Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,578)

Search Parameters:
Keywords = breast cancer cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2254 KiB  
Article
Development and Application of a Slot-Blot Assay Using the Damage Sensing Protein Atl1 to Detect and Quantify O6-Alkylated Guanine Bases in DNA
by Hanum Yaakub, Anthony Howell, Geoffrey P. Margison and Andrew C. Povey
Toxics 2024, 12(9), 649; https://doi.org/10.3390/toxics12090649 - 4 Sep 2024
Abstract
Humans are unavoidably exposed to numerous different mutagenic DNA alkylating agents (AAs), but their role in the initiation of cancers is uncertain, in part due to difficulties in assessing human exposure. To address this, we have developed a screening method that measures promutagenic [...] Read more.
Humans are unavoidably exposed to numerous different mutagenic DNA alkylating agents (AAs), but their role in the initiation of cancers is uncertain, in part due to difficulties in assessing human exposure. To address this, we have developed a screening method that measures promutagenic O6-alkylguanines (O6-AlkGs) in DNA and applied it to human DNA samples. The method exploits the ability of the Schizosaccharomyces pombe alkyltransferase-like protein (Atl1) to recognise and bind to a wide range of O6-AlkGs in DNA. We established an Atl1-based slot-blot (ASB) assay and validated it using calf thymus DNA alkylated in vitro with a range of alkylating agents and both calf thymus and human placental DNA methylated in vitro with temozolomide (TMZ). ASB signals were directly proportional to the levels of O6-meG in these controls. Pre-treatment of DNA with the DNA repair protein O6-methylguanine–DNA methyltransferase (MGMT) reduced binding of Atl1, confirming its specificity. In addition, MCF 10A cells were treated with 500 μM TMZ and the extracted DNA, analysed using the ASB, was found to contain 1.34 fmoles O6 -meG/μg DNA. Of six human breast tumour DNA samples assessed, five had detectable O6-AlkG levels (mean ± SD 1.24 ± 0.25 O6-meG equivalents/μg DNA. This study shows the potential usefulness of the ASB assay to detect and quantify total O6-AlkGs in human DNA samples. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

20 pages, 9197 KiB  
Article
Exosomal Delivery Enhances the Antiproliferative Effects of Acid-Hydrolyzed Apiaceae Spice Extracts in Breast Cancer Cells
by Jared L. Scott, Ramesh C. Gupta, Farrukh Aqil, Jeyaprakash Jeyabalan and David J. Schultz
Foods 2024, 13(17), 2811; https://doi.org/10.3390/foods13172811 - 4 Sep 2024
Abstract
Breast cancer remains a leading cause of death worldwide. The Apiaceae plant family includes many culinary spices that have been shown to have medicinal properties. Many phytochemicals exhibit potent bioactivities but often suffer from poor uptake and oral bioavailability. Bovine milk and colostrum [...] Read more.
Breast cancer remains a leading cause of death worldwide. The Apiaceae plant family includes many culinary spices that have been shown to have medicinal properties. Many phytochemicals exhibit potent bioactivities but often suffer from poor uptake and oral bioavailability. Bovine milk and colostrum exosomes are a compelling drug delivery platform that could address this issue; these natural nanoparticles can be loaded with hydrophilic and lipophilic small molecules and biologics, resulting in lower doses needed to inhibit cancer growth. Ethanolic extracts of eight Apiaceae spices were examined for phytochemical content and antiproliferative potential. Acid hydrolysis (AH) was employed to remove glycosides, asses its impacts on extract efficacy, and evaluate its effects on exosome loading and subsequent formulation efficacy. Antiproliferative activity was assessed through MTT assays on T-47D, MDA-MB-231, and BT-474 breast cancer cells; all extracts exhibited broad antiproliferative activity. AH enhanced the bioactivity of cumin, caraway, and fennel in T-47D cells. Celery, cumin, anise, and ajwain showed the highest activity and were assayed in exosomal formulations, which resulted in reduced doses required to inhibit cellular proliferation for all extracts except AH-cumin. Apiaceae spice extracts demonstrated antiproliferative activities that can be improved with AH and further enhanced with exosomal delivery. Full article
Show Figures

