers and Yekaterina Y. Zaytseva
Cells 2024, 13(19), 1663; https://doi.org/10.3390/cells13191663 (registering DOI) - 8 Oct 2024
Abstract
Dysregulated fatty acid metabolism is an attractive therapeutic target for colorectal cancer (CRC). We previously reported that fatty acid synthase (FASN), a key enzyme of de novo synthesis, promotes the initiation and progression of CRC. However, the mechanisms of how upregulation of FASN [...] Read more.
Dysregulated fatty acid metabolism is an attractive therapeutic target for colorectal cancer (CRC). We previously reported that fatty acid synthase (FASN), a key enzyme of de novo synthesis, promotes the initiation and progression of CRC. However, the mechanisms of how upregulation of FASN promotes the initiation and progression of CRC are not completely understood. Here, using Apc/VillinCre and ApcMin mouse models, we show that upregulation of FASN is associated with an increase in activity of β-catenin and expression of multiple stem cell markers, including Notum. Genetic and pharmacological downregulation of FASN in mouse adenoma organoids decreases the activation of β-catenin and expression of Notum and significantly inhibits organoid formation and growth. Consistently, we demonstrate that NOTUM is highly expressed in human CRC and its expression positively correlates with the expression of FASN in tumor tissues. Utilizing overexpression and shRNA-mediated knockdown of FASN, we demonstrate that upregulation of FASN increases β-catenin transcriptional activity, NOTUM expression and secretion, and enhances stem-like properties of human CRC cells. Pharmacological inhibition of NOTUM decreases adenoma organoids growth and proliferation of cancer cells. In summary, upregulation of FASN enhances β-catenin signaling, increases NOTUM expression and stem-like properties of CRC cells, thus suggesting that targeting FASN upstream of the β-catenin/NOTUM axis may be an effective preventative therapeutic strategy for CRC. Full article
Show Figures

Figure 1

23 pages, 2243 KiB  
Review
Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes
by J. P. Jose Merlin, Anine Crous and Heidi Abrahamse
Int. J. Mol. Sci. 2024, 25(19), 10796; https://doi.org/10.3390/ijms251910796 (registering DOI) - 8 Oct 2024
Abstract
Cancer treatment continues to be a substantial problem due to tumor complexities and persistence, demanding novel therapeutic techniques. This review investigates the synergistic potential of combining photodynamic therapy (PDT) and tailored medication delivery technologies to increase mitochondrial toxicity and improve cancer outcomes. PDT [...] Read more.
Cancer treatment continues to be a substantial problem due to tumor complexities and persistence, demanding novel therapeutic techniques. This review investigates the synergistic potential of combining photodynamic therapy (PDT) and tailored medication delivery technologies to increase mitochondrial toxicity and improve cancer outcomes. PDT induces selective cellular damage and death by activating photosensitizers (PS) with certain wavelengths of light. However, PDT’s efficacy can be hampered by issues such as poor light penetration and a lack of selectivity. To overcome these challenges, targeted drug delivery systems have emerged as a promising technique for precisely delivering therapeutic medicines to tumor cells while avoiding off-target effects. We investigate how these technologies can improve mitochondrial targeting and damage, which is critical for causing cancer cell death. The combination method seeks to capitalize on the advantages of both modalities: selective PDT activation and specific targeted drug delivery. We review current preclinical and clinical evidence supporting the efficacy of this combination therapy, focusing on case studies and experimental models. This review also addresses issues such as safety, distribution efficiency, resistance mechanisms, and costs. The prospects of further research include advances in photodynamic agents and medication delivery technology, with a focus on personalized treatment. In conclusion, combining PDT with targeted drug delivery systems provides a promising frontier in cancer therapy, with the ability to overcome current treatment limits and open the way for more effective, personalized cancer treatments. Full article
Show Figures

