Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,796)

Search Parameters:
Keywords = ZnO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5287 KiB  
Article
Nano ZnO and Bioinoculants Mitigate Effects of Deficit Irrigation on Nutritional Quality of Green Peppers
by Bruna Lorrane Rosendo Martins, Kaikí Nogueira Ferreira, Josinaldo Lopes Araujo Rocha, Railene Hérica Carlos Rocha Araujo, Guilherme Lopes, Leônidas Canuto dos Santos, Francisco Bezerra Neto, Francisco Vaniés da Silva Sá, Toshik Iarley da Silva, Whashington Idalino da Silva, Geovani Soares de Lima, Francisco Jean da Silva Paiva and José Zilton Lopes Santos
Horticulturae 2024, 10(9), 969; https://doi.org/10.3390/horticulturae10090969 - 12 Sep 2024
Abstract
Green peppers (Capsicum annuum L.) are a fruit vegetable with great culinary versatility and present important nutritional properties for human health. Water deficit negatively affects the nutritional quality of green peppers’ fruits. This study aimed to investigate the influence of zinc oxide [...] Read more.
Green peppers (Capsicum annuum L.) are a fruit vegetable with great culinary versatility and present important nutritional properties for human health. Water deficit negatively affects the nutritional quality of green peppers’ fruits. This study aimed to investigate the influence of zinc oxide nanoparticles (ZnONPs), associated with plant growth-promoting bacteria (PGPB), on the post-harvest nutritional quality of green peppers subjected to water deficit. In an open-field experiment, two irrigation levels (50 and 100% of crop evapotranspiration (Etc)), four treatments composed of a combination of ZnONPs, zinc sulfate (ZnSO4), and PGPB (T1 = ZnSO4 via leaves, T2 = ZnONPs via leaves, T3 = ZnONPs via leaves + PGPB via soil, T4 = ZnSO4 via soil + PGPB via soil), and a control treatment (Control) were tested. Water deficit or water deficit mitigation treatments did not interfere with the physical–chemical parameters (except vitamin C content) and physical color parameters (except the lightness) of green peppers. On average, the water deficit reduced the levels of Ca (−13.2%), Mg (−8.5%), P (−8.5%), K (−8.6%), Mn (−10.5%), Fe (−12.2%), B (−12.0%), and Zn (−11.5%) in the fruits. Under the water deficit condition, ZnONPs or ZnSO4 via foliar, associated or not with PGPB, increased the levels of Ca (+57% in the T2 and +69.0% in the T2), P, Mg, and Fe in the fruits. At 50% Etc, the foliar application of ZnONPs in association with PGPB increases vitamin C and mineral nutrients’ contents and nutritional quality index (+12.0%) of green peppers. Applying Zn via foliar as ZnONPs or ZnSO4 mitigated the negative effects of water deficit on the quality of pepper fruits that were enhanced by the Bacillus subtilis and B. amyloliquefaciens inoculation. The ZnONPs source was more efficient than the ZnSO4 source. The water deficit alleviating effect of both zinc sources was enhanced by the PGPB. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Figure 1

15 pages, 5626 KiB  
Article
Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Gel Polymer Electrolyte Modified with Multi-Walled Carbon Nanotubes and SiO2 Nanospheres to Increase Rechargeability of Zn–Air Batteries
by Lucia Díaz-Patiño, Minerva Guerra-Balcázar, Lorena Álvarez-Contreras and Noé Arjona
Gels 2024, 10(9), 587; https://doi.org/10.3390/gels10090587 - 12 Sep 2024
Abstract
Zn–air batteries (ZABs) are a promising technology; however, their commercialization is limited by challenges, including those occurring in the electrolyte, and thus, gel polymer electrolytes (GPEs) and hydrogels have emerged as substitutes for traditional aqueous electrolytes. In this work, PVA/PAA membranes were synthesized [...] Read more.
Zn–air batteries (ZABs) are a promising technology; however, their commercialization is limited by challenges, including those occurring in the electrolyte, and thus, gel polymer electrolytes (GPEs) and hydrogels have emerged as substitutes for traditional aqueous electrolytes. In this work, PVA/PAA membranes were synthesized by the solvent casting method and soaked in 6 M KOH to act as GPEs. The thickness of the membrane was modified (50, 100, and 150 μm), and after determining the best thickness, the membrane was modified with synthesized SiO2 nanospheres and multi-walled carbon nanotubes (CNTs). SEM micrographs revealed that the CNTs displayed lengths of tens of micrometers, having a narrow diameter (95 ± 7 nm). In addition, SEM revealed that the SiO2 nanospheres had homogeneous shapes with sizes of 110 ± 10 nm. Physicochemical experiments revealed that SiO2 incorporation at 5 wt.% increased the water uptake of the PVA/PAA membrane from 465% to 525% and the ionic conductivity to 170 mS cm−1. The further addition of 0.5 wt.% CNTs did not impact the water uptake but it promoted a porous structure, increasing the power density and the stability, showing three-times-higher rechargeability than the ZAB operated with the PVA/PAA GPE. Full article
Show Figures

