Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,014)

Search Parameters:
Keywords = UV irradiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4400 KiB  
Article
Preparation of Composite Hydrogels Based on Cysteine–Silver Sol and Methylene Blue as Promising Systems for Anticancer Photodynamic Therapy
by Dmitry V. Vishnevetskii, Fedor A. Metlin, Yana V. Andrianova, Elizaveta E. Polyakova, Alexandra I. Ivanova, Dmitry V. Averkin and Arif R. Mekhtiev
Viewed by 174
Abstract
In this study, a novel supramolecular composite, “photogels”, was synthesized by mixing of cysteine–silver sol (CSS) and methylene blue (MB). A complex of modern physico-chemical methods of analysis such as viscosimetry, UV spectroscopy, dynamic and electrophoretic light scattering, scanning electron microscopy and energy-dispersive [...] Read more.
In this study, a novel supramolecular composite, “photogels”, was synthesized by mixing of cysteine–silver sol (CSS) and methylene blue (MB). A complex of modern physico-chemical methods of analysis such as viscosimetry, UV spectroscopy, dynamic and electrophoretic light scattering, scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that MB molecules are uniformly localized mainly in the space between fibers of the gel-network formed by CSS particles. Molecules of the dye also bind with the surface of CSS particles by non-covalent interactions. This fact is reflected in the appearance of a synergistic anticancer effect of gels against human squamous cell carcinoma even in the absence of light irradiation. A mild toxic influence of hydrogels was observed in normal keratinocyte cells. Photodynamic exposure significantly increased gel activity, and there remained a synergistic effect. The study of free-radical oxidation in cells has shown that gels are not only capable of generating reactive oxygen species, but also have other targets of action. Flow cytometric analysis allowed us to find out that obtained hydrogels caused cell cycle arrest both without irradiation and with light exposure. The obtained gels are of considerable interest both from the point of view of academics and applied science, for example, in the photodynamic therapy of superficial neoplasms. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

15 pages, 3146 KiB  
Article
Ultraviolet-C Light Effects in Actinidia spp. Infected by Pseudomonas syringae pv. actinidiae
by Simona Lucioli, Sarah Bollanti, Daniele Murra, Paolo Nota, Marco Scortichini, Emilia Caboni, Antonia Lai, Loretta Bacchetta and Paolo Di Lazzaro
Horticulturae 2024, 10(9), 944; https://doi.org/10.3390/horticulturae10090944 - 4 Sep 2024
Viewed by 201
Abstract
Several studies have demonstrated that ultraviolet-band-C (UV-C) irradiation can enhance plants’ natural resistance to pathogens and diseases. A suitable dose of UV-C radiation induces the production of metabolites that strengthen plant defenses, an effect known as “hormesis”. Hormesis presents a promising alternative that [...] Read more.
Several studies have demonstrated that ultraviolet-band-C (UV-C) irradiation can enhance plants’ natural resistance to pathogens and diseases. A suitable dose of UV-C radiation induces the production of metabolites that strengthen plant defenses, an effect known as “hormesis”. Hormesis presents a promising alternative that could supplement and reduce the use of pesticides, which pose risks to the environment and human health. This paper investigates the effects of UV-C radiation emitted by an array of Light-Emitting Diodes (LEDs) in generating a hormetic response in three kiwifruit species, namely A. chinensis var. deliciosa cv. Hayward, A. chinensis var. chinensis cv. Soreli®, and A. arguta plantlets, grown in vitro and in pots, exposed to the pathogen Pseudomonas syringae pv. actinidiae (Psa) either before or after UV-C irradiation. Analyses of morpho-physiological parameters and spectrophotometric assays were conducted to evaluate changes in chlorophyll a and b content, carotenoids, total phenols, and antioxidant activity in relation to the UV-C irradiation. Results indicate partial protection against Psa infection and increased levels of chlorophylls, carotenoids, polyphenols and antioxidant activity. The optimal UV-C dose was determined to be 2.2 kJ/m2 for in vitro shoots and 1.3 kJ/m2, for ex vitro plants. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