Figure 1

20 pages, 4599 KiB  
Review
Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery
by Jialiang Wang, Yaopeng Ding, Kellie Chong, Meng Cui, Zeyu Cao, Chenjue Tang, Zhen Tian, Yuping Hu, Yu Zhao and Shaoyi Jiang
Vaccines 2024, 12(10), 1148; https://doi.org/10.3390/vaccines12101148 (registering DOI) - 8 Oct 2024
Abstract
Introduction: The advent of lipid nanoparticles (LNPs) as a delivery platform for mRNA therapeutics has revolutionized the biomedical field, particularly in treating infectious diseases, cancer, genetic disorders, and metabolic diseases. Recent Advances in Therapeutic LNPs: LNPs, composed of ionizable lipids, phospholipids, cholesterol, and [...] Read more.
Introduction: The advent of lipid nanoparticles (LNPs) as a delivery platform for mRNA therapeutics has revolutionized the biomedical field, particularly in treating infectious diseases, cancer, genetic disorders, and metabolic diseases. Recent Advances in Therapeutic LNPs: LNPs, composed of ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG) lipids, facilitate efficient cellular uptake and cytosolic release of mRNA while mitigating degradation by nucleases. However, as synthetic entities, LNPs face challenges that alter their therapeutic efficacy and safety concerns. Toxicity/Reactogenicity/Immunogenicity: This review provides a comprehensive overview of the latest advancements in LNP research, focusing on preclinical safety assessments encompassing toxicity, reactogenicity, and immunogenicity. Summary and Outlook: Additionally, it outlines potential strategies for addressing these challenges and offers insights into future research directions for enhancing the application of LNPs in mRNA therapeutics. Full article
(This article belongs to the Special Issue Biotechnologies Applied in Vaccine Research)
Show Figures

Figure 1

13 pages, 1777 KiB  
Review
Tumor-Associated Macrophages as Major Immunosuppressive Cells in the Tumor Microenvironment
by Anghesom Ghebremedhin, Dipti Athavale, Yanting Zhang, Xiaodan Yao, Curt Balch and Shumei Song
Cancers 2024, 16(19), 3410; https://doi.org/10.3390/cancers16193410 (registering DOI) - 8 Oct 2024
Viewed by 106
Abstract
Within the tumor microenvironment, myeloid cells constitute a dynamic immune population characterized by a heterogeneous phenotype and diverse functional activities. In this review, we consider recent literature shedding light on the increasingly complex biology of M2-like immunosuppressive tumor-associated macrophages (TAMs), including their contribution [...] Read more.
Within the tumor microenvironment, myeloid cells constitute a dynamic immune population characterized by a heterogeneous phenotype and diverse functional activities. In this review, we consider recent literature shedding light on the increasingly complex biology of M2-like immunosuppressive tumor-associated macrophages (TAMs), including their contribution to tumor cell invasion and metastasis, stromal remodeling (fibrosis and matrix degradation), and immune suppressive functions, in the tumor microenvironment (TME). We also review the development of promising therapeutic approaches to target these populations in cancers. The expanding knowledge of distinct subsets of immunosuppressive TAMs, and their contributions to tumorigenesis and metastasis, has sparked significant interest among researchers regarding the therapeutic potential of TAM depletion or phenotypic modulation. This review delineates the involvement of M2-like TAM subsets in cancer development and metastasis, while also delving into the intricate signaling mechanisms underlying the polarization of diverse macrophage phenotypes, their plasticity, and therapeutic implications. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

