Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (873)

Search Parameters:
Keywords = bacterial invasion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1131 KiB  
Article
Characteristics, Management, and Outcomes of Acute Life-Threatening Asthma in Adult Intensive Care
by Adam J. R. Watson, Thomas Roe, Oliver Arscott, Charlotte Thomas, James Ward, Ryan Beecham, David Browning, Kordo Saeed and Ahilanandan Dushianthan
Clin. Pract. 2024, 14(5), 1886-1897; https://doi.org/10.3390/clinpract14050149 - 12 Sep 2024
Viewed by 155
Abstract
Background: There is limited evidence regarding the management of acute life-threatening asthma in intensive care units (ICUs), and few guidelines have details on this. We aimed to describe the characteristics, management, and outcomes of adults with life-threatening asthma requiring ICU admission. Methods: In [...] Read more.
Background: There is limited evidence regarding the management of acute life-threatening asthma in intensive care units (ICUs), and few guidelines have details on this. We aimed to describe the characteristics, management, and outcomes of adults with life-threatening asthma requiring ICU admission. Methods: In this single-centre retrospective observational study, we included consecutive adults with acute asthma requiring ICU admission between 1 January 2016 and 31 December 2023. Our primary outcome was requirement for invasive mechanical ventilation (IMV). Results: We included 100 patients (median age 42.5 years, 67% female). The median pH, PaCO2, and white cell count (WCC) on ICU admission were 7.37, 39 mmHg, and 13.6 × 109/L. There were 30 patients (30%) who required IMV, and the best predictors of IMV requirement were pH (AUC 0.772) and PaCO2 (AUC 0.809). In univariate analysis, IMV requirement was associated with both increasing WCC (OR 1.14) and proven bacterial infection (OR 8.50). A variety of respiratory support strategies were utilised, with 38 patients (38%) receiving only non-invasive respiratory support. Conclusions: Our data highlight key characteristics which may be risk factors for acute asthma requiring ICU admission and suggest that pH, PaCO2, and WCC are prognostic markers for disease severity. Our overall outcomes were good, with an IMV requirement of 30% and a 28-day mortality of 1%. Full article
(This article belongs to the Special Issue 2024 Feature Papers in Clinics and Practice)
Show Figures

Figure 1

29 pages, 2527 KiB  
Review
Advanced Nanotechnological Approaches for Biofilm Prevention and Control
by Maria Pia Ferraz
Appl. Sci. 2024, 14(18), 8137; https://doi.org/10.3390/app14188137 - 10 Sep 2024
Viewed by 287
Abstract
Biofilm-associated infections present a significant challenge in modern medicine, primarily due to their resilience and resistance to conventional treatments. These infections occur when bacteria form biofilms, protective layers formed by bacterial communities, which are notoriously resistant to traditional antibiotics on surfaces such as [...] Read more.
Biofilm-associated infections present a significant challenge in modern medicine, primarily due to their resilience and resistance to conventional treatments. These infections occur when bacteria form biofilms, protective layers formed by bacterial communities, which are notoriously resistant to traditional antibiotics on surfaces such as medical implants and biological surfaces, making eradication with standard antibiotics difficult. This resilience leads to persistent infections, imposing a substantial economic burden on healthcare systems. The urgency to find alternative treatments is critical as current methods are insufficient and costly. Innovative approaches, such as nanotechnology-based therapies, offer promising alternatives by targeting biofilms more effectively and reducing the need for invasive procedures. Nanocarriers hold significant promise in the fight against biofilm-associated infections. Nanocarriers can penetrate biofilms more effectively than conventional treatments, delivering higher concentrations of antibiotics or other antimicrobial agents precisely where they are needed. This targeted approach not only enhances the efficacy of treatments but also minimizes potential side effects. The development of nanocarrier-based therapies is crucial for overcoming the limitations of current treatments and ultimately improving patient outcomes and reducing the economic burden of biofilm-associated infections on healthcare systems. In this review, nanotechnology-based systems, their characteristics, limitations, and potential benefits are explored to address biofilms-related infections. Additionally, biofilm evaluation models and the tests necessary for the preclinical validation of these nanosystems to facilitate their clinical application are addressed. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

