Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = bump input

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9344 KiB  
Article
Evidential Neural Network Model for Groundwater Salinization Simulation: A First Application in Hydro-Environmental Engineering
by Abdullahi G. Usman, Sagiru Mati, Mahmud M. Jibril, Jamilu Usman, Syed Muzzamil Hussain Shah, Sani I. Abba and Sujay Raghavendra Naganna
Water 2024, 16(20), 2873; https://doi.org/10.3390/w16202873 - 10 Oct 2024
Viewed by 593
Abstract
Groundwater salinization is a crucial socio-economic and environmental issue that is significant for a variety of reasons, including water quality and availability, agricultural productivity, health implications, socio-political stability and environmental sustainability. Salinization degrades the quality of water, rendering it unfit for human consumption [...] Read more.
Groundwater salinization is a crucial socio-economic and environmental issue that is significant for a variety of reasons, including water quality and availability, agricultural productivity, health implications, socio-political stability and environmental sustainability. Salinization degrades the quality of water, rendering it unfit for human consumption and increasing the demand for costly desalination treatments. Consequently, there is a need to find simple, sustainable, green and cost-effective methods that can be used in understanding and minimizing groundwater salinization. Therefore, this work employed the implementation of cost-effective neurocomputing approaches for modeling groundwater salinization. Before starting the modeling approach, correlation and sensitivity analyses of the independent and dependent variables were conducted. Hence, three different modeling schema groups (G1–G3) were subsequently developed based on the sensitivity analysis results. The obtained quantitative results illustrate that the G2 input grouping depicts a substantial performance compared to G1 and G3. Overall, the evidential neural network (EVNN), as a novel neurocomputing technique, demonstrates the highest performance accuracy, and has the capability of boosting the performance as against the classical robust linear regression (RLR) up to 46% and 46.4% in the calibration and validation stages, respectively. Both EVNN-G1 and EVNN-G2 present excellent performance metrics (RMSE ≈ 0, MAPE = 0, PCC = 1, R2 = 1), indicating a perfect prediction accuracy, while EVNN-G3 demonstrates a slightly lower performance than EVNN-G1 and EVNN-G2, but is still highly accurate (RMSE = 10.5351, MAPE = 0.1129, PCC = 0.9999, R2 = 0.9999). Lastly, various state-of-the-art visualizations, including a contour plot embedded with a response plot, a bump plot and a Taylor diagram, were used in illustrating the performance results of the models. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

25 pages, 11565 KiB  
Article
Road-Adaptive Static Output Feedback Control of a Semi-Active Suspension System for Ride Comfort
by Donghyun Kim and Yonghwan Jeong
Actuators 2024, 13(10), 394; https://doi.org/10.3390/act13100394 - 3 Oct 2024
Viewed by 419
Abstract
This paper presents a static output feedback controller for a semi-active suspension system that provides improved ride comfort under various road roughness conditions. Previous studies on feedback control for semi-active suspension systems have primarily focused on rejecting low-frequency disturbances, such as bumps, because [...] Read more.
This paper presents a static output feedback controller for a semi-active suspension system that provides improved ride comfort under various road roughness conditions. Previous studies on feedback control for semi-active suspension systems have primarily focused on rejecting low-frequency disturbances, such as bumps, because the feedback controller is generally vulnerable to high-frequency disturbances, which can cause unintended large inputs. However, since most roads feature a mix of both low- and high-frequency disturbances, there is a need to develop a controller capable of responding effectively to both disturbances. In this work, road roughness is classified using the Burg method to select the optimal damping coefficient to respond to the high-frequency disturbance. The optimal control gain for the feedback controller is determined using the linear quadratic static output feedback (LQSOF) method, incorporating the optimal damping coefficient. The proposed algorithm was evaluated through simulations under bump scenarios with differing road roughness conditions. The simulation results demonstrated that the proposed algorithm significantly improved ride comfort compared to baseline algorithms under mixed disturbances. Full article
(This article belongs to the Section Actuators for Land Transport)
Show Figures