19 pages, 2515 KiB  
Article
Descriptive Analysis of Common Fusion Mutations in Papillary Thyroid Carcinoma in Hungary
by Richard Armos, Bence Bojtor, Janos Podani, Ildiko Illyes, Bernadett Balla, Zsuzsanna Putz, Andras Kiss, Andrea Kohanka, Erika Toth, Istvan Takacs, Janos P. Kosa and Peter Lakatos
Int. J. Mol. Sci. 2024, 25(19), 10787; https://doi.org/10.3390/ijms251910787 (registering DOI) - 8 Oct 2024
Viewed by 126
Abstract
Thyroid cancer is the most common type of endocrine malignancy. Papillary thyroid carcinoma (PTC) is its predominant subtype, which is responsible for the vast majority of cases. It is true that PTC is a malignant tumor with a very good prognosis due to [...] Read more.
Thyroid cancer is the most common type of endocrine malignancy. Papillary thyroid carcinoma (PTC) is its predominant subtype, which is responsible for the vast majority of cases. It is true that PTC is a malignant tumor with a very good prognosis due to effective primary therapeutic approaches such as thyroidectomy and radioiodine (RAI) therapy. However, we are often required to indicate second-line treatments to eradicate the tumor properly. In these scenarios, molecular therapies are promising alternatives, especially if specifically targetable mutations are present. Many of these targetable gene alterations originate from gene fusions, which can be found using molecular diagnostics like next-generation sequencing (NGS). Nonetheless, molecular profiling is far from being a routine procedure in the initial phase of PTC diagnostics. As a result, the mutation status, except for BRAF V600E mutation, is not included in risk classification algorithms either. This study aims to provide a comprehensive analysis of fusion mutations in PTC and their associations with clinicopathological variables in order to underscore certain clinical settings when molecular diagnostics should be considered earlier, and to demonstrate yet unknown molecular–clinicopathological connections. We conducted a retrospective fusion mutation screening in formalin-fixed paraffin-embedded (FFPE) PTC tissue samples of 100 patients. After quality evaluation by an expert pathologist, RNA isolation was performed, and then NGS was applied to detect 23 relevant gene fusions in the tumor samples. Clinicopathological data were collected from medical and histological records. To obtain the most associations from the multivariate dataset, we used the d-correlation method for our principal component analysis (PCA). Further statistical analyses, including Chi-square tests and logistic regressions, were performed to identify additional significant correlations within certain subsets of the data. Fusion mutations were identified in 27% of the PTC samples, involving nine distinct genes: RET, NTRK3, CCDC6, ETV6, MET, ALK, NCOA4, EML4, and SQSTM1. RET and CCDC6 fusions were associated with type of thyroidectomy, RAI therapy, smaller tumor size, and history of Hashimoto’s disease. NCOA4 fusion correlated with sex, multifocality, microcarcinoma character, history of goiter, and obstructive pulmonary disease. EML4 fusion was also linked with surgical procedure type and smaller tumor size, as well as the history of hypothyroidism. SQSTM1 fusion was associated with multifocality and a medical history of thyroid/parathyroid adenoma. NTRK3 and ETV6 fusions showed significant associations with Hashimoto’s disease, and ETV6, also with endometriosis. Moreover, fusion mutations were linked to younger age at the time of diagnosis, particularly the fusion of ETV6. The frequent occurrence of fusion mutations and their associations with certain clinicopathological metrics highlight the importance of integrating molecular profiling into routine PTC management. Early detection of fusion mutations can inform surgical decisions and therapeutic strategies, potentially improving clinical outcomes. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: 2nd Edition)
Show Figures