Figure 1

20 pages, 4634 KiB  
Article
Comparative Assessment of First-Row 3d Transition Metals (Ti-Zn) Supported on CeO2 Nanorods for CO2 Hydrogenation
by Maria Lykaki, Sofia Stefa, Georgios Varvoutis, Vassilios D. Binas, George E. Marnellos and Michalis Konsolakis
Catalysts 2024, 14(9), 611; https://doi.org/10.3390/catal14090611 - 11 Sep 2024
Viewed by 187
Abstract
Herein, motivated by the excellent redox properties of rod-shaped ceria (CeO2-NR), a series of TM/CeO2 catalysts, employing the first-row 3d transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) as active metal phases, were comparatively assessed under [...] Read more.
Herein, motivated by the excellent redox properties of rod-shaped ceria (CeO2-NR), a series of TM/CeO2 catalysts, employing the first-row 3d transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) as active metal phases, were comparatively assessed under identical synthesis and reaction conditions to decipher the role of active metal in the CO2 hydrogenation process. Notably, a volcano-type dependence of CO2 hydrogenation activity/selectivity was disclosed as a function of metal entity revealing a maximum for the Ni-based sample. Ni/CeO2 is extremely active and fully selective to methane (YCH4 = 90.8% at 350 °C), followed by Co/CeO2 (YCH4 = 45.2%), whereas the rest of the metals present an inferior performance. No straightforward relationship was disclosed between the CO2 hydrogenation performance and the textural, structural, and redox properties, whereas, on the other hand, a volcano-shaped trend was established with the relative concentration of oxygen vacancies and partially reduced Ce3+ species. The observed trend is also perfectly aligned with the previously reported volcano-type dependence of atomic hydrogen adsorption energy and CO2 activation as a function of 3d-orbital electron number, revealing the key role of intrinsic electronic features of each metal in conjunction to metal–support interactions. Full article
Show Figures

Graphical abstract

22 pages, 12410 KiB  
Article
Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized Polyaniline Bionanocomposites for Water Purification
by Mohd Saquib Tanweer, Zafar Iqbal, Adil Majeed Rather and Masood Alam
Water 2024, 16(18), 2576; https://doi.org/10.3390/w16182576 - 11 Sep 2024
Viewed by 204
Abstract
This study evaluates the preparation of novel ternary functional adsorbents based on polyaniline, zinc oxide nanoparticles, and moringa oleifera gum to produce zinc oxide/Moringa oleifera gum-grafted L-methionine-functionalized polyaniline bionanocomposites (ZM-g-Pani) and employed to sequestrate divalent metal ions (Cd2+, Hg2+ and [...] Read more.
This study evaluates the preparation of novel ternary functional adsorbents based on polyaniline, zinc oxide nanoparticles, and moringa oleifera gum to produce zinc oxide/Moringa oleifera gum-grafted L-methionine-functionalized polyaniline bionanocomposites (ZM-g-Pani) and employed to sequestrate divalent metal ions (Cd2+, Hg2+ and Pb2+) from wastewater samples. The morphological and structural properties of ZM-g-Pani were exploited using FT-IR, FE-SEM/EDS, TEM, and XRD. FT-IR and FE-SEM studies show that the as prepared nanocomposite has an abundant number of reactive groups and a porous structure, thus demonstrating outstanding divalent metal cation removal. FT-IR study confirms that the attachment of L-methionine to polyaniline is facilitated by the C-S linkage. Both TEM and FE-SEM techniques confirmed the clustered granules of ZnO over the surface of polyaniline, which ultimately provided more surface area to adsorb metal ions. The study demonstrated that Cd2+, Hg2+ and Pb2+ ions could undergo physical sorption and chemisorption simultaneously during the adsorption process. The maximum adsorption capacity was 840.33, 497.51, and 497.51 mg/g for Cd2+, Hg2+, and Pb2+, respectively. The impact of co-existing ions, including NO3, PO43−, SO42−, Cl, Na+, Cu2+, and Al3+, showed that there were no notable alterations in the adsorption of the selected metal ions with ZM-g-Pani. ZM-g-Pani showed eight successive regeneration cycles for Cd2+, Hg2+, and Pb2+ with more than 85% removal efficiency. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