24 pages, 11966 KiB  
Review
Photodegradation of Amoxicillin in Aqueous Systems: A Review
by Mohammad Ashraf Ali and Ibrahim M. Maafa
Int. J. Mol. Sci. 2024, 25(17), 9575; https://doi.org/10.3390/ijms25179575 - 4 Sep 2024
Viewed by 164
Abstract
Amoxicillin (AMX) is utilized in the treatment of several infectious diseases, and its concentration in wastewater has increased quite significantly over the years, posing high health hazards for humans and other living organisms. Investigations are in progress globally to eliminate AMX and other [...] Read more.
Amoxicillin (AMX) is utilized in the treatment of several infectious diseases, and its concentration in wastewater has increased quite significantly over the years, posing high health hazards for humans and other living organisms. Investigations are in progress globally to eliminate AMX and other related pollutants using several methods that include adsorption, photolysis, photocatalytic degradation, photoelectrocatalytic degradation, and electrochemical conversion. AMX can be eliminated efficiently from the environment using photodegradation, either by photolysis or a photocatalytic process. Several types of semiconductor NMs have been used to eliminate AMX and other related drugs present in wastewater. This review spans the photodegradation studies conducted during the years 2018–2024 to degrade and eliminate AMX in aquatic systems. Several studies have been reported to eliminate AMX from different water streams. These studies are categorized into TiO2-containing and non-TiO2-based catalysts for better comparison. A section on photolysis is also included, showing the use of UV alone or with H2O2 or PS without using any nanomaterial. A tabulated summary of both types of catalysts showing the catalysts, reaction conditions, and degradation efficiency is presented. Researchers have used a variety of reaction conditions that include radiation types (UV, solar, and visible), pH of the solution, concentration of AMX, number of nanomaterials, presence of other additives and activators such as H2O2 as oxidant, and the influence of different salts like NaCl and CaCl2 on the photodegradation efficiency. TiO2 was the best nanomaterial found that achieved the highest degradation of AMX in ultraviolet irradiation. TiO2 doped with other nanomaterials showed very good performance under visible light. WO3 was also used by several investigators and found quite effective for AMX degradation. Other metal oxides used for AMX elimination were derived from molybdenum, zinc, manganese, copper, cerium, silver, etc. Some researchers have used UV and/or visible irradiation or sunlight, without using solid catalysts, in the presence of oxidants such as H2O2. A summarized description of earlier published reviews is also presented. Full article
(This article belongs to the Special Issue Recent Advances in Photolysis and Photodegradation)
Show Figures

Figure 1

15 pages, 14229 KiB  
Article
Trade-Off between Degradation Efficiency and Recyclability: Zeolite-Enhanced Ni3−xCoxS4 Catalyst for Photocatalytic Degradation of Methylene Blue
by Rachel Anne E. Lagunay, Ritche Roi B. Adalim, Aruzhan Tleubekova, Diana Suleimenova, Marvin Jose F. Fernandez, Robert J. O’Reilly and Mannix P. Balanay
Molecules 2024, 29(17), 4167; https://doi.org/10.3390/molecules29174167 - 3 Sep 2024
Viewed by 322
Abstract
We herein report successful syntheses of both nickel cobalt sulfide (NCS) and its composite with zeolite (NCS@Z) using a solvothermal method. Techniques such as EDX analysis, SEM, and molar ratio determination were used for product characterization. The incorporation of NCS significantly changed the [...] Read more.
We herein report successful syntheses of both nickel cobalt sulfide (NCS) and its composite with zeolite (NCS@Z) using a solvothermal method. Techniques such as EDX analysis, SEM, and molar ratio determination were used for product characterization. The incorporation of NCS significantly changed the surface roughness and active sites of the zeolite, improving the efficiency of methylene blue degradation and its reusability, especially under UV irradiation. In comparing the pseudo-first order rates, the highest degradation efficiency of methylene blue was achieved with NCS-2@Z, having a degradation extent of 91.07% under UV irradiation. This environmentally friendly approach offers a promising solution for the remediation of methylene blue contamination in various industries. Full article
Show Figures