Figure 1

23 pages, 1674 KiB  
Review
Macrophages: Key Players in the Battle against Triple-Negative Breast Cancer
by Irena Padzińska-Pruszyńska, Paulina Kucharzewska, Agata Matejuk, Małgorzata Górczak, Małgorzata Kubiak, Bartłomiej Taciak and Magdalena Król
Int. J. Mol. Sci. 2024, 25(19), 10781; https://doi.org/10.3390/ijms251910781 - 7 Oct 2024
Viewed by 188
Abstract
Triple-negative breast cancer (TNBC) is a challenging subtype of breast cancer characterized by the absence of estrogen and progesterone receptors and HER2 expression, leading to limited treatment options and a poorer prognosis. TNBC is particularly prevalent in premenopausal African-descent women and is associated [...] Read more.
Triple-negative breast cancer (TNBC) is a challenging subtype of breast cancer characterized by the absence of estrogen and progesterone receptors and HER2 expression, leading to limited treatment options and a poorer prognosis. TNBC is particularly prevalent in premenopausal African-descent women and is associated with aggressive tumor behavior and higher metastatic potential. Tumor-associated macrophages (TAMs) are abundantly present within the TNBC microenvironment and play pivotal roles in promoting tumor growth, progression, and metastasis through various mechanisms, including immune suppression and enhancement of angiogenesis. This review provides an in-depth overview of TNBC, focusing on its epidemiology, its molecular characteristics, and the critical influence of TAMs. It discusses the pathological and molecular aspects that define TNBC’s aggressive nature and reviews current and emerging therapeutic strategies aimed at targeting these dynamics. Special attention is given to the role of TAMs, exploring their potential as therapeutic targets due to their significant impact on tumor behavior and patient outcomes. This review aims to highlight the complexities of the TNBC landscape and to present the innovative approaches that are currently being pursued to improve therapeutic efficacy and patient survival. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

17 pages, 437 KiB  
Article
Planned and Unplanned Sarcoma Resections: Comparative Analysis of Local Recurrence, Metastasis, and Mortality
by Kim N. Nydegger, Timothy T. A. F. Obergfell, Philip Heesen, Georg Schelling, Gabriela Studer, Beata Bode-Lesniewska and Bruno Fuchs
Cancers 2024, 16(19), 3408; https://doi.org/10.3390/cancers16193408 - 7 Oct 2024
Viewed by 230
Abstract
Background: Sarcomas, a diverse group of malignant tumors arising from mesenchymal tissues, pose significant diagnostic and therapeutic challenges. This study compares the outcomes of planned resections (PEs) and unplanned resections (UEs) to inform better clinical practices. Methods: Data were analyzed from the Swiss [...] Read more.
Background: Sarcomas, a diverse group of malignant tumors arising from mesenchymal tissues, pose significant diagnostic and therapeutic challenges. This study compares the outcomes of planned resections (PEs) and unplanned resections (UEs) to inform better clinical practices. Methods: Data were analyzed from the Swiss Sarcoma Network (SSN), including patients with soft tissue and bone sarcomas treated at two major hospitals. This study utilized logistic regression and Cox regression models to examine the odds of UEs and their impact on local recurrence-free survival. Results: Among 429 patients registered by SSN members, 323 (75%) underwent PEs and 106 (25%) experienced UEs. PEs were associated with significantly larger tumors (94 mm vs. 47 mm, p < 0.001) and higher-grade tumors (Grade 3: 50.5% vs. 37.4%, p = 0.03). Despite achieving superior resection margins (R0: 78.8% vs. 12.6%, p < 0.001), PEs showed higher metastasis rates at follow-up (31.0% vs. 10.4%, p < 0.001) and greater cancer-specific mortality (16.7% vs. 6.6%, p = 0.01). UEs, while linked to higher local recurrence, did not significantly affect metastasis-free survival (MFS) or overall survival (OS). Conclusions: PEs achieve superior immediate surgical outcomes but are linked to higher metastasis and cancer-specific mortality due to the advanced stage of tumors. UEs, while associated with higher local recurrence rates, do not significantly impact MFS or OS. Early detection, comprehensive diagnostics, and timely referrals to specialized sarcoma hubs are essential to avoid UEs and reduce metastatic risk. Future research should focus on developing diagnostic tools using individual tumor and patient characteristics to improve sarcoma management. Full article
Show Figures