10 pages, 1312 KiB  
Case Report
Navigating Uncertainty: Managing Influenza-Associated Invasive Pulmonary Aspergillosis in an Intensive Care Unit
by Giacomo Casalini, Andrea Giacomelli, Laura Galimberti, Riccardo Colombo, Laura Milazzo, Dario Cattaneo, Antonio Castelli and Spinello Antinori
J. Fungi 2024, 10(9), 639; https://doi.org/10.3390/jof10090639 - 7 Sep 2024
Viewed by 361
Abstract
We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with [...] Read more.
We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with multidrug-resistant microorganisms, resulting in a fatal outcome despite the optimisation of antifungal treatment through therapeutic drug monitoring. This case underscores the complexity that clinicians face in managing critically ill patients with invasive fungal infections. Full article
(This article belongs to the Special Issue Fungal Infections: New Challenges and Opportunities, 2nd Edition)
Show Figures

Figure 1

12 pages, 1138 KiB  
Article
Mastitis Pathogens Mannheimia haemolytica, Staphylococcus aureus, and Streptococcus uberis Selectively Alter TLR Gene Transcription in Sheep Mammary Epithelial Cells
by Riccardo Tassi, Helen Todd and Keith T. Ballingall
Microbiol. Res. 2024, 15(3), 1772-1783; https://doi.org/10.3390/microbiolres15030118 - 4 Sep 2024
Viewed by 368
Abstract
Despite the impact of mastitis on sheep production worldwide, the pathogenesis and host response to bacterial infection of the ovine mammary gland are poorly characterized. Studies in cattle highlight the significance of the mammary epithelium in pathogen recognition and the subsequent host response. [...] Read more.
Despite the impact of mastitis on sheep production worldwide, the pathogenesis and host response to bacterial infection of the ovine mammary gland are poorly characterized. Studies in cattle highlight the significance of the mammary epithelium in pathogen recognition and the subsequent host response. The objective of this study was to assess bacterial adherence, invasion, and Toll like receptor (TLR) gene expression in primary sheep mammary epithelial cells (pMEC) following co-culture with the three principal mastitis pathogens of sheep, Mannheimia haemolytica, Staphylococcus aureus, and Streptococcus uberis. S. aureus was 140-fold more adherent than S. uberis and 850-fold more adherent than M. haemolytica. However, only S. aureus was internalized after 3 h of co-culture. TLR1, 2, 3, 4, 6, and 9 were shown to be constitutively transcribed by pMEC. M. haemolytica induced upregulation of transcription of TLR1, 2, 3, and 4. By contrast, S. uberis and S. aureus induced concentration-dependent transcription of TLR2 and TLR4 with a higher level of transcription in cells stimulated with the bacteria at a multiplicity of infection (MOI) of 200 compared to cells stimulated with a MOI of 20. These experiments define the range of TLR genes constitutively transcribed in sheep pMEC and show that bacterial infection has the capacity to regulate transcription in a species-specific and concentration-dependent manner. Full article
Show Figures

Figure 1

12 pages, 1615 KiB  
Article
The Mycotoxins T-2 and Deoxynivalenol Facilitate the Translocation of Streptococcus suis across Porcine Ileal Organoid Monolayers
by Xiaonan Guan, Arabela R. Martinez, Marcela Fernandez, Francesc Molist, Jerry M. Wells and Regiane R. Santos
Toxins 2024, 16(9), 382; https://doi.org/10.3390/toxins16090382 - 1 Sep 2024
Viewed by 666
Abstract
Mycotoxins have the potential to increase the risk of airway or intestinal infection due to their effects on epithelial integrity and function. The bacterium Streptococcus suis (S. suis) is often carried in pigs and can cause outbreaks of invasive disease, leading to sepsis [...] Read more.
Mycotoxins have the potential to increase the risk of airway or intestinal infection due to their effects on epithelial integrity and function. The bacterium Streptococcus suis (S. suis) is often carried in pigs and can cause outbreaks of invasive disease, leading to sepsis and meningitis in postweaning piglets. In this study, we tested the effect of two Fusarium mycotoxins (deoxynivalenol (DON) and T-2) on the integrity of the intestinal epithelium and their interaction with S. suis. Porcine ileal organoids were exposed to DON and T-2 individually or in combination and co-cultured with or without S. suis. Both DON and T-2 were toxic for ileal organoid monolayers at a concentration of 1 µM but not S. suis, even at a higher concentration of 4 µM. To mimic sub-clinical exposures on farms, DON was tested at a concentration of 0.1 µM and T-2 at a concentration of 0.01 µM. The mycotoxins alone did not affect cell permeability, but in combination with S. suis there was an increase in epithelial permeability. Furthermore, DON and T-2 together decreased the transepithelial electrical resistance and increased bacterial translocation. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