18 pages, 4912 KiB  
Article
Piezoelectrically and Capacitively Transduced Hybrid MEMS Resonator with Superior RF Performance and Enhanced Parasitic Mitigation by Low-Temperature Batch Fabrication
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami and Jing Wang
Appl. Sci. 2024, 14(18), 8166; https://doi.org/10.3390/app14188166 - 11 Sep 2024
Viewed by 205
Abstract
This study investigates a hybrid microelectromechanical system (MEMS) acoustic resonator through a hybrid approach to combine capacitive and piezoelectric transduction mechanisms, thus harnessing the advantages of both transducer technologies within a single device. By seamlessly integrating both piezoelectric and capacitive transducers, the newly [...] Read more.
This study investigates a hybrid microelectromechanical system (MEMS) acoustic resonator through a hybrid approach to combine capacitive and piezoelectric transduction mechanisms, thus harnessing the advantages of both transducer technologies within a single device. By seamlessly integrating both piezoelectric and capacitive transducers, the newly designed hybrid resonators mitigate the limitations of capacitive and piezoelectric resonators. The unique hybrid configuration holds promise to significantly enhance overall device performance, particularly in terms of quality factor (Q-factor), insertion loss, and motional impedance. Moreover, the dual-transduction approach improves the signal-to-noise ratio and reduces feedthrough noise levels at higher frequencies. In this paper, the detailed design, complex fabrication processes, and thorough experimental validation are presented, demonstrating substantial performance enhancement potentials. A hybrid disk resonator with a single side-supporting anchor achieved an outstanding loaded Q-factor higher than 28,000 when operating under a capacitive drive and piezoelectric sense configuration. This is comparably higher than the measured Q-factor of 7600 for another disk resonator with two side-supporting anchors. The hybrid resonator exhibits a high Q-factor at its resonance frequency at 20 MHz, representing 2-fold improvement over the highest reported Q-factor for similar MEMS resonators in the literature. Also, the dual-transduction approach resulted in a more than 30 dB improvement in feedthrough suppression for devices with a 500 nm-thick ZnO layer, while hybrid resonators with a thicker piezoelectric layer of 1300 nm realized an even greater feedthrough suppression of more than 50 dB. The hybrid resonator integration strategy discussed offers an innovative solution for current and future advanced RF front-end applications, providing a versatile platform for future innovations in on-chip resonator technology. This work has the potential to lead to advancements in MEMS resonator technology, facilitating some significant improvements in multi-frequency and frequency agile RF applications through the original designs equipped with integrated capacitive and piezoelectric transduction mechanisms. The hybrid design also results in remarkable performance metrics, making it an ideal candidate for integrating next-generation wireless communication devices where size, cost, and energy efficiency are critical. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