Figure 1

24 pages, 6502 KiB  
Article
Urban Road Surface Condition Sensing from Crowd-Sourced Trajectories Based on the Detecting and Clustering Framework
by Haiyang Lyu, Qiqi Zhong, Yu Huang, Jianchun Hua and Donglai Jiao
Sensors 2024, 24(13), 4093; https://doi.org/10.3390/s24134093 - 24 Jun 2024
Viewed by 713
Abstract
Roads play a crucial role in urban transportation by facilitating the movement of materials within a city. The condition of road surfaces, such as damage and road facilities, directly affects traffic flow and influences decisions related to urban transportation maintenance and planning. To [...] Read more.
Roads play a crucial role in urban transportation by facilitating the movement of materials within a city. The condition of road surfaces, such as damage and road facilities, directly affects traffic flow and influences decisions related to urban transportation maintenance and planning. To gather this information, we propose the Detecting and Clustering Framework for sensing road surface conditions based on crowd-sourced trajectories, utilizing various sensors (GPS, orientation sensors, and accelerometers) found in smartphones. Initially, smartphones are placed randomly during users’ travels on the road to record the road surface conditions. Then, spatial transformations are applied to the accelerometer data based on attitude readings, and heading angles are computed to store movement information. Next, the feature encoding process operates on spatially adjusted accelerations using the wavelet scattering transformation. The resulting encoding results are then input into the designed LSTM neural network to extract bump features of the road surface (BFRSs). Finally, the BFRSs are represented and integrated using the proposed two-stage clustering method, considering distances and directions. Additionally, this procedure is also applied to crowd-sourced trajectories, and the road surface condition is computed and visualized on a map. Moreover, this method can provide valuable insights for urban road maintenance and planning, with significant practical applications. Full article
Show Figures

Figure 1

8 pages, 2970 KiB  
Article
High Thermal Performance Ultraviolet (368 nm) AlGaN-Based Flip-Chip LEDs with an Optimized Structure
by Guanlang Sun, Taige Dong, Aixin Luo, Jiachen Yang, Ying Dong, Guangda Du, Zekai Hong, Chuyu Qin and Bingfeng Fan
Nanomaterials 2024, 14(3), 267; https://doi.org/10.3390/nano14030267 - 26 Jan 2024
Cited by 1 | Viewed by 1103
Abstract
In this study, we have fabricated a 368 nm LED with an epitaxial Indium Tin Oxide (ITO) contact layer. We analyze the thermal performance of the flip-chip LED with a symmetric electrode and metal reflective layer, applying ANSYS to build a coupled electro-thermal [...] Read more.
In this study, we have fabricated a 368 nm LED with an epitaxial Indium Tin Oxide (ITO) contact layer. We analyze the thermal performance of the flip-chip LED with a symmetric electrode and metal reflective layer, applying ANSYS to build a coupled electro-thermal finite element model (FEM) of the temperature distribution in the multiple quantum wells (MQWs). We compare our system with the traditional Au-bump flip-chip LED and a flip-chip LED with a Distributed Bragg Reflector (DBR) layer. The simulation results have shown that the flip-chip LED with a metal reflective layer and symmetric electrode exhibits better heat dissipation performance, particularly at high input power. The influence of the insulating layer on the LED chip junction temperature is also examined. The simulation data establish an effect due to the thermal conductivity of the insulating layer in terms of heat dissipation, but this effect is negligible at an insulation layer thickness ≤1 µm. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