18 pages, 2580 KiB  
Article
Epibiotic Bacteria Isolated from the Non-Indigenous Species Codium fragile ssp. fragile: Identification, Characterization, and Biotechnological Potential
by Wafa Cherif, Leila Ktari, Bilel Hassen, Amel Ismail and Monia El Bour
Microorganisms 2024, 12(9), 1803; https://doi.org/10.3390/microorganisms12091803 - 30 Aug 2024
Viewed by 732
Abstract
Due to their richness in organic substances and nutrients, seaweed (macroalgae) harbor a large number of epiphytic bacteria on their surfaces. These bacteria interact with their host in multiple complex ways, in particular, by producing chemical compounds. The released metabolites may have biological [...] Read more.
Due to their richness in organic substances and nutrients, seaweed (macroalgae) harbor a large number of epiphytic bacteria on their surfaces. These bacteria interact with their host in multiple complex ways, in particular, by producing chemical compounds. The released metabolites may have biological properties beneficial for applications in both industry and medicine. In this study, we assess the diversity of culturable bacterial community of the invasive alga Codium fragile ssp. fragile with the aim to identify key groups within this epiphytic community. Seaweed samples were collected from the Northern Tunisian coast. A total of fifty bacteria were isolated in pure culture. These bacterial strains were identified by amplification of the ribosomal intergenic transcribed spacer between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. Antimicrobial activity, biochemical, and antibiotic resistance profile characterization were determined for the isolates. Isolated strains were tested for their antimicrobial potential against human and fish bacterial pathogens and the yeast Candida albicans, using the in vitro drop method. About 37% of isolated strains possess antibacterial activity with a variable antimicrobial spectrum. Ba1 (closely related to Pseudoalteromonas spiralis), Ba12 (closely related to Enterococcus faecium), and Bw4 (closely related to Pseudoalteromonas sp.) exhibited strong antimicrobial activity against E. coli. The isolated strain Ba4, closely related to Serratia marcescens, demonstrated the most potent activity against pathogens. The susceptibility of these strains to 12 commonly used antibiotics was investigated. Majority of the isolates were resistant to oxacillin, cefoxitin, tobramycin, and nitrofurantoin. Ba7 and Ba10, closely related to the Vibrio anguillarum strains, had the highest multidrug resistance profiles. The enzymes most commonly produced by the isolated strains were amylase, lecithinase, and agarase. Moreover, nine isolates produced disintegration zones around their colonies on agar plates with agarolitic index, ranging from 0.60 to 2.38. This investigation highlighted that Codium fragile ssp. fragile possesses an important diversity of epiphytic bacteria on its surface that could be cultivated in high biomass and may be considered for biotechnological application and as sources of antimicrobial drugs. Full article
(This article belongs to the Special Issue Holobionts in Aquaculture)
Show Figures