Figure 1

21 pages, 3635 KiB  
Article
Unveiling the Anticancer Potential: Computational Exploration of Nitrogenated Derivatives of (+)-Pancratistatin as Topoisomerase I Inhibitors
by Magdi Awadalla Mohamed, Tilal Elsaman, Abozer Y. Elderdery, Abdullah Alsrhani, Heba Bassiony Ghanem, Majed Mowanes Alruwaili, Siddiqa M. A. Hamza, Salma Elhadi Ibrahim Mekki, Hazim Abdullah Alotaibi and Jeremy Mills
Int. J. Mol. Sci. 2024, 25(19), 10779; https://doi.org/10.3390/ijms251910779 - 7 Oct 2024
Viewed by 310
Abstract
Cancer poses a substantial global health challenge, driving the need for innovative therapeutic solutions that offer improved effectiveness and fewer side effects. Topoisomerase I (Topo I) has emerged as a validated molecular target in the pursuit of developing anticancer drugs due to its [...] Read more.
Cancer poses a substantial global health challenge, driving the need for innovative therapeutic solutions that offer improved effectiveness and fewer side effects. Topoisomerase I (Topo I) has emerged as a validated molecular target in the pursuit of developing anticancer drugs due to its critical role in DNA replication and transcription. (+)-Pancratistatin (PST), a naturally occurring compound found in various Amaryllidaceae plants, exhibits promising anticancer properties by inhibiting Topo I activity. However, its clinical utility is hindered by issues related to limited chemical availability and aqueous solubility. To address these challenges, molecular modelling techniques, including virtual screening, molecular docking, molecular mechanics with generalised born and surface area solvation (MM-GBSA) calculations, and molecular dynamics simulations were utilised to evaluate the binding interactions and energetics of PST analogues with Topo I, comparing them with the well-known Topo I inhibitor, Camptothecin. Among the compounds screened for this study, nitrogenated analogues emerged as the most encouraging drug candidates, exhibiting improved binding affinities, favourable interactions with the active site of Topo I, and stability of the protein-ligand complex. Structural analysis pinpointed key molecular determinants responsible for the heightened potency of nitrogenated analogues, shedding light on essential structural modifications for increased activity. Moreover, in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions highlighted favourable drug-like properties and reduced toxicity profiles for the most prominent nitrogenated analogues, further supporting their potential as effective anticancer agents. In summary, this screening study underscores the significance of nitrogenation in augmenting the anticancer efficacy of PST analogues targeting Topo I. The identified lead compounds exhibit significant potential for subsequent experimental validation and optimisation, thus facilitating the development of novel and efficacious anticancer therapeutics with enhanced pharmacological profiles. Full article
(This article belongs to the Special Issue New Avenues in Molecular Docking for Drug Design 2023)
Show Figures

Figure 1

29 pages, 4368 KiB  
Review
Recent Advances and Prospects of Nucleic Acid Therapeutics for Anti-Cancer Therapy
by Minhyuk Lee, Minjae Lee, Youngseo Song, Sungjee Kim and Nokyoung Park
Molecules 2024, 29(19), 4737; https://doi.org/10.3390/molecules29194737 - 7 Oct 2024
Viewed by 322
Abstract
Nucleic acid therapeutics are promising alternatives to conventional anti-cancer therapy, such as chemotherapy and radiation therapy. While conventional therapies have limitations, such as high side effects, low specificity, and drug resistance, nucleic acid therapeutics work at the gene level to eliminate the cause [...] Read more.
Nucleic acid therapeutics are promising alternatives to conventional anti-cancer therapy, such as chemotherapy and radiation therapy. While conventional therapies have limitations, such as high side effects, low specificity, and drug resistance, nucleic acid therapeutics work at the gene level to eliminate the cause of the disease. Nucleic acid therapeutics treat diseases in various forms and using different mechanisms, including plasmid DNA (pDNA), small interfering RNA (siRNA), anti-microRNA (anti-miR), microRNA mimics (miRNA mimic), messenger RNA (mRNA), aptamer, catalytic nucleic acid (CNA), and CRISPR cas9 guide RNA (gRNA). In addition, nucleic acids have many advantages as nanomaterials, such as high biocompatibility, design flexibility, low immunogenicity, small size, relatively low price, and easy functionalization. Nucleic acid therapeutics can have a high therapeutic effect by being used in combination with various nucleic acid nanostructures, inorganic nanoparticles, lipid nanoparticles (LNPs), etc. to overcome low physiological stability and cell internalization efficiency. The field of nucleic acid therapeutics has advanced remarkably in recent decades, and as more and more nucleic acid therapeutics have been approved, they have already demonstrated their potential to treat diseases, including cancer. This review paper introduces the current status and recent advances in nucleic acid therapy for anti-cancer treatment and discusses the tasks and prospects ahead. Full article
(This article belongs to the Special Issue Advances in Targeted Delivery of Nanomedicines)
Show Figures