Figure 1

11 pages, 3700 KiB  
Article
Preparation of Bi@Ho3+:TiO2/Composite Fiber Photocatalytic Materials and Hydrogen Production via Visible Light Decomposition of Water
by Tieping Cao, Yue Gao, Wei Xia and Xuan Qi
Catalysts 2024, 14(9), 588; https://doi.org/10.3390/catal14090588 - 2 Sep 2024
Viewed by 322
Abstract
Using electrospun nanofibers doped with TiO2 and rare-earth ion Ho3+ as the matrix, and sodium gluconate as the reducing agent, Bi(NO3)3 was reduced using hydrothermal technology to produce Bi@Ho3+:TiO2 composite fiber materials. The materials’ [...] Read more.
Using electrospun nanofibers doped with TiO2 and rare-earth ion Ho3+ as the matrix, and sodium gluconate as the reducing agent, Bi(NO3)3 was reduced using hydrothermal technology to produce Bi@Ho3+:TiO2 composite fiber materials. The materials’ phase, morphology, and photoelectric properties were characterized using various analytical testing methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), and transient photocurrent (IP). During the hydrothermal process, it was confirmed that Bi3+ was reduced by sodium gluconate to form pure Bi nanoparticles, which combined with Ho3+:TiO2 nanofibers to form heterojunctions. By leveraging the surface plasmon resonance (SPR) effect of metallic Bi and the abundant energy level structure and 4f electron transition properties of rare-earth Ho3+, the TiO2 nanofibers underwent dual modification, effectively enhancing the photocatalytic activity and stability of TiO2. Under visible light irradiation, the rate of hydrogen production through water decomposition reached 43.6 μmol·g−1·h−1. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

20 pages, 19743 KiB  
Article
Flexible and Ecological Cotton-Based Dosimeter for 2D UV Surface Dose Distribution Measurements
by Elżbieta Sąsiadek-Andrzejczak, Piotr Maras and Marek Kozicki
Materials 2024, 17(17), 4339; https://doi.org/10.3390/ma17174339 - 2 Sep 2024
Viewed by 266
Abstract
This work presents a 2D radiochromic dosimeter for ultraviolet (UV) radiation measurements, based on cotton fabric volume-modified with nitroblue tetrazolium chloride (NBT) as a radiation-sensitive compound. The developed dosimeter is flexible, which allows it to adapt to various shapes and show a color [...] Read more.
This work presents a 2D radiochromic dosimeter for ultraviolet (UV) radiation measurements, based on cotton fabric volume-modified with nitroblue tetrazolium chloride (NBT) as a radiation-sensitive compound. The developed dosimeter is flexible, which allows it to adapt to various shapes and show a color change from yellowish to purple-brown during irradiation. The intensity of the color change depends on the type of UV radiation and is the highest for UVC (253.7 nm). It has been shown that the developed dosimeters (i) can be used for UVC radiation dose measurements in the range of up to 10 J/cm2; (ii) can be measured in 2D using a flatbed scanner; and (iii) can have the obtained images after scanning be filtered with a medium filter to improve their quality by reducing noise from the fabric structure. The developed cotton–NBT dosimeters can measure UVC-absorbed radiation doses on objects of various shapes, and when combined with a dedicated computer software package and a data processing method, they form a comprehensive system for measuring dose distributions for objects with complex shapes. The developed system can also serve as a comprehensive method for assessing the quality and control of UV radiation sources used in various industrial processes. Full article
(This article belongs to the Special Issue Properties of Textiles and Fabrics and Their Processing)
Show Figures

Figure 1

15 pages, 1426 KiB  
Article
Salmonella Inactivation Model by UV-C Light Treatment in Chicken Breast
by Rosa María García-Gimeno, Eva Palomo-Manzano and Guiomar Denisse Posada-Izquierdo
Microorganisms 2024, 12(9), 1805; https://doi.org/10.3390/microorganisms12091805 - 31 Aug 2024
Viewed by 341
Abstract
This study aims to evaluate the effectiveness of inactivating Salmonella enteritidis in fresh chicken breast by irradiation using a combination of short-wave UV (0, 3, 6, 9, 12, and 15 J/cm2) and a natural antimicrobial such as caffeine (0, 5, 10, [...] Read more.
This study aims to evaluate the effectiveness of inactivating Salmonella enteritidis in fresh chicken breast by irradiation using a combination of short-wave UV (0, 3, 6, 9, 12, and 15 J/cm2) and a natural antimicrobial such as caffeine (0, 5, 10, 15, and 20 nM/g) at 14 °C as alternative proposals to conventional techniques to reduce pathogens in food. The effect of temperature was studied in an initial phase (2 to 22 °C). The most suitable models were double Weibull in 60% of cases, with an adjustment of R2 0.9903–0.9553, and Weibull + tail in 46.67%, with an adjustment of R2 of 0.9998–0.9981. The most effective combination for the reduction in Salmonella was 12 J/cm2 of UV light and 15 nM/g of caffeine, with a reduction of 6 CFU/g and an inactivation rate of 0.72. The synergistic effect was observed by increasing caffeine and UV light. Furthermore, the physico-chemical characteristics of the food matrix were not affected by the combination of both technologies. Therefore, these results suggest that this combination can be used in the food industry to effectively inactivate Salmonella enteritidis without deteriorating product quality. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