Figure 1

13 pages, 1122 KiB  
Article
Development of a Multiplex Real-Time PCR Assay for the Simultaneous Detection of Two Fungal Pathogens Causing Pneumonia
by Ho-Jae Lim, Seojin Ahn, Jee-Hyun No, Min-Young Park, Min-Jin Kim, Yong-Hak Sohn, Kwang-Soo Shin, Jung-Eun Park and Yong-Jin Yang
J. Fungi 2024, 10(9), 619; https://doi.org/10.3390/jof10090619 - 29 Aug 2024
Viewed by 481
Abstract
Infectious diseases caused by fungal sources are of great interest owing to their increasing prevalence. Invasive fungal infections, including invasive pulmonary aspergillosis caused by Aspergillus fumigatus, and Pneumocystis pneumonia caused by Pneumocystis jirovecii, are significant causes of morbidity and mortality among [...] Read more.
Infectious diseases caused by fungal sources are of great interest owing to their increasing prevalence. Invasive fungal infections, including invasive pulmonary aspergillosis caused by Aspergillus fumigatus, and Pneumocystis pneumonia caused by Pneumocystis jirovecii, are significant causes of morbidity and mortality among immunocompromised patients. The accurate and timely detection of these pathogens in this high-risk population is crucial for effective patient management. We developed a multiplex real-time polymerase chain reaction (PCR) assay, RF2 mRT-PCR, specifically designed to detect two respiratory fungi, P. jirovecii and A. fumigatus, and evaluated its performance in specimens of patients with lower respiratory tract infection. The performance was evaluated using 731 clinical samples, 55 reference species, and one synthetic DNA. The reproducibility test yielded a probit curve with a lower limit of detection of 19.82 copies/reaction for P. jirovecii and 64.20 copies/reaction for A. fumigatus. The RF2 mRT-PCR assay did not cross-react with non-A. fumigatus Aspergillus species or other common bacterial and viral species, and showed 100% in vitro sensitivity and specificity with reference assays. Additionally, it simultaneously detected A. fumigatus and P. jirovecii in co-infected samples. Therefore, the RF2 mRT-PCR assay is an efficient and reliable tool for in vitro diagnosis of A. fumigatus and P. jirovecii pulmonary infections. Full article
(This article belongs to the Special Issue Fungal Infections: New Challenges and Opportunities, 2nd Edition)
Show Figures

Figure 1

16 pages, 674 KiB  
Article
Impact of Lactobacillus- and Bifidobacterium-Based Direct-Fed Microbials on the Performance, Intestinal Morphology, and Fecal Bacterial Populations of Nursery Pigs
by Juan Castillo Zuniga, Anlly M. Fresno Rueda, Ryan S. Samuel, Benoit St-Pierre and Crystal L. Levesque
Microorganisms 2024, 12(9), 1786; https://doi.org/10.3390/microorganisms12091786 - 28 Aug 2024
Viewed by 411
Abstract
Weaning is a critical stage in the swine production cycle, as young pigs need to adjust to sudden and dramatic changes in their diet and environment. Among the various organ systems affected, the gastrointestinal tract is one of the more severely impacted during [...] Read more.
Weaning is a critical stage in the swine production cycle, as young pigs need to adjust to sudden and dramatic changes in their diet and environment. Among the various organ systems affected, the gastrointestinal tract is one of the more severely impacted during this transition. Traditionally, challenges at weaning have been managed by prophylactic use of antibiotics, which not only provides protection against diarrhea and other gut dysfunction but also has growth-promoting effects. With banning or major restrictions on the use of antibiotics for this purpose, various alternative products have been developed as potential replacements, including direct-fed microbials (DFMs) such as probiotics and postbiotics. As their efficiency needs to be improved, a continued effort to gain a deeper understanding of their mechanism of action is necessary. In this context, this report presents a study on the impact of a Lactobacillus-based probiotic (LPr) and a Bifidobacterium-based postbiotic (BPo) when added to the diet during the nursery phase. For animal performance, an effect was observed in the early stages (Day 0 to Day 10), as pigs fed diets supplemented with either DFMs were found to have higher average daily feed intake (ADFI) compared to pigs fed the control diet (p < 0.05). Histological analysis of intestinal morphology on D10 revealed that the ileum of supplemented pigs had a higher villus height/crypt depth ratio (p < 0.05) compared to controls, indicating a benefit of the DFMs for gut health. In an effort to further explore potential mechanisms of action, the effects of the DFMs on gut microbial composition were investigated using fecal microbial communities as a non-invasive representative approach. At the bacterial family level, Lactobacillaceae were found in higher abundance in pigs fed either LPr (D10; p < 0.05) or BPo (D47; p < 0.05). At the Operational Taxonomic Unit (OTU) level, which can be used as a proxy to assess species composition, Ssd-00950 and Ssd-01187 were found in higher abundance in DFM-supplemented pigs on D47 (p < 0.05). Using nucleotide sequence identity, these OTUs were predicted to be putative strains of Congobacterium massiliense and Absicoccus porci, respectively. In contrast, OTU Ssd-00039, which was predicted to be a strain of Streptococcus alactolyticus, was in lower abundance in BPo-supplemented pigs on D47 (p < 0.05). Together, these results indicate that the DFMs tested in this study can impact various aspects of gut function. Full article
(This article belongs to the Special Issue Gut Microbiota of Food Animal)
Show Figures