12 pages, 3405 KiB  
Communication
“Water-in-Salt” Electrolyte Suppressed MnVOPO4·2H2O Cathode Dissolution for Stable High-Voltage Platform and Cycling Performance for Aqueous Zinc Metal Battery
by Shaohua Zhu, Wenwei Zhang, Xiaobin Liao, Lei Zhang, Qinyou An and Xuanpeng Wang
Materials 2024, 17(18), 4456; https://doi.org/10.3390/ma17184456 - 11 Sep 2024
Viewed by 193
Abstract
Vanadium-based materials have the advantages of abundant valence states and stable structures, having great application potential as cathode materials in metal-ion batteries. However, their low voltage and vanadium dissolution in traditional water-based electrolytes greatly limit their application and development in aqueous zinc metal [...] Read more.
Vanadium-based materials have the advantages of abundant valence states and stable structures, having great application potential as cathode materials in metal-ion batteries. However, their low voltage and vanadium dissolution in traditional water-based electrolytes greatly limit their application and development in aqueous zinc metal batteries (AZMBs). Herein, phosphate- and vanadium-based cathode materials (MnVOPO4·2H2O) with stacked layers and few defects were prepared via a condensation reflux method and then combined with a high-concentration electrolyte (21 m LiTFSI + 1 M Zn(CF3SO3)2) to address these limitations. The specific capacity and cycle stability accompanying the stable high voltage of 1.39 V were significantly enhanced compared with those for the traditional electrolyte of 3 M Zn(CF3SO3)2, benefiting from the suppressed vanadium dissolution. The cathode materials of MnVOPO4·2H2O achieved a high specific capacity of 152 mAh g−1 at 0.2 A g−1, with a retention rate of 86% after 100 cycles for AZMBs. A high energy density of 211.78 Wh kg−1 was also achieved. This strategy could illuminate the significance of electrolyte modification and provide potential high-voltage cathode materials for AZMBs and other rechargeable batteries. Full article
Show Figures

Figure 1

18 pages, 4323 KiB  
Article
One-Dimensional ZnO Nanorod Array Grown on Ag Nanowire Mesh/ZnO Composite Seed Layer for H2 Gas Sensing and UV Detection Applications
by Fang-Hsing Wang, An-Jhe Li, Han-Wen Liu and Tsung-Kuei Kang
Sensors 2024, 24(17), 5852; https://doi.org/10.3390/s24175852 - 9 Sep 2024
Viewed by 214
Abstract
Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal [...] Read more.
Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal method. We examined the impact of different zinc acetate precursor concentrations on their properties. Results show the AgNM forms a network with high transparency (79%) and low sheet resistance (7.23 Ω/□). A sol–gel ZnO thin film was coated on this mesh, providing a seed layer with a hexagonal wurtzite structure. Increasing the precursor concentration alters the diameter, length, and area density of ZNAs, affecting their performance. The ZNA-AgNM-based photodetector shows enhanced dark current and photocurrent with increasing precursor concentration, achieving a maximum photoresponsivity of 114 A/W at 374 nm and a detectivity of 6.37 × 1014 Jones at 0.05 M zinc acetate. For gas sensing, the resistance of ZNA-AgNM-based sensors decreases with temperature, with the best hydrogen response (2.71) at 300 °C and 0.04 M precursor concentration. These findings highlight the potential of ZNA-AgNM for high-performance UV photodetectors and hydrogen gas sensors, offering an alternative way for the development of future sensing devices with enhanced performance and functionality. Full article
Show Figures

Figure 1

28 pages, 4161 KiB  
Article
Application of Reduced Graphene Oxide-Zinc Oxide Nanocomposite in the Removal of Pb(II) and Cd(II) Contaminated Wastewater
by Moeng Geluk Motitswe, Kassim Olasunkanmi Badmus and Lindiwe Khotseng
Appl. Nano 2024, 5(3), 162-189; https://doi.org/10.3390/applnano5030012 - 9 Sep 2024
Viewed by 252
Abstract
Toxic metal wastewater is a challenge for exposed terrestrial and aquatic environments, as well as the recyclability of the water, prompting inputs for the development of promising treatment methods. Consequently, the rGO/ZnONP nanocomposite was synthesized at room temperature for four hours and was [...] Read more.
Toxic metal wastewater is a challenge for exposed terrestrial and aquatic environments, as well as the recyclability of the water, prompting inputs for the development of promising treatment methods. Consequently, the rGO/ZnONP nanocomposite was synthesized at room temperature for four hours and was tested for the adsorption of cadmium and lead in wastewater. The optimized nanocomposite had the lowest band gap energy (2.69 eV), and functional group interactions were at 516, 1220, 1732, 3009, and 3460 cm−1. The nanocomposite showed good ZnO nanoparticle size distribution and separation on rGO surfaces. The nanocomposite’s D and G band intensities were almost the same, constituting the ZnO presence on rGO from the Raman spectrum. The adsorption equilibrium time for cadmium and lead was reached within 10 and 90 min with efficiencies of ~100%. Sips and Freundlich best fitted the cadmium and lead adsorption data (R2 ~ 1); therefore, the adsorption was a multilayer coverage for lead and a mixture of heterogenous and homogenous coverage for cadmium adsorption. Both adsorptions were best fitted by the pseudo-first-order model, suggesting the multilayer coverage dominance. The adsorbent was reused for three and seven times for cadmium and lead. The nanocomposite showed selectivity towards lead (95%) and cadmium (100%) in the interfering wastewater matrix. Conclusively, the nanocomposite may be embedded within upcoming lab-scale treatment plants, which could lead to further upscaling and it serving as an industrial wastewater treatment material. Full article
Show Figures