Figure 1

18 pages, 2885 KiB  
Article
Effect of Degree of Substitution and Molecular Weight on Transfection Efficacy of Starch-Based siRNA Delivery System
by Amir Regev, Chen Benafsha, Riki Goldbart, Tamar Traitel, Moshe Elkabets and Joseph Kost
Polysaccharides 2024, 5(4), 580-597; https://doi.org/10.3390/polysaccharides5040037 - 7 Oct 2024
Viewed by 185
Abstract
RNA interference (RNAi) is a promising approach for gene therapy in cancers, but it requires carriers to protect and deliver therapeutic small interfering RNA (siRNA) molecules to cancerous cells. Starch-based carriers, such as quaternized starch (Q-Starch), have been shown to be biocompatible and [...] Read more.
RNA interference (RNAi) is a promising approach for gene therapy in cancers, but it requires carriers to protect and deliver therapeutic small interfering RNA (siRNA) molecules to cancerous cells. Starch-based carriers, such as quaternized starch (Q-Starch), have been shown to be biocompatible and are able to form nanocomplexes with siRNA, but significant electrostatic interactions between the carrier and siRNA prevent its release at the target site. In this study, we aim to characterize the effects of the degree of substitution (DS) and molecular weight (Mw) of Q-Starch on the gene silencing capabilities of the Q-Starch/siRNA transfection system. We show that reducing the DS reduces the electrostatic interactions between Q-Starch and siRNA, which now decomplex at more physiologically relevant conditions, but also affects additional parameters such as complex size while mostly maintaining cellular uptake capabilities. Notably, reducing the DS renders Q-Starch more susceptible to enzymatic degradation by α-amylase during the initial Q-Starch pretreatment. Enzymatic cleavage leads to a reduction in the Mw of Q-Starch, resulting in a 25% enhancement in its transfection capabilities. This study provides a better understanding of the effects of the DS and Mw on the polysaccharide-based siRNA delivery system and indicates that the polysaccharide Mw may be the key factor in determining the transfection efficacy of this system. Full article
(This article belongs to the Special Issue Latest Research on Polysaccharides: Structure and Applications)
Show Figures