Figure 1

10 pages, 1117 KiB  
Article
Real-World Data in Children with Spinal Muscular Atrophy Type 1 on Long-Term Ventilation Receiving Gene Therapy: A Prospective Cohort Study
by Mohammad Ala’ Alajjuri, Rania Abusamra, Vivek Mundada and Omendra Narayan
Adv. Respir. Med. 2024, 92(5), 338-347; https://doi.org/10.3390/arm92050032 - 28 Aug 2024
Viewed by 404
Abstract
Patients with spinal muscular atrophy type 1 (SMA-1) requiring invasive ventilation can be eligible for gene therapy if they tolerate at least 8 h off ventilation per day. We aimed to assess the short-term safety and efficacy of gene therapy (onasemnogene abeparvovec; Zolgensma) [...] Read more.
Patients with spinal muscular atrophy type 1 (SMA-1) requiring invasive ventilation can be eligible for gene therapy if they tolerate at least 8 h off ventilation per day. We aimed to assess the short-term safety and efficacy of gene therapy (onasemnogene abeparvovec; Zolgensma) on respiratory function in SMA-1 patients ventilated via tracheostomy pre-gene therapy. A prospective cohort study included 22 patients. Patients were weaned off ventilation for at least 8 h daily by optimizing ventilator settings and duration, using cough augmentation, managing excessive airway secretions, enhancing nutrition, screening for respiratory bacterial colonization, and treating infections. Gene therapy was administered at a median age of 26 (Q1: 18, Q3: 43) months with a mean follow-up period of 7.64 (SD: 6.50) months. Gene therapy was safe and effective in resolving paradoxical breathing, improving cough ability, reducing airway secretions, and enhancing CHOP-INTEND scores. The clinical assessment and management implemented pre-gene therapy were effective in safely weaning patients for at least 8 h off ventilation daily. Gene therapy at a late age was safe and effective over the short-term period; however, long-term follow-up is recommended. In conjunction with gene therapy, high-quality clinical care is beneficial and should be paired with gene therapy. Full article
Show Figures

Figure 1

13 pages, 3811 KiB  
Review
Gastrointestinal Ultrasound in Infectious Diseases: A Comprehensive Review
by Francesca Aprile, Marcello Vangeli, Mariangela Allocca, Alessandra Zilli, Marjorie Costa Argollo, Ferdinando D’amico, Tommaso Lorenzo Parigi, Silvio Danese and Federica Furfaro
Medicina 2024, 60(9), 1402; https://doi.org/10.3390/medicina60091402 - 27 Aug 2024
Viewed by 373
Abstract
Infectious diseases affecting the gastrointestinal tract often present diagnostic challenges due to the variability in clinical manifestations and overlapping symptoms. Ultrasound imaging has emerged as a valuable tool in the assessment of gastrointestinal pathologies, offering non-invasive and real-time visualization of anatomical structures. This [...] Read more.
Infectious diseases affecting the gastrointestinal tract often present diagnostic challenges due to the variability in clinical manifestations and overlapping symptoms. Ultrasound imaging has emerged as a valuable tool in the assessment of gastrointestinal pathologies, offering non-invasive and real-time visualization of anatomical structures. This review aims to explore the role of ultrasound in the diagnosis and management of infectious diseases involving the gastrointestinal tract. We discuss the imaging features of various infectious etiologies, such as bacterial, viral, and parasitic infections, highlighting characteristic findings on ultrasound scans. Additionally, we provide insights into the utility of ultrasound for the assessment of treatment response. Through a comprehensive analysis of existing literature and clinical case studies, this review underscores the significance of ultrasound imaging as a frontline modality in the diagnosis and management of infectious diseases affecting the gastrointestinal tract. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
Show Figures