Figure 1

12 pages, 1345 KiB  
Article
The Effect of Statins on Markers of Breast Cancer Proliferation and Apoptosis in Women with In Situ or Early-Stage Invasive Breast Cancer
by Anam Kamal, Julie Boerner, Hadeel Assad, Wei Chen and Michael S. Simon
Int. J. Mol. Sci. 2024, 25(17), 9587; https://doi.org/10.3390/ijms25179587 - 4 Sep 2024
Abstract
Statins, inhibitors of HMG-CoA reductase, have been shown to have potential anti-carcinogenic effects through the inhibition of the mevalonate pathway and their impact on Ras and RhoGTAases. Prior studies have demonstrated a reduction in breast tumor proliferation, as well as increased apoptosis, among [...] Read more.
Statins, inhibitors of HMG-CoA reductase, have been shown to have potential anti-carcinogenic effects through the inhibition of the mevalonate pathway and their impact on Ras and RhoGTAases. Prior studies have demonstrated a reduction in breast tumor proliferation, as well as increased apoptosis, among women with early-stage breast cancer who received statins between the time of diagnosis and the time of surgery. The aim of this study was to evaluate the impact of short-term oral high-potency statin therapy on the expression of markers of breast tumor proliferation, apoptosis, and cell cycle arrest in a window-of-opportunity trial. This single-arm study enrolled 24 women with stage 0-II invasive breast cancer who were administered daily simvastatin (20 mg) for 2–4 weeks between diagnosis and surgical resection. Pre- and post-treatment tumor samples were analyzed for fold changes in Ki-67, cyclin D1, p27, and cleaved caspase-3 (CC3) expression. Out of 24 enrolled participants, 18 received statin treatment and 17 were evaluable for changes in marker expression. There was no significant change in Ki-67 expression (fold change = 1.4, p = 0.597). There were, however, significant increases in the expression of cyclin D1 (fold change = 2.8, p = 0.0003), p27 cytoplasmic (fold change = 3.2, p = 0.025), and CC3 (fold change = 2.1, p = 0.016). Statin treatment was well tolerated, with two reported grade-1 adverse events. These results align with previous window-of-opportunity studies suggesting a pro-apoptotic role of statins in breast cancer. The increased expression of markers of cell cycle arrest and apoptosis seen in this window-of-opportunity study supports further investigation into the anti-cancer properties of statins in larger-scale clinical trials. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Targeted Therapies of Breast Cancer)
Show Figures

Figure 1

17 pages, 7708 KiB  
Article
Self-Assembled Nanoparticles of Silicon (IV)–NO Donor Phthalocyanine Conjugate for Tumor Photodynamic Therapy in Red Light
by Kadireya Aikelamu, Jingya Bai, Qian Zhang, Jiamin Huang, Mei Wang and Chunhong Zhong
Pharmaceutics 2024, 16(9), 1166; https://doi.org/10.3390/pharmaceutics16091166 - 4 Sep 2024
Abstract
The combination of photodynamic therapy (PDT) and pneumatotherapy is emerging as one of the most effective strategies for increasing cancer treatment efficacy while minimizing side effects. Photodynamic forces affect nitric oxide (NO) levels as activated photosensitizers produce NO, and NO levels in the [...] Read more.
The combination of photodynamic therapy (PDT) and pneumatotherapy is emerging as one of the most effective strategies for increasing cancer treatment efficacy while minimizing side effects. Photodynamic forces affect nitric oxide (NO) levels as activated photosensitizers produce NO, and NO levels in the tumor and microenvironment directly impact tumor cell responsiveness to PDT. In this paper, 3-benzenesulfonyl-4-(1-hydroxy ether)-1,2,5-oxadiazole-2-oxide NO donor–silicon phthalocyanine coupling (SiPc–NO) was designed and prepared into self-assembled nanoparticles (SiPc–NO@NPs) by precipitation method. By further introducing arginyl-glycyl-aspartic acid (RGD) on the surface of nanoparticles, NO-photosensitizer delivery systems (SiPc–NO@RGD NPs) with photo-responsive and tumor-targeting properties were finally prepared and preliminarily evaluated in terms of their formulation properties, NO release, and photosensitizing effects. Furthermore, high reactive oxygen species (ROS) generation efficiency and high PDT efficiency in two breast cancer cell lines (human MCF-7 and mouse 4T1) under irradiation were also demonstrated. The novel SiPc–NO@RGD NPs show great potential for application in NO delivery and two-photon bioimaging-guided photodynamic tumor therapy. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