13 pages, 2416 KiB  
Article
Kinetic Study of the Water Quality Parameters during the Oxidation of Diclofenac by UV Photocatalytic Variants
by Natalia Villota, Begoña Echevarria, Unai Duoandicoechea, Jose Ignacio Lombraña and Ana María De Luis
Catalysts 2024, 14(9), 580; https://doi.org/10.3390/catal14090580 - 31 Aug 2024
Viewed by 321
Abstract
Diclofenac (DCF, C14H11Cl2NO2) is a widely used non-steroidal anti-inflammatory drug, with a significant occurrence in waste effluents. DCF is especially persistent and difficult to degrade, with numerous toxic effects on aquatic fauna and humans. In [...] Read more.
Diclofenac (DCF, C14H11Cl2NO2) is a widely used non-steroidal anti-inflammatory drug, with a significant occurrence in waste effluents. DCF is especially persistent and difficult to degrade, with numerous toxic effects on aquatic fauna and humans. In 2015, DCF was identified as a priority pollutant (EU Directives on water policy). In this work, UV irradiation and its combination with hydrogen peroxide only or catalyzed by iron salts (photo-Fenton) are analyzed to find the most efficient alternative. DCF aqueous solutions were treated in a stirred 150 W UV photocatalytic reactor. Depending on the case, 1.0 mM H2O2 and 0–5.0 mg/L Fe2+ catalyst, such as FeSO4, was added. During the reaction, DCF, pH, turbidity, UVA at 254 and 455 nm, dissolved oxygen (DO), and TOC were assessed. The degradation of DCF yields a strong increase in aromaticity because of the rise in aromatic intermediates (mono-hydroxylated (4-hydroxy-diclofenac and 5-hydroxy-diclofenac) and di-hydroxylated products (4,5-dihydroxy-diclofenac), which subsequently generate compounds of a quinoid nature), which are very stable and non-degradable by UV light. Thus, only if H2O2 is added can UV completely degrade these aromatic colour intermediates. However, adding ferrous ion (photo-Fenton) the aromaticity remains constant due to iron com-plexes, that generates maximum colour and turbidity at an stoichiometric Fe2+ : DCF ratio of 3. As a result of the study, it is concluded that, with UV light only, a strong yellow colour is generated and maintained along the reaction, but by adding H2O2, a colourless appearance, low turbidity (<1 NTU), and [DO] = 8.1 mg/L are obtained. Surprisingly, photo-Fenton was found to be unsuitable for degrading DCF. Full article
Show Figures