Figure 1

12 pages, 5992 KiB  
Article
Intratumoral Microbiome in Head and Neck Paragangliomas
by Maria Fedorova, Anastasiya Snezhkina, Dmitry Kalinin, Elena Pudova, Margarita Lantsova, George Krasnov, Vladislav Pavlov and Anna Kudryavtseva
Int. J. Mol. Sci. 2024, 25(17), 9180; https://doi.org/10.3390/ijms25179180 - 23 Aug 2024
Viewed by 233
Abstract
Head and neck paragangliomas (HNPGLs) are rare neoplasms arising from paraganglia of the parasympathetic nervous system. HNPGLs are characterized by high vascularity and are located in proximity to major vessels and nerves, which may be potential sources of microbial invasion in these tumors. [...] Read more.
Head and neck paragangliomas (HNPGLs) are rare neoplasms arising from paraganglia of the parasympathetic nervous system. HNPGLs are characterized by high vascularity and are located in proximity to major vessels and nerves, which may be potential sources of microbial invasion in these tumors. There have been no studies in the literature on the microbiota in HNPGLs. Investigation of the microbiome associated with paragangliomas is important for understanding tumor pathogenesis. In this study, we investigated the microbiome composition in two sets of HNPGLs. First, 29 fresh frozen (FF) tissues were subjected to 16S rRNA gene sequencing; concurrently, a panel of candidate laboratory-derived contaminants was investigated. Second, we analyzed microbial reads from whole transcriptome sequencing data obtained for 82 formalin-fixed paraffin-embedded (FFPE) HNPGLs. The bacterial diversity in FF tumors was found to be significantly lower than that observed in FFPE HNPGLs. Based on 16S rRNA gene sequencing, only seven bacterial families were identified as potential tumor inhabitants: Bryobacteraceae, Enterococcaceae, Neisseriaceae, Legionellaceae, Vibrionaceae, Obscuribacteraceae, and Mycobacteriaceae. However, RNA-Seq demonstrated higher sensitivity for identifying microbiome composition and revealed abundant bacterial families that partially correlated with those previously described in pheochromocytomas and extra-adrenal paragangliomas. No viruses were found in HNPGLs. In summary, our findings indicated the presence of a microbiome in HNPGLs, comprising a number of bacterial families that overlap with those observed in pheochromocytomas/paragangliomas and glioblastomas. Full article
(This article belongs to the Special Issue Rare Diseases and Neuroscience)
Show Figures

Figure 1

14 pages, 2167 KiB  
Review
Type III Secretion Effectors of Xanthomonas oryzae pv. oryzicola: The Arsenal to Attack Equivalent Rice Defense for Invasion
by Nawei Tan, Yechao Huang, Weiguo Miao, Qingxia Zhang and Tao Wu
Agronomy 2024, 14(9), 1881; https://doi.org/10.3390/agronomy14091881 - 23 Aug 2024
Viewed by 449
Abstract
Rice–Xanthomonas oryzae pv. oryzicola (Xoc) is one of the commonly used rice models of host–pathogen interactions. Xoc causes bacterial leaf streak (BLS) and has quarantine status. As a Gram-negative pathogen, Xoc usually employs type III secretion effectors (T3SEs), including transcription activator-like [...] Read more.
Rice–Xanthomonas oryzae pv. oryzicola (Xoc) is one of the commonly used rice models of host–pathogen interactions. Xoc causes bacterial leaf streak (BLS) and has quarantine status. As a Gram-negative pathogen, Xoc usually employs type III secretion effectors (T3SEs), including transcription activator-like effectors (TALEs) and non-TALEs, to interfere with the innate immunity of rice. However, few major resistance genes corresponding to Xoc are found in rice cultivations; only Rxo1-AvrRxo1 and Xo1-TALEs interactions have been discovered in rice–Xoc. In this review, we focus on the role of the T3S system (T3SS) in Xoc virulence and consider the reported non-TALEs, including AvrRxo1, AvrBs2, XopN, XopC2, XopAP, and XopAK, as well as TALEs including Tal2g/Tal5d, Tal2h, Tal2a, Tal7, Tal10a, TalI, Tal2b, and Tal2c. Interestingly, AvrRxo1, XopC2, and XopAP disturb stomatal opening to promote infection through targeting diverse signaling pathways in rice. Otherwise, Tal2b and Tal2c, respectively, activate two rice salicylic acid (SA) hydroxylation genes to redundantly suppress the SA-mediated basal defense, and TalI, which has unknown targets, suppresses the SA signaling pathway in rice. In addition, other Xoc virulence factors are discussed. In conclusion, several T3SEs from Xoc interfere with similar defense pathways in rice to achieve invasion, providing an outlook for the control of this disease through manipulating the conserved pathways. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