15 pages, 2792 KiB  
Article
Mitochondrial NME6 Influences Basic Cellular Processes in Tumor Cells In Vitro
by Bastien Proust, Anđela Horvat, Ana Tadijan, Ignacija Vlašić and Maja Herak Bosnar
Int. J. Mol. Sci. 2024, 25(17), 9580; https://doi.org/10.3390/ijms25179580 - 4 Sep 2024
Abstract
NME6 belongs to the family of nucleoside diphosphate kinase enzymes, whose major role is to transfer the terminal phosphate from NTPs, mostly ATP, to other (d)NDPs via a high-energy intermediate. Beside this basic enzymatic activity, the family, comprising 10 genes/proteins in humans, executes [...] Read more.
NME6 belongs to the family of nucleoside diphosphate kinase enzymes, whose major role is to transfer the terminal phosphate from NTPs, mostly ATP, to other (d)NDPs via a high-energy intermediate. Beside this basic enzymatic activity, the family, comprising 10 genes/proteins in humans, executes a number of diverse biochemical/biological functions in the cell. A few previous studies have reported that NME6 resides in the mitochondria and influences oxidative phosphorylation while interacting with RCC1L, a GTPase involved in mitochondrial ribosome assembly and translation. Considering the multifunctional role of NME family members, the goal of the present study was to assess the influence of the overexpression or silencing of NME6 on fundamental cellular events of MDA-MB-231T metastatic breast cancer cells. Using flow cytometry, Western blotting, and a wound-healing assay, we demonstrated that the overexpression of NME6 reduces cell migration and alters the expression of EMT (epithelial–mesenchymal transition) markers. In addition, NME6 overexpression influences cell cycle distribution exclusively upon DNA damage and impacts the MAPK/ERK signaling pathway, while it has no effect on apoptosis. To conclude, our results demonstrate that NME6 is involved in different cellular processes, providing a solid basis for future, more precise investigations of its role. Full article
Show Figures