Figure 1

9 pages, 997 KiB  
Proceeding Paper
Green Synthesis of Zinc Oxide Nanoparticles Using Lepidium sativum Seed Extract Embedded in Sodium Alginate Matrix for Efficient Slow-Release Biofertilizers
by Yasmina Khane, Zoulikha Hafsi, Fares Fenniche, Djaber Aouf, Marwa Laib, Abdelkrim Gagi and Sofiane Khane
Eng. Proc. 2024, 67(1), 35; https://doi.org/10.3390/engproc2024067035 - 9 Sep 2024
Viewed by 248
Abstract
In this research, we developed a novel slow-release biofertilizer by utilizing an environmentally friendly method to synthesize ZnO-NPs using sodium hydroxide, zinc acetate salt, and Lepidium sativum seed extract. The commercial fertilizer urea 46% was encapsulated in the nano-ZnO/alginate beads. The structural and [...] Read more.
In this research, we developed a novel slow-release biofertilizer by utilizing an environmentally friendly method to synthesize ZnO-NPs using sodium hydroxide, zinc acetate salt, and Lepidium sativum seed extract. The commercial fertilizer urea 46% was encapsulated in the nano-ZnO/alginate beads. The structural and morphological characteristics of the nanocomposites were confirmed using X-ray diffraction (XRD) and scanning electron microscopy, which confirmed the successful creation of nanocomposite alginate beads. The results indicated that the ZnO/alginate/urea beads exhibited a steady and continuous release of urea for up to one hour and extended nutrient availability over time. This research demonstrates the potential of ZnO-NP/alginate composites as a promising platform for developing slow-release biofertilizers, combining the beneficial properties of ZnO nanoparticles with the controlled-release capabilities of alginate matrices. This research highlights the potential of ZnO-NP/alginate composites as a sustainable and efficient solution for agricultural applications, providing a controlled release of nutrients that could minimize their environmental impact and enhance crop productivity. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

13 pages, 7474 KiB  
Article
Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight
by Junzhi Yan, Yuming Sun, Junxi Cai, Ming Cai, Bo Hu, Yan Yan, Yue Zhang and Xu Tang
Catalysts 2024, 14(9), 599; https://doi.org/10.3390/catal14090599 - 6 Sep 2024
Viewed by 429
Abstract
It is important to improve the separation ability of photogenerated electrons and the adsorption capacity of carbon dioxide (CO2) for efficient photoreduction of CO2. Here, we synthesized ZnCdS quantum dots (ZCS-QDs) and cerium dioxide nanosheets (CeO2) using [...] Read more.
It is important to improve the separation ability of photogenerated electrons and the adsorption capacity of carbon dioxide (CO2) for efficient photoreduction of CO2. Here, we synthesized ZnCdS quantum dots (ZCS-QDs) and cerium dioxide nanosheets (CeO2) using the solvothermal method and calcination method. We combined CeO2 and ZCS-QDs to effectively enhance the charge separation efficiency, and the lifetime of photogenerated electrons was increased 4.5 times. The CO evolution rate of the optimized composite (ZCS-QDs/CeO2) was up to 495.8 μmol g−1 h−1, and it had 100% product selectivity. In addition, the stability remained high after five cycles. The CO2 adsorption capacity of the catalyst surface was observed by in situ FTIR. The test results showed that improving CO2 capture ability and promoting photogenic electron separation had positive effects on enhancing photoreduction of CO2. This study provides a reference for constructing a zero-dimensional–two-dimensional (0D–2D) heterojunction and explores potential CO2 reduction reaction mechanisms. Full article
(This article belongs to the Special Issue Mineral-Based Composite Catalytic Materials)
Show Figures