13 pages, 30771 KiB  
Article
Transcriptome Analysis Reveals Novel Inflammatory Signalings to Glaesserella parasuis Infection
by Jingwen Lei, Xuexue Chen, Huanhuan Zhou, Zekai Zhang, Zhong Xu, Ke Xu and Hongbo Chen
Genes 2024, 15(8), 1094; https://doi.org/10.3390/genes15081094 - 20 Aug 2024
Viewed by 438
Abstract
Glaesserella parasuis (GPS) can cause severe systemic inflammation in pigs, resulting in huge economic losses to the pig industry. At present, no effective method is available for the prevention and control of GPS infection. Molecular breeding for disease resistance is imminent, but disease-resistance [...] Read more.
Glaesserella parasuis (GPS) can cause severe systemic inflammation in pigs, resulting in huge economic losses to the pig industry. At present, no effective method is available for the prevention and control of GPS infection. Molecular breeding for disease resistance is imminent, but disease-resistance genes have not been identified. To study the mechanism of systemic acute inflammation caused by GPS, we established three in vitro infection models (3D4/21 cells, PK15 cells, and PAVEC cells) according to its infection path. There was no significant difference in apoptosis among the three kinds of cells after 12 h of continuous GPS stimulation, while inflammatory factors were significantly upregulated. Subsequent transcriptome analysis revealed 1969, 1207, and 3564 differentially expressed genes (DEGs) in 3D4/21 cells, PK15 cells, and PAVEC cells, respectively, after GPS infection. Many of the DEGs were predicted to be associated with inflammatory responses (C3, CD44, etc.); cell proliferation, growth and apoptosis; gene expression; and protein phosphorylation. Key signaling pathways, including S100 family signaling, bacteria and virus recognition, and pathogen-induced cytokine storm signaling, were enriched based on Ingenuity Pathway Analysis (IPA). Furthermore, a total of three putative transmembrane receptors and two putative G-protein-coupled receptors, namely F3, ICAM1, PLAUR, ACKR3, and GPRC5A, were identified by IPA among the three types of cells. ACKR3 and GPRC5A play pivotal roles in bacterial adhesion, invasion, host immune response and inflammatory response through the S100 family signaling pathway. Our findings provide new insights into the pathological mechanisms underlying systemic inflammation caused by GPS infection in pigs, and they lay a foundation for further research on disease-resistance breeding to GPS. Full article
(This article belongs to the Special Issue Breeding and Functional Genomics in Animals)
Show Figures