Figure 1

22 pages, 4984 KiB  
Article
The Antitumor Potential of Sicilian Grape Pomace Extract: A Balance between ROS-Mediated Autophagy and Apoptosis
by Federica Affranchi, Diana Di Liberto, Marianna Lauricella, Antonella D’Anneo, Giuseppe Calvaruso, Giovanni Pratelli, Daniela Carlisi, Anna De Blasio, Luisa Tesoriere, Michela Giuliano, Antonietta Notaro and Sonia Emanuele
Biomolecules 2024, 14(9), 1111; https://doi.org/10.3390/biom14091111 - 3 Sep 2024
Viewed by 279
Abstract
From the perspective of circular economy, it is extremely useful to recycle waste products for human health applications. Among the health-beneficial properties of bioactive phyto-compounds, grape pomace represents a precious source of bioactive molecules with potential antitumor properties. Here, we describe the effects [...] Read more.
From the perspective of circular economy, it is extremely useful to recycle waste products for human health applications. Among the health-beneficial properties of bioactive phyto-compounds, grape pomace represents a precious source of bioactive molecules with potential antitumor properties. Here, we describe the effects of a Sicilian grape pomace hydroalcoholic extract (HE) in colon and breast cancer cells. The characterization of HE composition revealed the predominance of anthoxanthins and phenolic acids. HE treatment was more effective in reducing the viability of colon cancer cells, while breast cancer cells appeared more resistant. Indeed, while colon cancer cells underwent apoptosis, as shown by DNA fragmentation, caspase-3 activation, and PARP1 degradation, breast cancer cells seemed to not undergo apoptosis. To elucidate the underlying mechanisms, reactive oxygen species (ROS) were evaluated. Interestingly, ROS increased in both cell lines but, while in colon cancer, cells’ ROS rapidly increased and progressively diminished over time, in breast cancer, cells’ ROS increase was persistent up to 24 h. This effect was correlated with the induction of pro-survival autophagy, demonstrated by autophagosomes formation, autophagic markers increase, and protection by the antioxidant NAC. The autophagy inhibitor bafilomycin A1 significantly increased the HE effects in breast cancer cells but not in colon cancer cells. Overall, our data provide evidence that HE efficacy in tumor cells depends on a balance between ROS-mediated autophagy and apoptosis. Therefore, inhibiting pro-survival autophagy may be a tool to target those cells that appear more resistant to the effect of HE. Full article
Show Figures

Figure 1

14 pages, 2411 KiB  
Article
Reactive Oxygen Species-Regulated Conjugates Based on Poly(jasmine) Lactone for Simultaneous Delivery of Doxorubicin and Docetaxel
by Jyoti Verma, Vishal Kumar, Carl-Eric Wilen, Jessica M. Rosenholm and Kuldeep K. Bansal
Pharmaceutics 2024, 16(9), 1164; https://doi.org/10.3390/pharmaceutics16091164 - 3 Sep 2024
Viewed by 263
Abstract
In cancer therapy, it is essential to selectively release cytotoxic agents into the tumor to prevent the adverse effects associated with anticancer drugs. Thus, in this study, a stimuli-sensitive polymer–drug conjugate was synthesized for selective drug release. Doxorubicin (DOX) and docetaxel (DTX) were [...] Read more.
In cancer therapy, it is essential to selectively release cytotoxic agents into the tumor to prevent the adverse effects associated with anticancer drugs. Thus, in this study, a stimuli-sensitive polymer–drug conjugate was synthesized for selective drug release. Doxorubicin (DOX) and docetaxel (DTX) were conjugated onto novel poly(jasmine lactone) based copolymer via a thioketal (TK) linker. In addition, a photosensitizer (chlorin e6) was attached to the polymer, which served as a reactive oxygen species generator to cleave the TK linker. The conjugate is readily self-assembled into micelles less than 100 nm in size. Micelles demonstrate a notable increase in their ability to cause cell death when exposed to near-infrared (NIR) light on MDA-MB-231 breast cancer cells. The increase in cytotoxicity is higher than that observed with the combination of free DOX and DTX. The accumulation of DOX in the nucleus after release from the micelles (laser irradiation) was also confirmed by confocal microscopy. In the absence of light, micelles did not show any toxicity while the free drugs were found toxic irrespective of the light exposure. The obtained results suggest the targeted drug delivery potential of micelles regulated by the external stimuli, i.e., NIR light. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Drug Delivery in Photodynamic Therapy)
Show Figures