Graphical abstract

22 pages, 6150 KiB  
Article
Effect of Nano-Zinc Oxide, Rice Straw Compost, and Gypsum on Wheat (Triticum aestivum L.) Yield and Soil Quality in Saline–Sodic Soil
by Mahmoud El-Sharkawy, Modhi O. Alotaibi, Jian Li, Esawy Mahmoud, Adel M. Ghoneim, Mohamed S. Ramadan and Mahmoud Shabana
Nanomaterials 2024, 14(17), 1450; https://doi.org/10.3390/nano14171450 - 5 Sep 2024
Viewed by 364
Abstract
The salinity and alkalinity of soils are two fundamental factors that limit plant growth and productivity. For that reason, a field study conducted at Sakha Agric. Res. Station in Egypt during the 2022–2023 winter season aimed to assess the impact of gypsum (G), [...] Read more.
The salinity and alkalinity of soils are two fundamental factors that limit plant growth and productivity. For that reason, a field study conducted at Sakha Agric. Res. Station in Egypt during the 2022–2023 winter season aimed to assess the impact of gypsum (G), compost (C), and zinc foliar application in two images, traditional (Z1 as ZnSO4) and nanoform (Z2 as N-ZnO), on alleviating the saline–sodic conditions of the soil and its impact on wheat productivity. The results showed that the combination of gypsum, compost, and N-ZnO foliar spray (G + C + Z2) decreased the soil electrical conductivity (EC), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) by 14.81%, 40.60%, and 35.10%, respectively. Additionally, compared to the control, the G + C + Z2 treatment showed improved nutrient content and uptake as well as superior wheat biomass parameters, such as the highest grain yield (7.07 Mg ha−1), plant height (98.0 cm), 1000-grain weight (57.03 g), and straw yield (9.93 Mg ha−1). Interestingly, foliar application of N-ZnO was more effective than ZnSO4 in promoting wheat productivity. Principal component analysis highlighted a negative correlation between increased grain yield and the soil EC and SAR, whereas the soil organic matter (OM), infiltration rate (IR), and plant nutrient content were found to be positively correlated. Furthermore, employing the k-nearest neighbors technique, it was predicted that the wheat grain yield would rise to 7.25 t ha−1 under certain soil parameters, such as EC (5.54 dS m−1), ESP (10.02%), OM (1.41%), bulk density (1.30 g cm−3), infiltration rate (1.15 cm h−1), and SAR (7.80%). These results demonstrate how adding compost and gypsum to foliar N-ZnO can improve the soil quality, increase the wheat yield, and improve the nutrient uptake, all of which can support sustainable agriculture. Full article
Show Figures

Figure 1

12 pages, 5596 KiB  
Article
ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic
by Dobrina Ivanova, Hristo Kolev, Bozhidar I. Stefanov and Nina Kaneva
Inorganics 2024, 12(9), 244; https://doi.org/10.3390/inorganics12090244 - 5 Sep 2024
Viewed by 414
Abstract
Research on tribocatalysis, which involves the triboelectric effect, is based on the concept that friction between dissimilar materials can generate charges capable of initiating catalytic reactions. This phenomenon holds significant potential for the degradation of wastewater contaminants in the environment. In this study, [...] Read more.
Research on tribocatalysis, which involves the triboelectric effect, is based on the concept that friction between dissimilar materials can generate charges capable of initiating catalytic reactions. This phenomenon holds significant potential for the degradation of wastewater contaminants in the environment. In this study, pure and Ce-modified (2 mol%) ZnO powders were investigated as tribocatalysts for the degradation of doxycycline (DC), a tetracycline antibiotic, in the absence of light. The research demonstrates that friction between the catalyst, the beaker, and the polytetrafluoroethylene (PTFE) magnetic rod induces charge transfer at their interfaces, leading to the breakdown of pollutants. Additionally, doxycycline degradation was observed at three different stirring speeds (100, 300, and 500 rpm). The results confirmed the tribocatalytic effect, showing that DC degradation increases with higher stirring speeds. Using ZnO and ZnO/Ce powders, maximum degradations of 80% and 55%, respectively, were achieved in 24 h at a stirring speed of 500 rpm. The findings of this study suggest that these samples can effectively degrade contaminants in water through the application of mechanical energy. Full article
(This article belongs to the Special Issue Metal Catalyst Discovery, Design and Synthesis)
Show Figures