Figure 1

12 pages, 7132 KiB  
Article
Expression, Purification, and Anti-UV Irradiation Effect of RsSOD on HCE-T Human Corneal Epithelial Cells
by Xucong Fu, Zhuo Jiang, Wenhui Bi, Zhecheng Yang, Weina Lu, Jianqing Chen, Zhengbing Lyu and Zuoming Nie
Genes 2024, 15(9), 1147; https://doi.org/10.3390/genes15091147 - 30 Aug 2024
Viewed by 405
Abstract
Superoxide dismutase (SOD) is a class of enzymes that catalyze the disproportionation of superoxide anion radicals into hydrogen peroxide and oxygen. It can remove excessive free radicals in organisms and acts as a potent antioxidant, cleaning free radicals generated by radiation and protecting [...] Read more.
Superoxide dismutase (SOD) is a class of enzymes that catalyze the disproportionation of superoxide anion radicals into hydrogen peroxide and oxygen. It can remove excessive free radicals in organisms and acts as a potent antioxidant, cleaning free radicals generated by radiation and protecting cells from oxidative damage. In this study, we obtained a MnSOD gene from the radiation-resistant bacterium Radiobacillus sp. (RsSOD) and constructed its recombinant expression vector through gene synthesis. The recombinant RsSOD protein was efficiently expressed using IPTG induction, and purified via repeated freezing and thawing, heating, and DEAE anion-exchange chromatography. The purified RsSOD exhibited an enzyme activity of 2072.5 U/mg. Furthermore, RsSOD was demonstrated to have robust resistance to high temperatures, acid, alkali, and artificial intestinal fluid. Further studies were performed to investigate the radiation resistance of RsSOD against ultraviolet (UV) irradiation in human corneal epithelial (HCE-T) cells. The results indicated that a low concentration of RsSOD (6.25 U/mL) could promote HCE-T cell proliferation and protect these cells from damage caused by both long-term and short-term UV exposure, effectively reducing apoptosis induced by short-term UV irradiation. These findings suggest that the RsSOD protein possesses significant anti-UV irradiation property and is expected to be a candidate for treating ocular radiation-related diseases. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

24 pages, 9523 KiB  
Article
Two Small Molecule Drugs with Topical Applications, Diflunisal and Naphazoline, and Their Potentially Toxic Photodegradants: Analysis by Chemical and Biological Methods
by Karolina Lejwoda, Anna Gumieniczek, Agata Filip and Beata Naumczuk
Molecules 2024, 29(17), 4122; https://doi.org/10.3390/molecules29174122 - 30 Aug 2024
Viewed by 251
Abstract
Because of their topical application in patients and meaningful UV/VIS absorptive properties, the degradation and potential toxicity under irradiation of diflunisal (DIF) and naphazoline (NAF) were studied. In addition, the impact of pH on their photostability was examined, showing the highest degradation of [...] Read more.
Because of their topical application in patients and meaningful UV/VIS absorptive properties, the degradation and potential toxicity under irradiation of diflunisal (DIF) and naphazoline (NAF) were studied. In addition, the impact of pH on their photostability was examined, showing the highest degradation of acidic DIF at pH 1 and 13 and the highest degradation of basic NAF at pH below 7. An LC–UV analysis and chemical tests showed the first-order kinetics for their degradation and generation of reactive oxygen species (ROS). A UPLC-HRMS/MS analysis allowed us to identify four degradants of DIF (from DD-1 to DD-4) and six degradants of NAF (from ND-1 to ND-6). When Toxtree software was used, a high class III of toxicity was observed for DD-2, DD-3, and DD-4, and for all the NAF degradants. Furthermore, the ND-2 product, i.e., 2-[(1-methylnaphthalen-2-yl)methyl]-4,5-dihydro-1H-imidazole, was shown to present medium mutagenic and high tumorigenic effects according to OSIRIS Property Explorer. In addition, two in vitro tests on BALB/c 3T3 mouse fibroblasts showed a phototoxic effect of DIF and NAF at the lowest concentrations tested, i.e., 5 µg/mL. Thus, our present results could be useful to design further phototoxicity studies for DIF and NAF to minimize the risk of phototoxicity due to their photodegradation. Full article
Show Figures