18 pages, 3674 KiB  
Article
Research on Load Spectrum Reconstruction Method of Exhaust System Mounting Bracket of a Hybrid Tractor Based on MOPSO-Wavelet Decomposition Technique
by Liming Sun, Mengnan Liu, Zhipeng Wang, Chuqiao Wang and Fuqiang Luo
Agriculture 2023, 13(10), 1919; https://doi.org/10.3390/agriculture13101919 - 30 Sep 2023
Cited by 3 | Viewed by 880
Abstract
To overcome the limitations of the hybrid tractor bumping tests, which include extended cycle times, high costs, and impracticality for single-part reliability verification, this study focuses on the exhaust system mounting bracket of a hybrid tractor. A novel approach that combines multi-objective particle [...] Read more.
To overcome the limitations of the hybrid tractor bumping tests, which include extended cycle times, high costs, and impracticality for single-part reliability verification, this study focuses on the exhaust system mounting bracket of a hybrid tractor. A novel approach that combines multi-objective particle swarm optimization (MOPSO) and wavelet decomposition algorithms was employed to enhance the reconstruction of shock vibration signals. This approach aims to enable the efficient acquisition of input signals for subsequent shaker table testing. The methodology involves a systematic evaluation of the spectral correlation between the original signal and the reconstructed signal at the stent’s response position, along with signal compression time. These parameters collectively constitute the objective function. The multi-objective particle swarm optimization algorithm is then deployed to explore a range of crucial parameters, including wavelet basic functions, the number of wavelet decomposition layers, and the selection of wavelet components. This exhaustive exploration identifies an optimized signal reconstruction method that accurately represents shock vibration loads. Upon rigorous screening based on our defined objectives, the optimal solution vector was determined, which includes the utilization of the dB10 wavelet basic function, employing a 12-layer wavelet decomposition, and selecting wavelet components a12 and d3~d11. This specific configuration enables the retention of 95% of the damage coefficients while significantly compressing the test time to just 46% of the original signal duration. The implications of our findings are substantial as the reconstructed signal obtained through our optimized approach can be readily applied to shaker excitation. This innovation results in a notable reduction in test cycle time and associated costs, making it particularly valuable for engineering applications, especially in tractor design and testing. Full article
Show Figures

Figure 1

17 pages, 2215 KiB  
Article
Fatigue Life Uncertainty Quantification of Front Suspension Lower Control Arm Design
by Misganaw Abebe and Bonyong Koo
Vehicles 2023, 5(3), 859-875; https://doi.org/10.3390/vehicles5030047 - 14 Jul 2023
Cited by 3 | Viewed by 2212
Abstract
The purpose of this study is to investigate the uncertainty of the design variables of a front suspension lower control arm under fatigue-loading circumstances to estimate a reliable and robust product. This study offers a method for systematic uncertainty quantification (UQ), and the [...] Read more.
The purpose of this study is to investigate the uncertainty of the design variables of a front suspension lower control arm under fatigue-loading circumstances to estimate a reliable and robust product. This study offers a method for systematic uncertainty quantification (UQ), and the following steps were taken to achieve this: First, a finite element model was built to predict the fatigue life of the control arm under bump-loading conditions. Second, a sensitivity scheme, based on one of the global analyses, was developed to identify the model’s most and least significant design input variables. Third, physics-based and data-driven uncertainty quantification schemes were employed to quantify the model’s input parameter uncertainties via a Monte Carlo simulation. The simulations were conducted using 10,000 samples of material properties and geometrical uncertainty variables, with the coefficients of variation ranging from 1 to 3%. Finally, the confidence interval results show a deviation of about 21.74% from the mean (the baseline). As a result, by applying systematic UQ, a more reliable and robust automobile suspension control arm can be designed during the early stages of design to produce a more efficient and better approximation of fatigue life under uncertain conditions. Full article
Show Figures