Figure 1

16 pages, 1522 KiB  
Article
Appropriate Soil Fertilization or Drone-Based Foliar Zn Spraying Can Simultaneously Improve Yield and Micronutrient (Particularly for Zn) Nutritional Quality of Wheat Grains
by Xue Gao, Qiang Zhao, Nuo Yuan, Xiaojing Li, Bin Zhang, Yinghua Zhu, Lingan Kong, Zhaohui Wang and Haiyong Xia
Agriculture 2024, 14(9), 1530; https://doi.org/10.3390/agriculture14091530 - 5 Sep 2024
Viewed by 278
Abstract
To better understand the effects of agronomic practices on yield–nutrition relationships in wheat (Triticum aestivum L.) grains for Zn biofortification while improving yields simultaneously, effects of different soil fertilization and different drone-based foliar spraying treatments were investigated in calcareous soils. For soil [...] Read more.
To better understand the effects of agronomic practices on yield–nutrition relationships in wheat (Triticum aestivum L.) grains for Zn biofortification while improving yields simultaneously, effects of different soil fertilization and different drone-based foliar spraying treatments were investigated in calcareous soils. For soil fertilization, the incorporation of Zn or increasing the N/P ratio in compound fertilizers proved to be effective in enhancing grain Zn concentrations and yields. However, the overall effects of soil fertilization are limited, with a maximal yield increase of only 7.0% and a maximal increase of the grain Zn concentration from 19.4 to 27.0 mg/kg, which is far below the target biofortification value of 40–50 mg/kg. Unfortunately, there was a negative side effect, which decreased Fe and Mn concentrations and the Fe bioavailability. Notably, drone-based foliar Zn sprayings increased grain yields from the control 7.5 t/ha to 8.6 t/ha at ZnO treatment by 12.0% and 8.8 t/ha at ZnSO4·7H2O treatment by 17.3%. Meanwhile, grain Zn concentrations were increased from the control 33.5 mg/kg to 41.9 mg/kg at ZnO treatment by 25.1% and 43.6 mg/kg at ZnSO4·7H2O treatment by 30.1%. Treatments with ZnSO4·7H2O increased grain Zn concentrations and accumulation more so than ZnO, indicating the importance of chemical Zn forms in determining the effectiveness of foliar spraying. Moreover, foliar Zn sprayings simultaneously increased grain concentrations and accumulation of Fe, Mn and Cu, demonstrating multiple benefits. There were positive correlations between Zn and Fe, Mn or Cu, indicating synergistic interactions. Compared to micronutrients, concentrations of grain macronutrients (N, P, K, Ca and Mg) were less affected. Thus, a dual-benefit in both grain yields and micronutrient (particularly for Zn) nutrition could be effectively achieved through appropriate soil fertilization and foliar Zn spraying. These findings provide a better understanding of the yield–nutrition relationship among wheat grain yields, Zn and other nutrient elements for a better integrated manipulation to achieve a win–win situation in yield and nutrition. Full article
(This article belongs to the Special Issue Research on Technologies for Achieving High-Yield Wheat)
Show Figures