Graphical abstract

26 pages, 1915 KiB  
Systematic Review
Impact of Physical Activity on DNA Methylation Signatures in Breast Cancer Patients: A Systematic Review with Bioinformatic Analysis
by Chantalle Moulton, Veronica Lisi, Monica Silvestri, Roberta Ceci, Elisa Grazioli, Paolo Sgrò, Daniela Caporossi and Ivan Dimauro
Cancers 2024, 16(17), 3067; https://doi.org/10.3390/cancers16173067 - 3 Sep 2024
Viewed by 246
Abstract
Breast cancer (BC) continues to significantly impact women worldwide. Numerous studies show that physical activity (PA) significantly enhances the quality of life, aids recovery, and improves survival rates in BC patients. PA’s influence extends to altering DNA methylation patterns on both a global [...] Read more.
Breast cancer (BC) continues to significantly impact women worldwide. Numerous studies show that physical activity (PA) significantly enhances the quality of life, aids recovery, and improves survival rates in BC patients. PA’s influence extends to altering DNA methylation patterns on both a global and gene-specific scale, potentially reverting abnormal DNA methylation, associated with carcinogenesis and various pathologies. This review consolidates the findings of the current literature, highlighting PA’s impact on DNA methylation in BC patients. Our systematic analysis indicates that PA may elevate global DNA methylation within tumour tissues. Furthermore, it appears to modify gene-specific promoter methylation across a wide spectrum of genes in various tissues. Through bioinformatic analysis, to investigate the functional enrichment of these affected genes, we identified a predominant enrichment in metabolic pathways, cell cycle regulation, cell cycle checkpoints, mitosis, cellular stress responses, and molecular functions governing diverse binding processes. The Human Protein Atlas corroborates this enrichment, indicating gene functionality across 266 tissues, notably within various breast tissues. This systematic review unveils PA’s capacity to systematically alter DNA methylation patterns across multiple tissues, particularly in BC patients. Emphasising its influence on crucial biological processes and functions, this alteration holds potential for restoring normal cellular functionality and the cell cycle. This reversal of cancer-associated patterns could potentially enhance recovery and improve survival outcomes. Full article
Show Figures

Figure 1

32 pages, 4110 KiB  
Review
Platinum Group Metals Nanoparticles in Breast Cancer Therapy
by Sibusiso Alven, Sendibitiyosi Gandidzanwa, Basabele Ngalo, Olwethu Poswayo, Tatenda Madanhire, Blessing A. Aderibigbe and Zenixole Tshentu
Pharmaceutics 2024, 16(9), 1162; https://doi.org/10.3390/pharmaceutics16091162 - 3 Sep 2024
Viewed by 404
Abstract
Despite various methods currently used in cancer therapy, breast cancer remains the leading cause of morbidity and mortality worldwide. Current therapeutics face limitations such as multidrug resistance, drug toxicity and off-target effects, poor drug bioavailability and biocompatibility, and inefficient drug delivery. Nanotechnology has [...] Read more.
Despite various methods currently used in cancer therapy, breast cancer remains the leading cause of morbidity and mortality worldwide. Current therapeutics face limitations such as multidrug resistance, drug toxicity and off-target effects, poor drug bioavailability and biocompatibility, and inefficient drug delivery. Nanotechnology has emerged as a promising approach to cancer diagnosis, imaging, and therapy. Several preclinical studies have demonstrated that compounds and nanoparticles formulated from platinum group metals (PGMs) effectively treat breast cancer. PGMs are chemically stable, easy to functionalise, versatile, and tunable. They can target hypoxic microenvironments, catalyse the production of reactive oxygen species, and offer the potential for combination therapy. PGM nanoparticles can be incorporated with anticancer drugs to improve efficacy and can be attached to targeting moieties to enhance tumour-targeting efficiency. This review focuses on the therapeutic outcomes of platinum group metal nanoparticles (PGMNs) against various breast cancer cells and briefly discusses clinical trials of these nanoparticles in breast cancer treatment. It further illustrates the potential applications of PGMNs in breast cancer and presents opportunities for future PGM-based nanomaterial applications in combatting breast cancer. Full article
(This article belongs to the Special Issue Nanomedicines in Cancer Therapy)
Show Figures