Figure 1

16 pages, 2175 KiB  
Article
Evaluation of Electric Muscle Stimulation Method for Haptic Augmented Reality
by Takaya Ishimaru and Satoshi Saga
Sensors 2023, 23(4), 1796; https://doi.org/10.3390/s23041796 - 5 Feb 2023
Viewed by 2560
Abstract
Currently, visual Augmented Reality (AR) technology is widespread among the public. Similarly, haptic AR technology is also widely practiced in the academic field. However, conventional haptic AR devices are not suitable for interacting with real objects. These devices are often held by the [...] Read more.
Currently, visual Augmented Reality (AR) technology is widespread among the public. Similarly, haptic AR technology is also widely practiced in the academic field. However, conventional haptic AR devices are not suitable for interacting with real objects. These devices are often held by the users, and they contact the real object via the devices. Thus, they prevent direct contact between the user and real objects. To solve this problem, we proposed employing Electrical Muscle Stimulation (EMS) technology. EMS technology does not interfere with the interaction between the user and the real object, and the user can wear the device. First, we examined proper stimulus waveforms for EMS, in addition to pulse waveforms. At the same time, we examined the appropriate frequency and pulse width. The waveforms that we used this time were a sawtooth wave, a reverse sawtooth wave, and a sine wave. Second, to clarify the characteristic of the force presented by the EMS, we measured the relationship between the input voltage and the force presented and obtained the point of subjective equality using the constant method. Subsequently, we presented the bump sensation using EMS to the participants and verified its effectiveness by comparing it with the existing methods. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 8751 KiB  
Article
Design of Synaptic Driving Circuit for TFT eFlash-Based Processing-In-Memory Hardware Using Hybrid Bonding
by Younghee Kim, Hongzhou Jin, Dohoon Kim, Panbong Ha, Min-Kyu Park, Joon Hwang, Jongho Lee, Jeong-Min Woo, Jiyeon Choi, Changhyuk Lee, Joon Young Kwak and Hyunwoo Son
Electronics 2023, 12(3), 678; https://doi.org/10.3390/electronics12030678 - 29 Jan 2023
Cited by 1 | Viewed by 2822
Abstract
This paper presents a synaptic driving circuit design for processing in-memory (PIM) hardware with a thin-film transistor (TFT) embedded flash (eFlash) for a binary/ternary-weight neural network (NN). An eFlash-based synaptic cell capable of programming negative weight values to store binary/ternary weight values (i.e., [...] Read more.
This paper presents a synaptic driving circuit design for processing in-memory (PIM) hardware with a thin-film transistor (TFT) embedded flash (eFlash) for a binary/ternary-weight neural network (NN). An eFlash-based synaptic cell capable of programming negative weight values to store binary/ternary weight values (i.e., ±1, 0) and synaptic driving circuits for erase, program, and read operations of synaptic arrays have been proposed. The proposed synaptic driving circuits improve the calculation accuracy of PIM operation by precisely programming the sensing current of the eFlash synaptic cell to the target current (50 nA ± 0.5 nA) using a pulse train. In addition, during PIM operation, the pulse-width modulation (PWM) conversion circuit converts 8-bit input data into one continuous PWM pulse to minimize non-linearity in the synaptic sensing current integration step of the neuron circuit. The prototype chip, including the proposed synaptic driving circuit, PWM conversion circuit, neuron circuit, and digital blocks, is designed and laid out as the accelerator for binary/ternary weighted NN with a size of 324 × 80 × 10 using a 0.35 μm CMOS process. Hybrid bonding technology using bump bonding and wire bonding is used to package the designed CMOS accelerator die and TFT eFlash-based synapse array dies into a single chip package. Full article
Show Figures

Figure 1

18 pages, 8627 KiB  
Article
Image Classification-Based Defect Detection of Railway Tracks Using Fiber Bragg Grating Ultrasonic Sensors
by Da-Zhi Dang, Chun-Cheung Lai, Yi-Qing Ni, Qi Zhao, Boyang Su and Qi-Fan Zhou
Appl. Sci. 2023, 13(1), 384; https://doi.org/10.3390/app13010384 - 28 Dec 2022
Cited by 8 | Viewed by 2442
Abstract
Structural health monitoring (SHM) is vital to the maintenance of civil infrastructures. For rail transit systems, early defect detection of rail tracks can effectively prevent the occurrence of severe accidents like derailment. Non-destructive testing (NDT) has been implemented in railway online and offline [...] Read more.
Structural health monitoring (SHM) is vital to the maintenance of civil infrastructures. For rail transit systems, early defect detection of rail tracks can effectively prevent the occurrence of severe accidents like derailment. Non-destructive testing (NDT) has been implemented in railway online and offline monitoring systems using state-of-the-art sensing technologies. Data-driven methodologies, especially machine learning, have contributed significantly to modern NDT approaches. In this paper, an efficient and robust image classification model is proposed to achieve railway status identification using ultrasonic guided waves (UGWs). Experimental studies are conducted using a hybrid sensing system consisting of a lead–zirconate–titanate (PZT) actuator and fiber Bragg grating (FBG) sensors. Comparative studies have been firstly carried out to evaluate the performance of the UGW signals obtained by FBG sensors and high-resolution acoustic emission (AE) sensors. Three different rail web conditions are considered in this research, where the rail is: (1) intact without any defect; (2) damaged with an artificial crack; and (3) damaged with a bump on the surface made of blu-tack adhesives. The signals acquired by FBG sensors and AE sensors are compared in time and frequency domains. Then the research focuses on damage detection using a convolutional neural network (CNN) with the input of RGB spectrum images of the UGW signals acquired by FBG sensors, which are calculated using Short-time Fourier Transform (STFT). The proposed image classifier achieves high accuracy in predicting each railway condition. The visualization of the classifier indicates the high efficiency of the proposed paradigm, revealing the potential of the method to be applied to mass railway monitoring systems in the future. Full article
Show Figures