Figure 1

15 pages, 1151 KiB  
Article
Gut Microbiota Profiling as a Promising Tool to Detect Equine Inflammatory Bowel Disease (IBD)
by Tiina Sävilammi, Rinna-Riikka Alakangas, Tuomas Häyrynen and Silva Uusi-Heikkilä
Animals 2024, 14(16), 2396; https://doi.org/10.3390/ani14162396 - 18 Aug 2024
Viewed by 985
Abstract
Gastrointestinal disorders are common and debilitating in horses, but their diagnosis is often difficult and invasive. Fecal samples offer a non-invasive alternative to assessing the gastrointestinal health of horses by providing information about the gut microbiota and inflammation. In this study, we used [...] Read more.
Gastrointestinal disorders are common and debilitating in horses, but their diagnosis is often difficult and invasive. Fecal samples offer a non-invasive alternative to assessing the gastrointestinal health of horses by providing information about the gut microbiota and inflammation. In this study, we used 16S sequencing to compare the fecal bacterial diversity and composition of 27 healthy horses and 49 horses diagnosed with inflammatory bowel disease (IBD). We also measured fecal calprotectin concentration, a marker of intestinal inflammation, in healthy horses and horses with IBD. We found that microbiota composition differed between healthy horses and horses with IBD, although less than five percent of the variation in microbiota composition was explained by individual health status and age. Several differentially abundant bacterial taxa associated with IBD, age, or body condition were depleted from the most dominant Firmicutes phylum and enriched with the Bacteroidota phylum. An artificial neural network model predicted the probability of IBD among the test samples with 100% accuracy. Our study is the first to demonstrate the association between gut microbiota composition and chronic forms of IBD in horses and highlights the potential of using fecal samples as a non-invasive source of biomarkers for equine IBD. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

6 pages, 1210 KiB  
Case Report
Atypical Presentation of Invasive Aspergillosis during Treatment with Mogamulizumab
by Paolo Pavone, Laura Arletti, Fiorella Ilariucci, Tommaso Albano, Deborah Lusetti, Romina Corsini, Francesco Merli and Sergio Mezzadri
J. Fungi 2024, 10(8), 584; https://doi.org/10.3390/jof10080584 - 17 Aug 2024
Viewed by 496
Abstract
Treatment with CCR-4 antagonists has been shown to be protective against the development of invasive pulmonary aspergillosis in animal models. Herein, we present a case of fatal invasive pulmonary aspergillosis in a patient receiving Mogamulizumab. A 64-year-old man with refractory mycosis fungoides was [...] Read more.
Treatment with CCR-4 antagonists has been shown to be protective against the development of invasive pulmonary aspergillosis in animal models. Herein, we present a case of fatal invasive pulmonary aspergillosis in a patient receiving Mogamulizumab. A 64-year-old man with refractory mycosis fungoides was found to have diffuse bilateral pulmonary nodules during a chest CT in June 2022. Bronchoalveolar lavage (BAL) fungal and bacterial cultures and galactomannan were negative, as well as serum beta-glucan and galactomannan. Histology showed a lymphoid infiltrate with a negative fungal stain, so a presumptive diagnosis of lymphoma infiltration was made, and the patient started the CCR-4 antagonist Mogamulizumab treatment in August 2022. He had no symptoms until November when he presented to the hematology clinic reporting dyspnea. He had neutrophilic leukocytosis (18.610 cells/µL), his c-reactive protein was 27 mg/dL, and his skin lesions from mycosis fungoides were just starting to improve. A CT scan showed large diffuse bilateral severely necrotic cavitated lesions with thick walls and apparently synchronous evolution. Beta-glucan was 31 pg/mL (wako method), while serum galactomannan 3.6. BAL was positive for Aspergillus fumigatus culture and galactomannan. Patient started voriconazole but, despite being in a stable condition, he suddenly died after two days. Discussion: Paradoxically, worsening of the chronic pulmonary aspergillosis has been reported after nivolumab treatment, and immune reconstitution syndromes are usually seen during neutrophil recovery after intensive chemotherapy. Our patient already presented indolent lung lesions from 5 months before and he remained completely asymptomatic until the aspergillosis diagnosis when he quickly passed away. Even if a progression of the lesions was expected in 5 months, this case had an atypical presentation. During the 5-month period, he had no pulmonary symptoms, and his c-reactive protein was negative. Furthermore, in the setting of the natural progression of subacute/chronic aspergillosis, a different radiological picture was expected with a less severe and probably asynchronous evolution. We think that the immune restoration associated with Mogamulizumab (also supported by the concurrent clinical response of the skin lesions) could have been detrimental in this case, exacerbating a catastrophic immune response or alternatively masquerading the clinical progression of aspergillosis. Clinicians should be aware of immune reconstitution syndromes possibly leading to fatal outcomes in immunocompromised patients starting CCR-4 antagonists. Full article
(This article belongs to the Special Issue Diagnosis of Invasive Fungal Diseases)
Show Figures

Figure 1

Back to TopTop