Figure 1

16 pages, 3607 KiB  
Article
Modified Hemocyanins from Rapana thomasiana and Helix aspersa Exhibit Strong Antitumor Activity in the B16F10 Mouse Melanoma Model
by Emiliya Stoyanova, Nikolina Mihaylova, Nikola Ralchev, Silviya Bradyanova, Iliyan Manoylov, Yuliana Raynova, Krassimira Idakieva and Andrey Tchorbanov
Mar. Drugs 2024, 22(10), 462; https://doi.org/10.3390/md22100462 - 7 Oct 2024
Viewed by 278
Abstract
Melanoma is one of the most common tumors worldwide, and new approaches and antitumor drugs for therapy are being investigated. Among the promising biomolecules of natural origin for antitumor research are gastropodan hemocyanins—highly immunogenic multimeric glycoproteins used as antitumor agents and components of [...] Read more.
Melanoma is one of the most common tumors worldwide, and new approaches and antitumor drugs for therapy are being investigated. Among the promising biomolecules of natural origin for antitumor research are gastropodan hemocyanins—highly immunogenic multimeric glycoproteins used as antitumor agents and components of therapeutic vaccines in human and mouse cancer models. A murine melanoma model established in C57BL/6 mice of the B16F10 cell line was used to study anticancer modified oxidized hemocyanins (Ox-Hcs) that were administered to experimental animals (100 μg/mouse) under different regimens: mild, intensive, and with sensitization. The solid tumor growth, antitumor response, cell infiltration in tumors, and survival were assessed using flow cytometry, ELISA, and cytotoxicity assays. Therapy with Ox-RtH or Ox-HaH resulted in the generation of enhanced specific immune response (increased levels of tumor-infiltrated mature NK cells (CD27+CD11b+) in sensitized groups and of macrophages in the intensively immunized animals) and tumor suppression. Beneficial effects such as delayed tumor incidence and growth as well as prolonged survival of tumor-bearing animals have been observed. High levels of melanoma-specific CTLs that mediate cytotoxic effects on tumor cells; tumor-infiltrating IgM antibodies expected to enhance antibody-dependent cellular cytotoxicity; type M1 macrophages, which stimulate the Th1 response and cytotoxic cells; and proinflammatory cytokines, were also observed after Ox-Hcs administration. The modified Hcs showed strong antitumor properties in different administration regimens in a murine model of melanoma with potential for future application in humans. Full article
(This article belongs to the Special Issue Marine Proteins and Enzymes: Bioactivities and Medicinal Applications)
Show Figures

Figure 1

15 pages, 1319 KiB  
Review
Unraveling TRPV1’s Role in Cancer: Expression, Modulation, and Therapeutic Opportunities with Capsaicin
by Subramanyam R. Chinreddy, Nicole Tendayi Mashozhera, Badraldeen Rashrash, Gerardo Flores-Iga, Padma Nimmakayala, Gerald R. Hankins, Robert T. Harris and Umesh K. Reddy
Molecules 2024, 29(19), 4729; https://doi.org/10.3390/molecules29194729 - 7 Oct 2024
Viewed by 556
Abstract
Cancer is a global health challenge with rising incidence and mortality rates, posing significant concerns. The World Health Organization reports cancer as a leading cause of death worldwide, contributing to nearly one in six deaths. Cancer pathogenesis involves disruptions in cellular signaling pathways, [...] Read more.
Cancer is a global health challenge with rising incidence and mortality rates, posing significant concerns. The World Health Organization reports cancer as a leading cause of death worldwide, contributing to nearly one in six deaths. Cancer pathogenesis involves disruptions in cellular signaling pathways, resulting in uncontrolled cell growth and metastasis. Among emerging players in cancer biology, Transient Receptor Potential (TRP) channels, notably TRPV1, have garnered attention due to their altered expression in cancer cells and roles in tumorigenesis and progression. TRPV1, also known as the capsaicin receptor, is pivotal in cancer cell death and pain mediation, offering promise as a therapeutic target. Activation of TRPV1 triggers calcium influx and affects cell signaling linked to growth and death. Additionally, TRPV1 is implicated in cancer-induced pain and chemo-sensitivity, with upregulation observed in sensory neurons innervating oral cancers. Also, when capsaicin, a compound from chili peppers, interacts with TRPV1, it elicits a “hot” sensation and influences cancer processes through calcium influx. Understanding TRPV1’s multifaceted roles in cancer may lead to novel therapeutic strategies for managing cancer-related symptoms and improving patient outcomes. The current review elucidates the comprehensive role of capsaicin in cancer therapy, particularly through the TRPV1 channel, highlighting its effects in various cells via different signaling pathways and discussing its limitations. Full article
(This article belongs to the Special Issue Exploring the Potential of Plant-Derived Natural Anticancer Agents)
Show Figures