Figure 1

22 pages, 996 KiB  
Article
Performance Improvement of a Vehicle Equipped with Active Aerodynamic Surfaces Using Anti-Jerk Preview Control Strategy
by Ejaz Ahmad and Iljoong Youn
Sensors 2022, 22(20), 8057; https://doi.org/10.3390/s22208057 - 21 Oct 2022
Cited by 4 | Viewed by 2184
Abstract
This paper presents a formulation of a preview optimal control strategy for a half-car model equipped with active aerodynamic surfaces. The designed control strategy consists of two parts: a feed-forward controller to deal with the future road disturbances and a feedback controller to [...] Read more.
This paper presents a formulation of a preview optimal control strategy for a half-car model equipped with active aerodynamic surfaces. The designed control strategy consists of two parts: a feed-forward controller to deal with the future road disturbances and a feedback controller to deal with tracking error. An anti-jerk functionality is employed in the design of preview control strategy that can reliably reduce the jerk of control inputs to improve the performance of active aerodynamic surfaces and reduce vehicle body jerk to enhance the ride comfort without degrading road holding capability. The proposed control scheme determines proactive control action against oncoming potential road disturbances to mitigate the effect of deterministically known road disturbances. The performance of proposed anti-jerk optimal control strategy is compared with that of optimal control without considering jerk. Simulation results considering frequency and time domain characteristics are carried out using MATLAB to demonstrate the effectiveness of the proposed scheme. The frequency domain characteristics are discussed only for the roll inputs, while time domain characteristics are discussed for the corresponding ground velocity inputs of bump and asphalt road, respectively. The results show that using anti-jerk optimal preview control strategy improves the performance of vehicle dynamics by reducing jerk of aerodynamic surfaces and vehicle body jerk simultaneously. Full article
(This article belongs to the Special Issue Sensors and Systems for Automotive and Road Safety)
Show Figures

Figure 1

20 pages, 5312 KiB  
Article
Design of and Research into a Multiple-Fuzzy PID Suspension Control System Based on Road Recognition
by Xinkai Ding, Ruichuan Li, Yi Cheng, Qi Liu and Jilu Liu
Processes 2021, 9(12), 2190; https://doi.org/10.3390/pr9122190 - 5 Dec 2021
Cited by 24 | Viewed by 2990
Abstract
By analyzing the shortcomings of the traditional fuzzy PID(Abbreviation for Proportional, Integral and Differential) control system (FPID), a multiple fuzzy PID suspension control system based on road recognition (MFRR) is proposed. Compared with the traditional fuzzy PID control system, the multiple fuzzy control [...] Read more.
By analyzing the shortcomings of the traditional fuzzy PID(Abbreviation for Proportional, Integral and Differential) control system (FPID), a multiple fuzzy PID suspension control system based on road recognition (MFRR) is proposed. Compared with the traditional fuzzy PID control system, the multiple fuzzy control system can identify the road grade and take changes in road conditions into account. Based on changes in road conditions and the variable universe and secondary adjustment of the control parameters of the PID controller were carried out, which makes up for the disadvantage of having too many single input parameters in the traditional fuzzy PID control system. A two degree of freedom 1/4 vehicle model was established. Based on the suspension dynamic parameters, a road elevation algorithm was designed. Road grade recognition was carried out based on a BP neural network algorithm. The experimental results showed that the sprung mass acceleration (SMA) of the MFRR was much smaller than that of the passive suspension system (PS) and the FPID on single-bump and sinusoidal roads. The SMA, suspension dynamic deflection (SDD) and tire dynamic load (TDL) of the MFRR were significantly less than those of the other two systems on roads of each grade. Taking grade B road as an example, compared with the PS, the reductions in the SMA, SDD and TDL of the MFRR were 40.01%, 34.28% and 32.64%, respectively. The control system showed a good control performance. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