Figure 1

7 pages, 1508 KiB  
Proceeding Paper
Effects of Catalysts on the Structure and Piezoelectric Properties of PVDF/ZnO Nanowires for the Robotic Tactile Sensor
by Ming-Cheng Kao, Jun-Hong Weng, Chih-Hung Chiang, Kai-Huang Chen and Tsung-Kuei Kang
Eng. Proc. 2024, 74(1), 55; https://doi.org/10.3390/engproc2024074055 - 5 Sep 2024
Viewed by 101
Abstract
Polyvinylidene fluoride (PVDF)-coated ZnO nanorod piezoelectric sensors were prepared on silicone-based polymer polydimethylsiloxane (PDMS) substrates using a hydrothermal method. The effects of catalysts (sodium hydroxide, ammonium hydroxide, and hexamethylenetetramine) on the lattice microstructure and piezoelectric properties of ZnO nanorods were analyzed. The piezoelectric [...] Read more.
Polyvinylidene fluoride (PVDF)-coated ZnO nanorod piezoelectric sensors were prepared on silicone-based polymer polydimethylsiloxane (PDMS) substrates using a hydrothermal method. The effects of catalysts (sodium hydroxide, ammonium hydroxide, and hexamethylenetetramine) on the lattice microstructure and piezoelectric properties of ZnO nanorods were analyzed. The piezoelectric properties of polyvinylidene fluoride-coated ZnO nanorods’ tactile sensors with different catalysts were measured under different forces. ZnO nanorods with hexamethylenetetramine have a high c-axis (002)-preferred orientation hexagonal wurtzite crystal structure with a maximum length of 5800 nm and an aspect ratio of 72.5. The Polyvinylidene fluoride/ZnO nanorod sensor with hexamethylenetetramine showed an excellent linear response to external pressure in the range of 0.1~1.2 N, and the best sensitivity is 61.1 mV/N. Full article
Show Figures

Figure 1

17 pages, 4664 KiB  
Article
Terminalia Chebula Extract Replacing Zinc Oxide Enhances Antioxidant and Anti-Inflammatory Capabilities, Improves Growth Performance, and Promotes Intestinal Health in Weaned Piglets
by Tao Wang, Yuying Li, Lichen Yin, Jiashun Chen, Pengjun Shi, Fang Wang, Kangle Wu, Kang Yao and Yulong Yin
Antioxidants 2024, 13(9), 1087; https://doi.org/10.3390/antiox13091087 - 5 Sep 2024
Viewed by 346
Abstract
This study aimed to assess the effects of substituting zinc oxide with terminalia chebula extract (TCE) on growth performance, antioxidant capacity, immune function, and intestinal health in weaned pigs. Initially, 72 weaned Duroc × Landrace × Large White piglets, 28 days old with [...] Read more.
This study aimed to assess the effects of substituting zinc oxide with terminalia chebula extract (TCE) on growth performance, antioxidant capacity, immune function, and intestinal health in weaned pigs. Initially, 72 weaned Duroc × Landrace × Large White piglets, 28 days old with an initial weight of 7.43 ± 0.14 kg, equally divided by gender, were randomly assigned into three groups, with six replicates and four piglets per replicate. They were fed a basal diet (CON group), a diet containing 2 g/kg zinc oxide (ZnO group), or 2 g/kg TCE (TCE group) for a duration of 28 days. Subsequently, to further confirm the most appropriate levels of TCE in piglets, 96 piglets of the same breeds and age, with an initial weight of 7.42 ± 0.12 kg, also equally divided by gender, were randomly assigned into four groups, each with six replicates and four piglets per replicate, and fed a basal diet (CON group), or diets supplemented with 1 g/kg TCE (LTCE group), 2 g/kg TCE (MTCE group), or 4 g/kg TCE (HTCE group) for a duration of 28 days. The results demonstrated that both TCE and ZnO reduced diarrhea rates (p = 0.001) and enhanced average daily gain (ADG) (p = 0.014) compared to the control group. TCE at 1 g/kg and 4 g/kg reduced the feed to gain ratio (p = 0.050). Dietary supplementing with TCE and ZnO increased serum total antioxidant capacity (T-AOC) (p = 0.020). Various doses of TCE also increased jejunal IgA (p = 0.000) levels and IL-10 expression (p = 0.004), and decreased the levels of TNF-α in both serum (p = 0.043) and jejunal mucosa (p = 0.000). Notably, TCE reduced the crypt depth (CD) of the duodenal (p = 0.007) and increased the villus height (VH) of the ileal (p = 0.045), and with increased dosage, there was a rise in the villus height to crypt depth ratio (VH:CD) in the duodenum (p = 0.000) and jejunum (p = 0.001). Higher abundances of Lactobacillaceae (p = 0.000) and lower levels of Streptococcaceae (p = 0.000) and Peptostreptococcaceae (p = 0.035) in cecal contents were fed the ZnO and TCE pigs compared with CON pigs. Therefore, TCE was firstly presented as being able to replace zinc oxide, improve intestinal morphology, and enhance antioxidant and immune functions, thus safeguarding intestinal mucosal health and promoting piglet growth. Full article
Show Figures

Figure 1

Back to TopTop