Figure 1

23 pages, 3159 KiB  
Review
Radiotracer Innovations in Breast Cancer Imaging: A Review of Recent Progress
by Mohamad Haidar, Joe Rizkallah, Omar El Sardouk, Nour El Ghawi, Nadine Omran, Zeinab Hammoud, Nina Saliba, Arafat Tfayli, Hiba Moukadem, Ghina Berjawi, Lara Nassar, Fahad Marafi, Partha Choudhary, Habibollah Dadgar, Alyaa Sadeq and Alain S. Abi-Ghanem
Diagnostics 2024, 14(17), 1943; https://doi.org/10.3390/diagnostics14171943 - 3 Sep 2024
Viewed by 330
Abstract
This review focuses on the pivotal role of radiotracers in breast cancer imaging, emphasizing their importance in accurate detection, staging, and treatment monitoring. Radiotracers, labeled with radioactive isotopes, are integral to various nuclear imaging techniques, including positron emission tomography (PET) and positron emission [...] Read more.
This review focuses on the pivotal role of radiotracers in breast cancer imaging, emphasizing their importance in accurate detection, staging, and treatment monitoring. Radiotracers, labeled with radioactive isotopes, are integral to various nuclear imaging techniques, including positron emission tomography (PET) and positron emission mammography (PEM). The most widely used radiotracer in breast cancer imaging is 18F-fluorodeoxyglucose (18F-FDG), which highlights areas of increased glucose metabolism, a hallmark of many cancer cells. This allows for the identification of primary tumors and metastatic sites and the assessment of tumor response to therapy. In addition to 18F-FDG, this review will explore newer radiotracers targeting specific receptors, such as estrogen receptors or HER2, which offer more personalized imaging options. These tracers provide valuable insights into the molecular characteristics of tumors, aiding in tailored treatment strategies. By integrating radiotracers into breast cancer management, clinicians can enhance early disease detection, monitor therapeutic efficacy, and guide interventions, ultimately improving patient outcomes. Ongoing research aimed at developing more specific and sensitive tracers will also be highlighted, underscoring their potential to advance precision medicine in breast cancer care. Full article
(This article belongs to the Special Issue Recent Advances in Breast Imaging)
Show Figures

Figure 1

25 pages, 4456 KiB  
Article
Chemical Composition, Antioxidant Capacity, and Anticancerous Effects against Human Lung Cancer Cells of a Terpenoid-Rich Fraction of Inula viscosa
by Fatiha Seglab, Mazen Abou Assali, Thoraya AlYafei, Hassan Hassan, Diana C. G. A. Pinto, Safaa Baydoun, Asmaa A. Al Thani and Abdullah A. Shaito
Biology 2024, 13(9), 687; https://doi.org/10.3390/biology13090687 - 2 Sep 2024
Viewed by 307
Abstract
Inula viscosa is a widely used plant in traditional Mediterranean and Middle Eastern medicine for various illnesses. I. viscosa has been shown to have anticancer effects against various cancers, but its effects against lung cancer have been under limited investigation. At the same [...] Read more.
Inula viscosa is a widely used plant in traditional Mediterranean and Middle Eastern medicine for various illnesses. I. viscosa has been shown to have anticancer effects against various cancers, but its effects against lung cancer have been under limited investigation. At the same time, I. viscosa is rich in terpenoids whose anti-lung cancer effects have been poorly investigated. This study aimed to examine the potential anticancer properties of methanolic and aqueous extracts of stems and leaves of I. viscosa and its terpenoid-rich fraction against human lung cancer A549 cells. Results showed that the methanolic extracts of I. viscosa had significantly higher polyphenol and flavonoid content and radical scavenging capacity than the aqueous extracts. In addition, leaves methanolic extracts (IVLM) caused the highest reduction in viability of A549 cells among all the extracts. IVLM also reduced the viability of human ovarian SK-OV-3, breast MCF-7, liver HepG2, and colorectal HCT116 cancer cells. A terpenoid-rich I. viscosa fraction (IVL DCM), prepared by liquid-liquid separation of IVLM in dichloromethane (DCM), displayed a substantial reduction in the viability of A549 cells (IC50 = 27.8 ± 1.5 µg/mL at 48 h) and the panel of tested cancerous cell lines but was not cytotoxic to normal human embryonic fibroblasts (HDFn). The assessment of IVL DCM phytochemical constituents using GC-MS analysis revealed 21 metabolites, highlighting an enrichment in terpenoids, such as lupeol and its derivatives, caryophyllene oxide, betulin, and isopulegol, known to exhibit proapoptotic and antimetastatic functions. IVL DCM also showed robust antioxidant capacity and decent polyphenol and flavonoid contents. Furthermore, Western blotting analysis indicated that IVL DCM reduced proliferation (reduction of proliferation marker Ki67 and induction of proliferation inhibitor proteins P21 and P27), contaminant with P38 MAP kinase activation, and induced the intrinsic apoptotic pathway (P53/BCL2/BAX/Caspase3/PARP) in A549 cells. IVL DCM also reduced the migration of A549 cells, potentially by reducing FAK activation. Future identification of anticancer metabolites of IVL DCM, especially terpenoids, is recommended. These data place I. viscosa as a new resource of herbal anticancer agents. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