17 pages, 33989 KiB  
Article
Vibrations Analysis of the Fruit-Pedicel System of Coffea arabica var. Castillo Using Time–Frequency and Wavelets Techniques
by Carlos I. Cardona, Hector A. Tinoco, Luis Perdomo-Hurtado, Juliana López-Guzmán and Daniel A. Pereira
Appl. Sci. 2021, 11(19), 9346; https://doi.org/10.3390/app11199346 - 8 Oct 2021
Cited by 6 | Viewed by 2531
Abstract
Colombian coffee production is well-known, and selective manual harvesting plays a vital task in guaranteeing high ripe coffee fruit rates in this process, leading to its known worldwide aroma and flavor. To maintain this quality approach, selective harvesting methods based on mechanical vibrations [...] Read more.
Colombian coffee production is well-known, and selective manual harvesting plays a vital task in guaranteeing high ripe coffee fruit rates in this process, leading to its known worldwide aroma and flavor. To maintain this quality approach, selective harvesting methods based on mechanical vibrations are a promising alternative for developing technologies that could accomplish the challenging Colombian coffee production context. In this study, a vibrations analysis in coffee fruits at three ripening stages was carried out to evaluate the dynamic behavior at two frequency windows: 10 to 100 Hz and 100 to 1000 Hz. Two groups of fruits previously classified in the CIELab color space were chosen for the vibration test study samples. Time and frequency signals were characterized via FFT (fast Fourier transform), and bump wavelets were determined to obtain the frequency–time magnitude scalograms. The measurements were obtained in three degrees of freedom over the fruits: one for measuring the input force (computed in voltage way) and the other two measured by the velocity. The results revealed frequency ranges with specific resonant peaks between 24 and 45 Hz, and close to 700 Hz, where the ripe fruits presented higher magnitudes in the calculated parameters. FFT of the velocity and scaled mechanical impedance were used to estimate these frequency ranges. This work is an important step to identify a “vibrational fingerprint” of each Coffea arabica var. Castillo fruit-ripening stage. However, we consider that more experiments should be performed to reconstruct the modal shape in each resonance. In future studies, fatigue analysis could show which are the most effective frequency ranges to detach the ripe fruits from the perspective of a real selective coffee-harvesting scenario. Full article
(This article belongs to the Topic Applied Sciences in Functional Foods)
Show Figures

Figure 1

15 pages, 8249 KiB  
Article
A Voxel-Based Watermarking Scheme for Additive Manufacturing
by Shyh-Kuang Ueng, Ya-Fang Hsieh and Yu-Chia Kao
Appl. Sci. 2021, 11(19), 9177; https://doi.org/10.3390/app11199177 - 2 Oct 2021
Cited by 2 | Viewed by 1922
Abstract
Digital and analog contents, generated in additive manufacturing (AM) processes, may be illegally modified, distributed, and reproduced. In this article, we propose a watermarking scheme to enhance the security of AM. Compared with conventional watermarking methods, our algorithm possesses the following advantages. First, [...] Read more.
Digital and analog contents, generated in additive manufacturing (AM) processes, may be illegally modified, distributed, and reproduced. In this article, we propose a watermarking scheme to enhance the security of AM. Compared with conventional watermarking methods, our algorithm possesses the following advantages. First, it protects geometric models and printed parts as well as G-code programs. Secondly, it embeds watermarks into both polygonal and volumetric models. Thirdly, our method is capable of creating watermarks inside the interiors and on the surfaces of complex models. Fourth, the watermarks may appear in various forms, including character strings, cavities, embossed bumps, and engraved textures. The proposed watermarking method is composed of the following steps. At first, the input geometric model is converted into a distance field. Then, the watermark is inserted into a region of interest by using self-organizing mapping. Finally, the watermarked model is converted into a G-code program by using a specialized slicer. Several robust methods are also developed to authenticate digital models, G-code programs, and physical parts. These methods perform virtual manufacturing, volume rendering, and image processing to extract watermarks from these contents at first. Then, they employ similarity evaluation and visual comparison to verify the extracted signatures. Some experiments had been conducted to validify the proposed watermarking method. The test results, analysis, discussion, and comparisons are also presented in this article. Full article
(This article belongs to the Topic Additive Manufacturing)
Show Figures