Figure 1

11 pages, 2709 KiB  
Article
PCDA/ZnO Organic–Inorganic Hybrid Photoanode for Efficient Photoelectrochemical Solar Water Splitting
by Nursalim Akhmetzhanov, Mao Zhang, Dongyun Lee and Yoon-Hwae Hwang
Materials 2024, 17(17), 4259; https://doi.org/10.3390/ma17174259 - 28 Aug 2024
Viewed by 369
Abstract
In this study, we developed well-aligned ZnO nanoflowers coated with poly-10,12-pentacosadiyonic acid (p-PCDA@ZnO) and modified with Pt nanoparticle (Pt/p-PCDA@ZnO) hybrid photoanodes for highly efficient photoelectrochemical (PEC) water splitting. The scanning electron microscope (SEM) image shows that thin films of the p-PCDA layer were [...] Read more.
In this study, we developed well-aligned ZnO nanoflowers coated with poly-10,12-pentacosadiyonic acid (p-PCDA@ZnO) and modified with Pt nanoparticle (Pt/p-PCDA@ZnO) hybrid photoanodes for highly efficient photoelectrochemical (PEC) water splitting. The scanning electron microscope (SEM) image shows that thin films of the p-PCDA layer were well coated on the ZnO nanoflowers and that Pt nanoparticles were on it. The photoelectrochemical characterizations were made under simulated solar irradiation AM 1.5. The current density of the p-PCDA@ZnO and the Pt/p- PCDA@ZnO was 0.227 mA/cm2 and 0.305 mA/cm2, respectively, and these values were three times and four times higher compared to the 0.071 mA/cm2 of the bare ZnO nanoflowers. The UV–visible spectrum showed that the absorbance of coated p-PCDA films was extended in visible light region, which agrees with the enhanced PEC data for p-PCDA@ZnO. Also, adding Pt nanoparticles on top of the films as co-catalysts enhanced the PEC performance of Pt/p-PCDA@ZnO further. This indicates that Pt/p- PCDA@ZnO has a great potential to be implemented in solar water splitting. Full article
(This article belongs to the Special Issue Advanced Materials for Battery Applications and Photoelectric Devices)
Show Figures

Figure 1

14 pages, 7727 KiB  
Article
Polymer Matrix Nanocomposites Fabricated with Copper Nanoparticles and Photopolymer Resin via Vat Photopolymerization Additive Manufacturing
by Leon D. Gil, Sergio Neves Monteiro and Henry A. Colorado
Polymers 2024, 16(17), 2434; https://doi.org/10.3390/polym16172434 - 28 Aug 2024
Viewed by 342
Abstract
This investigation explores the fabrication of polymer matrix nanocomposites via additive manufacturing (AM), using a UV photopolymerization resin and copper nanoparticles (Cu-NPs) with vat photopolymerization 3D printing technology. The aim in this study is to investigate the mentioned materials in different formulations in [...] Read more.
This investigation explores the fabrication of polymer matrix nanocomposites via additive manufacturing (AM), using a UV photopolymerization resin and copper nanoparticles (Cu-NPs) with vat photopolymerization 3D printing technology. The aim in this study is to investigate the mentioned materials in different formulations in terms of inexpensive processing, the property related variability, and targeting multifunctional applications. After the AM process, samples were post-cured with UV light in order to obtain better mechanical properties. The particles and resin were mixed using an ultrasonicator, and the particle contents used were 0.0, 0.5, and 1.0 wt %. The process used in this investigation was simple and inexpensive, as the technologies used are quite accessible, from the 3D printer to the UV curing device. These formulations were characterized with scanning electron microscopy (SEM) to observe the materials’ microstructure and tensile tests to quantify stress–strain derived properties. Results showed that, besides the simplicity of the process, the mixing was effective, which was observed in the scanning electron microscope. Additionally, the tensile strength was increased with the UV irradiation exposure, while the strain properties did not change significantly. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Graphical abstract

17 pages, 17260 KiB  
Essay
Preliminary Study of the Characterization of the Viable but Noncultivable State of Yersinia enterocolitica Induced by Chloride and UV Irradiation
by Xueyu Hu, Xiaoxu Wang, Honglin Ren, Chengwei Li, Bo Zhang, Ruoran Shi, Yuzhu Wang, Shiying Lu, Yansong Li, Qiang Lu, Zengshan Liu and Pan Hu
Microorganisms 2024, 12(9), 1778; https://doi.org/10.3390/microorganisms12091778 - 28 Aug 2024
Viewed by 319
Abstract
The viable but non-culturable (VBNC) state is a survival strategy for many foodborne pathogens under adverse conditions. Yersinia enterocolitica (Y. enterocolitica) as a kind of primary foodborne pathogen, and it is crucial to investigate its survival strategies and potential risks in [...] Read more.
The viable but non-culturable (VBNC) state is a survival strategy for many foodborne pathogens under adverse conditions. Yersinia enterocolitica (Y. enterocolitica) as a kind of primary foodborne pathogen, and it is crucial to investigate its survival strategies and potential risks in the food chain. In this study, the effectiveness of ultraviolet (UV) irradiation and chlorine treatment in disinfecting the foodborne pathogen Y. enterocolitica was investigated. The results indicated that both UV irradiation and chlorine treatment can induce the VBNC state in Y. enterocolitica. The bacteria completely lost culturability after being treated with 25 mg/L of NaClO for 30 min and a UV dose of 100 mJ/cm². The number of culturable and viable cells were detected using plate counting and a combination of fluorescein and propidium iodide (live/dead cells). Further research found that these VBNC cells exhibited reduced intracellular Adenosine Triphosphate (ATP) levels, and increased levels of reactive oxygen species (ROS) compared to non-induced cells. Morphologically, the cells changed from a rod shape to a shorter, coccobacillary shape with small vacuoles forming at the edges, indicating structural changes. Both condition-induced VBNC-state cells were able to resuscitate in tryptic soy broth (TSB) medium supplemented with Tween 80, sodium pyruvate, and glucose. These findings contribute to a better understanding of the survival mechanisms of Y. enterocolitica in the environment and are of significant importance for the development of effective disinfection strategies. Full article
(This article belongs to the Special Issue Disinfection and Sterilization of Microorganisms (2nd Edition))
Show Figures