25 pages, 4244 KiB  
Article
Back to Nature: Development and Optimization of Bioinspired Nanocarriers for Potential Breast Cancer Treatment
by Sally Safwat, Rania M. Hathout, Rania A. H. Ishak and Nahed D. Mortada
Sci. Pharm. 2024, 92(3), 50; https://doi.org/10.3390/scipharm92030050 - 2 Sep 2024
Viewed by 385
Abstract
This study focuses on the preparation and optimization of caffeic acid (CA)-loaded casein nanoparticles (CS NPs) via the Box–Behnken design (BBD) for potential applications in cancer treatment. CS NPs were loaded with CA as a promising anti-cancer molecule. Non-hazardous green materials were exploited [...] Read more.
This study focuses on the preparation and optimization of caffeic acid (CA)-loaded casein nanoparticles (CS NPs) via the Box–Behnken design (BBD) for potential applications in cancer treatment. CS NPs were loaded with CA as a promising anti-cancer molecule. Non-hazardous green materials were exploited for nanoparticle fabrication. The BBD was used, followed by a desirability function to select the optimum formulation. The BBD was adopted as it avoids the runs implemented in extreme conditions, hence making it suitable for proteins. CS NPs were characterized regarding particle size (PS), size distribution (PDI), zeta potential (ZP), drug entrapment, morphology using TEM, differential scanning calorimetry, molecular docking, in vitro release, and cytotoxicity studies. PS, PDI, and ZP had significant responses, while EE% was insignificant. The suggested models were quadratic with high fitting. Optimized NPs showed PS = 110.31 ± 1.02 nm, PDI = 0.331 ± 0.029, ZP = −23.94 ± 1.64 mV, and EE% = 95.4 ± 2.56%. Molecular modeling indicated hydrophobic and electrostatic interactions between CA and CS, accounting for the high EE%. Almost spherical particles were realized with a sustained CA release pattern. Optimized NPs effectively suppressed the growth of MCF-7 cell lines by scoring the lowest IC50 = 78.45 ± 1.7 µg/mL. A novel combination of bioinspired-derived materials was developed for use in breast cancer treatment. Full article
Show Figures