Figure 1

15 pages, 2427 KiB  
Article
An Analog Voltage Similarity Circuit with a Bell-Shaped Power Consumption
by Mehdi Azadmehr, Luca Marchetti and Yngvar Berg
Electronics 2021, 10(10), 1141; https://doi.org/10.3390/electronics10101141 - 11 May 2021
Cited by 1 | Viewed by 1813
Abstract
This paper presents a voltage similarity circuit (bump circuit) based on a novel voltage correlator. The proposed circuit is characterized by a power consumption which depends on the similarity between the two inputs. The sensitivity of the bump circuit and the power consumption [...] Read more.
This paper presents a voltage similarity circuit (bump circuit) based on a novel voltage correlator. The proposed circuit is characterized by a power consumption which depends on the similarity between the two inputs. The sensitivity of the bump circuit and the power consumption are at the highest values when the inputs are equal. As the similarity between the input voltages decreases, the total current consumption decreases with a bell-shaped behavior. The proposed bump circuit is very simple in design, made of a new voltage correlator circuit in combination with a differential pair and mimics the behavior of the classical bump circuit. The voltage correlator was implemented using AMS350nm CMOS technology. Simulation and measurement results suggests that a low power consumption may be achieved if the circuit is used in applications where the input signals have large dissimilarity for most of the circuit operation. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

13 pages, 12816 KiB  
Article
Prediction of the Potential Daily Output of a Shearer-Loader
by Marek Jaszczuk, Arkadiusz Pawlikowski, Wojciech Grzegorzek and Stanisław Szweda
Energies 2021, 14(6), 1647; https://doi.org/10.3390/en14061647 - 16 Mar 2021
Cited by 1 | Viewed by 1626
Abstract
Economic analysis allows for determining the required daily output under certain natural and mining conditions based on the costs of the production process in a particular mine infrastructure. Therefore, there is a need to determine the potential daily output of a longwall using [...] Read more.
Economic analysis allows for determining the required daily output under certain natural and mining conditions based on the costs of the production process in a particular mine infrastructure. Therefore, there is a need to determine the potential daily output of a longwall using the technical equipment at the disposal of the mine. In the case of mines, when exploiting a few longwalls simultaneously in the conditions of bumping hazards, it is indispensable to ensure safety. Due to a necessity of keeping a safe distance among the longwall fronts, when planning their exploitation, developing a prediction of the longwalls in advance during the planning period is needed. To predict the daily production from a longwall and daily advance of the longwall in the analyzed period, it is necessary to know the current operating time of machines and the capacity of the shearer under given conditions. The current working time of machines results from the available time and the degree of its utilization, which is determined by the sum of unplanned breaks in the production process. The shearer productivity is determined by its haulage speed. Both factors mentioned above are random. Hence, a calculation module has been developed, whose task is to estimate the distribution parameters of these indicators based on empirical data. The algorithm for estimating the parameters of one of the distributions: normal, steady or gamma and its special case of the exponential distribution and Poisson for the obtained input empirical data, constituting a sample from the population, is proposed. The input data are a sequence of numbers obtained from the measurement of the current operating time of machines. These data can be obtained from the longwall shearer memory card, on which its operating parameters are recorded in each longwall. On this basis, it is possible to generate random values of both parameters for individual days of operation. The possibility of determining the haulage speed, based on the longwall shearer’s characteristics obtained from the computer simulation of the mining process, is also discussed. The simulation of the mining process is carried out using the GeneSiSv.3.1 software, developed for designing a picks layout on the drum. The characteristics of the shearer production potential also take into account the capacity of loading the cutting drum. It results from the presented characteristics that, when mining coal with a compressive strength of 27 MPa, the haulage speed is limited by the loading capacity of the cutting drum and, with greater cuttability, by the power of the electric motor driving the drum. The paper presents algorithms describing the procedure of generating random values necessary for determining the longwall production potential and the daily advance during the assumed period. The subject matter presented in the paper is part of a bigger project which concerns planning of a mine operation and developing a few longwalls in the conditions of bumping hazards. Full article
(This article belongs to the Special Issue The IMTech 2021 Innovative Mining Technologies)
Show Figures

Figure 1

Back to TopTop