Figure 1

14 pages, 2360 KiB  
Article
Hydrothermally Grown Globosa-like TiO2 Nanostructures for Effective Photocatalytic Dye Degradation and LPG Sensing
by Mutcha Shanmukha Rao, Benadict Rakesh, Gunendra Prasad Ojha, Ramasamy Sakthivel, Bishweshwar Pant and Kamatchi Jothiramalingam Sankaran
Molecules 2024, 29(17), 4063; https://doi.org/10.3390/molecules29174063 - 27 Aug 2024
Viewed by 370
Abstract
The rapid expansion of industrial activities has resulted in severe environmental pollution manifested by organic dyes discharged from the food, textile, and leather industries, as well as hazardous gas emissions from various industrial processes. Titanium dioxide (TiO2)-nanostructured materials have emerged as [...] Read more.
The rapid expansion of industrial activities has resulted in severe environmental pollution manifested by organic dyes discharged from the food, textile, and leather industries, as well as hazardous gas emissions from various industrial processes. Titanium dioxide (TiO2)-nanostructured materials have emerged as promising candidates for effective photocatalytic dye degradation and gas sensing applications owing to their unique physicochemical properties. This study investigates the development of a photocatalyst and a liquefied petroleum gas (LPG) sensor using hydrothermally synthesized globosa-like TiO2 nanostructures (GTNs). The synthesized GTNs are then evaluated to photocatalytically degrade methylene blue dye, resulting in an outstanding photocatalytic activity of 91% degradation within 160 min under UV light irradiation. Furthermore, these nanostructures are utilized to sense liquefied petroleum gas, which attains a superior sensitivity of 7.3% with high response and recovery times and good reproducibility. This facile and cost-effective hydrothermal method of fabricating TiO2 nanostructures opens a new avenue in photocatalytic dye degradation and gas sensing applications. Full article
Show Figures

Graphical abstract

16 pages, 7922 KiB  
Article
UV Resistance and Wetting of PLA Webs Obtained by Solution Blow Spinning
by Denys Baklan, Anna Bilousova and Miroslaw Wesolowski
Polymers 2024, 16(17), 2428; https://doi.org/10.3390/polym16172428 - 27 Aug 2024
Viewed by 306
Abstract
In this work, the resistance of polylactide-based non-wovens produced by solution blow spinning to environmental factors was investigated. An average contact angle of up to 136° was achieved with an average fiber diameter of 340 nm at the optimal material density and nozzle–substrate [...] Read more.
In this work, the resistance of polylactide-based non-wovens produced by solution blow spinning to environmental factors was investigated. An average contact angle of up to 136° was achieved with an average fiber diameter of 340 nm at the optimal material density and nozzle–substrate distance. When exposed to ultraviolet (UV) radiation, the polylactide non-wovens rapidly lose their hydrophobic properties due to changes in surface morphology resulting from fiber melting. It was demonstrated that the influence of surface structural features on hydrophobicity is greater than that of the material itself. The stability of the wetting properties under UV irradiation was assessed using the derivative parameters of the Owens–Wendt technique, which can serve as an additional method for estimating surface polarity. Full article
(This article belongs to the Section Circular and Green Polymer Science)
Show Figures

Figure 1

Back to TopTop