Figure 1

17 pages, 2928 KiB  
Article
A Novel Chimeric Oncolytic Virus Mediates a Multifaceted Cellular Immune Response in a Syngeneic B16 Melanoma Model
by Sonja Glauß, Victoria Neumeyer, Lorenz Hanesch, Janina Marek, Nina Hartmann, Gabriela M. Wiedemann and Jennifer Altomonte
Cancers 2024, 16(19), 3405; https://doi.org/10.3390/cancers16193405 - 6 Oct 2024
Viewed by 392
Abstract
Background/Objectives: Oncolytic virotherapy is a promising approach in cancer immunotherapy. We have previously described a recombinant hybrid oncolytic virus (OV), VSV-NDV, which has a favorable safety profile and therapeutic immunogenicity, leading to direct oncolysis, abscopal effects, and prolonged survival in syngeneic in vivo [...] Read more.
Background/Objectives: Oncolytic virotherapy is a promising approach in cancer immunotherapy. We have previously described a recombinant hybrid oncolytic virus (OV), VSV-NDV, which has a favorable safety profile and therapeutic immunogenicity, leading to direct oncolysis, abscopal effects, and prolonged survival in syngeneic in vivo tumor models. While OVs are known to mediate systemic anti-tumor immune responses, the detailed characterization of local and systemic immune responses to fusogenic oncolytic virotherapy remains unexplored. Methods and Results: We analyzed immune cell compartments in the spleen, blood, tumor-draining lymph nodes (TDLNs), and tumors over the course of VSV-NDV therapy in a bilateral syngeneic melanoma mouse model. Our results revealed significant local infiltration and activation of T lymphocytes in tumors and globally in the blood and spleen. Notably, in vivo CD8+ T cell depletion led to complete abrogation of the tumor response, highlighting the crucial role of T cells in promoting the therapeutic effects of oncolytic VSV-NDV. In vitro co-culture experiments enabled the interrogation of human immune cell responses to VSV-NDV-mediated oncolysis. Human peripheral blood mononuclear cells (PBMCs) were efficiently stimulated by exposure to VSV-NDV-infected cancer cells, which recapitulates the in vivo murine findings. Conclusions: Taken together, these data characterize a broad anti-tumor immune cell response to oncolytic VSV-NDV therapy and suggest that CD8+ T cells play a decisive role in therapeutic outcome, which supports the further development of this chimeric vector as a multimechanistic immunotherapy for solid cancers. Full article
(This article belongs to the Special Issue Oncolytic Viruses as an Emerging Aspect of Immune Oncology)
Show Figures

Figure 1

37 pages, 14053 KiB  
Review
Advances in Cancer Therapy: A Comprehensive Review of CDK and EGFR Inhibitors
by Mohammed Hawash
Cells 2024, 13(19), 1656; https://doi.org/10.3390/cells13191656 - 6 Oct 2024
Viewed by 597
Abstract
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA [...] Read more.
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA clearance in recent decades. Protein kinases have emerged as primary objectives for therapeutic interventions, particularly in the context of cancer treatment. At present, 69 therapeutics have been approved by the FDA that target approximately 24 protein kinases, which are specifically prescribed for the treatment of neoplastic illnesses. These novel agents specifically inhibit certain protein kinases, such as receptor protein-tyrosine kinases, protein-serine/threonine kinases, dual-specificity kinases, nonreceptor protein-tyrosine kinases, and receptor protein-tyrosine kinases. This review presents a comprehensive overview of novel targets of kinase inhibitors, with a specific focus on cyclin-dependent kinases (CDKs) and epidermal growth factor receptor (EGFR). The majority of the reviewed studies commenced with an assessment of cancer cell lines and concluded with a comprehensive biological evaluation of individual kinase targets. The reviewed articles provide detailed information on the structural features of potent anticancer agents and their specific activity, which refers to their ability to selectively inhibit cancer-promoting kinases including CDKs and EGFR. Additionally, the latest FDA-approved anticancer agents targeting these enzymes were highlighted accordingly. Full article
Show Figures

Figure 1

Back to TopTop