Figure 1

24 pages, 2346 KiB  
Article
Multi-Omics Profiles of Small Intestine Organoids in Reaction to Breast Milk and Different Infant Formula Preparations
by Xianli Wang, Shangzhi Yang, Chengdong Zheng, Chenxuan Huang, Haiyang Yao, Zimo Guo, Yilun Wu, Zening Wang, Zhenyang Wu, Ruihong Ge, Wei Cheng, Yuanyuan Yan, Shilong Jiang, Jianguo Sun, Xiaoguang Li, Qinggang Xie and Hui Wang
Nutrients 2024, 16(17), 2951; https://doi.org/10.3390/nu16172951 - 2 Sep 2024
Viewed by 618
Abstract
Ensuring optimal infant nutrition is crucial for the health and development of children. Many infants aged 0–6 months are fed with infant formula rather than breast milk. Research on cancer cell lines and animal models is limited to examining the nutrition effects of [...] Read more.
Ensuring optimal infant nutrition is crucial for the health and development of children. Many infants aged 0–6 months are fed with infant formula rather than breast milk. Research on cancer cell lines and animal models is limited to examining the nutrition effects of formula and breast milk, as it does not comprehensively consider absorption, metabolism, and the health and social determinants of the infant and its physiology. Our study utilized small intestine organoids induced from human embryo stem cell (ESC) to compare the nutritional effects of breast milk from five donors during their postpartum lactation period of 1–6 months and three types of Stage 1 infant formulae from regular retail stores. Using transcriptomics and untargeted metabolomics approaches, we focused on the differences such as cell growth and development, cell junctions, and extracellular matrix. We also analyzed the roles of pathways including AMPK, Hippo, and Wnt, and identified key genes such as ALPI, SMAD3, TJP1, and WWTR1 for small intestine development. Through observational and in-vitro analysis, our study demonstrates ESC-derived organoids might be a promising model for exploring nutritional effects and underlying mechanisms. Full article
(This article belongs to the Topic Advances in Animal-Derived Non-Cow Milk and Milk Products)
Show Figures

Figure 1

30 pages, 2340 KiB  
Review
Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer
by Anca-Narcisa Neagu, Claudiu-Laurentiu Josan, Taniya M. Jayaweera, Hailey Morrissiey, Kaya R. Johnson and Costel C. Darie
Molecules 2024, 29(17), 4156; https://doi.org/10.3390/molecules29174156 - 2 Sep 2024
Viewed by 325
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound [...] Read more.
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell–cell and cell–extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial–mesenchymal/mesenchymal–epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers. Full article
Show Figures

Figure 1

12 pages, 8273 KiB  
Article
Spatial Metabolomics Profiling Reveals Curcumin Induces Metabolic Reprogramming in Three-Dimensional Tumor Spheroids
by Zihan Zhu, Yaqi Zhang, Lei Wang, Haoyuan Geng, Min Li, Shiping Chen, Xiao Wang, Panpan Chen, Chenglong Sun and Chao Zhang
Metabolites 2024, 14(9), 482; https://doi.org/10.3390/metabo14090482 - 2 Sep 2024
Viewed by 320
Abstract
Curcumin is widely recognized for its diverse antitumor properties, ranging from breast cancer to many other types of cancers. However, its role in the tumor microenvironment remains to be elucidated. In this study, we established a 3D tumor spheroids model that can simulate [...] Read more.
Curcumin is widely recognized for its diverse antitumor properties, ranging from breast cancer to many other types of cancers. However, its role in the tumor microenvironment remains to be elucidated. In this study, we established a 3D tumor spheroids model that can simulate the growth environment of tumor cells and visualized the antitumor metabolic alteration caused by curcumin using mass spectrometry imaging technology. Our results showed that curcumin not only exerts a profound impact on the growth and proliferation of breast cancer cells but in situ multivariate statistical analysis also reveals the significant effect on the overall metabolic profile of tumor spheroids. Meanwhile, our visualization map characterized curcumin metabolic processes of reduction and glucuronidation in tumor spheroids. More importantly, abnormal metabolic pathways related to lipid metabolism and polyamine metabolism were also remodeled at the metabolite and gene levels after curcumin intervention. These insights deepen our comprehension of the regulatory mechanism of curcumin on the tumor metabolic network, furnishing powerful references for antitumor treatment. Full article
(This article belongs to the Special Issue Mass Spectrometry Imaging and Spatial Metabolomics)
Show Figures

Figure 1

Back to TopTop