Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,345)

Search Parameters:
Keywords = UAVs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4721 KiB  
Article
Multi-Unmanned Aerial Vehicle Confrontation in Intelligent Air Combat: A Multi-Agent Deep Reinforcement Learning Approach
by Jianfeng Yang, Xinwei Yang and Tianqi Yu
Drones 2024, 8(8), 382; https://doi.org/10.3390/drones8080382 (registering DOI) - 7 Aug 2024
Abstract
Multiple unmanned aerial vehicle (multi-UAV) confrontation is becoming an increasingly important combat mode in intelligent air combat. The confrontation highly relies on the intelligent collaboration and real-time decision-making of the UAVs. Thus, a decomposed and prioritized experience replay (PER)-based multi-agent deep deterministic policy [...] Read more.
Multiple unmanned aerial vehicle (multi-UAV) confrontation is becoming an increasingly important combat mode in intelligent air combat. The confrontation highly relies on the intelligent collaboration and real-time decision-making of the UAVs. Thus, a decomposed and prioritized experience replay (PER)-based multi-agent deep deterministic policy gradient (DP-MADDPG) algorithm has been proposed in this paper for the moving and attacking decisions of UAVs. Specifically, the confrontation is formulated as a partially observable Markov game. To solve the problem, the DP-MADDPG algorithm is proposed by integrating the decomposed and PER mechanisms into the traditional MADDPG. To overcome the technical challenges of the convergence to a local optimum and a single dominant policy, the decomposed mechanism is applied to modify the MADDPG framework with local and global dual critic networks. Furthermore, to improve the convergence rate of the MADDPG training process, the PER mechanism is utilized to optimize the sampling efficiency from the experience replay buffer. Simulations have been conducted based on the Multi-agent Combat Arena (MaCA) platform, wherein the traditional MADDPG and independent learning DDPG (ILDDPG) algorithms are benchmarks. Simulation results indicate that the proposed DP-MADDPG improves the convergence rate and the convergent reward value. During confrontations against the vanilla distance-prioritized rule-empowered and intelligent ILDDPG-empowered blue parties, the DP-MADDPG-empowered red party can improve the win rate to 96% and 80.5%, respectively. Full article
(This article belongs to the Special Issue Distributed Control, Optimization, and Game of UAV Swarm Systems)
19 pages, 4475 KiB  
Article
A Multi-Level Cross-Attention Image Registration Method for Visible and Infrared Small Unmanned Aerial Vehicle Targets via Image Style Transfer
by Wen Jiang, Hanxin Pan, Yanping Wang, Yang Li, Yun Lin and Fukun Bi
Remote Sens. 2024, 16(16), 2880; https://doi.org/10.3390/rs16162880 (registering DOI) - 7 Aug 2024
Abstract
Small UAV target detection and tracking based on cross-modality image fusion have gained widespread attention. Due to the limited feature information available from small UAVs in images, where they occupy a minimal number of pixels, the precision required for detection and tracking algorithms [...] Read more.
Small UAV target detection and tracking based on cross-modality image fusion have gained widespread attention. Due to the limited feature information available from small UAVs in images, where they occupy a minimal number of pixels, the precision required for detection and tracking algorithms is particularly high in complex backgrounds. Image fusion techniques can enrich the detailed information for small UAVs, showing significant advantages under extreme lighting conditions. Image registration is a fundamental step preceding image fusion. It is essential to achieve accurate image alignment before proceeding with image fusion to prevent severe ghosting and artifacts. This paper specifically focused on the alignment of small UAV targets within infrared and visible light imagery. To address this issue, this paper proposed a cross-modality image registration network based on deep learning, which includes a structure preservation and style transformation network (SPSTN) and a multi-level cross-attention residual registration network (MCARN). Firstly, the SPSTN is employed for modality transformation, transferring the cross-modality task into a single-modality task to reduce the information discrepancy between modalities. Then, the MCARN is utilized for single-modality image registration, capable of deeply extracting and fusing features from pseudo infrared and visible images to achieve efficient registration. To validate the effectiveness of the proposed method, comprehensive experimental evaluations were conducted on the Anti-UAV dataset. The extensive evaluation results validate the superiority and universality of the cross-modality image registration framework proposed in this paper, which plays a crucial role in subsequent image fusion tasks for more effective target detection. Full article
(This article belongs to the Special Issue Deep Learning and Computer Vision in Remote Sensing-III)
Show Figures

Figure 1

18 pages, 6127 KiB  
Article
Fault-Tolerant Optimal Consensus Control for Heterogeneous Multi-Agent Systems
by Yandong Li, Yongan Liu, Ling Zhu and Zehua Zhang
Appl. Sci. 2024, 14(16), 6904; https://doi.org/10.3390/app14166904 (registering DOI) - 7 Aug 2024
Abstract
This study explores fault-tolerant consensus in leader–following heterogeneous multi-agent systems, focusing on actuator failures in uncrewed aerial vehicles (UAVs) and uncrewed ground vehicles (UGVs). An optimization-based fault-tolerant consensus algorithm is proposed. The algorithm utilizes the Euler–Lagrange formula to ensure system consistency under actuator [...] Read more.
This study explores fault-tolerant consensus in leader–following heterogeneous multi-agent systems, focusing on actuator failures in uncrewed aerial vehicles (UAVs) and uncrewed ground vehicles (UGVs). An optimization-based fault-tolerant consensus algorithm is proposed. The algorithm utilizes the Euler–Lagrange formula to ensure system consistency under actuator failures, with the Lyapunov stability theory proving the asymptotic stability of the consistency error. The algorithm is applied to heterogeneous multi-agent systems of UAVs and UGVs to derive optimal fault-tolerant consensus control laws for each vehicle type. Simulation experiments give evidence for the feasibility of the proposed control strategy. Full article
Show Figures

Figure 1

16 pages, 5933 KiB  
Article
Wind Tunnel Investigation of the Icing of a Drone Rotor in Forward Flight
by Derek Harvey, Eric Villeneuve, Mathieu Béland and Maxime Lapalme
Drones 2024, 8(8), 380; https://doi.org/10.3390/drones8080380 (registering DOI) - 7 Aug 2024
Abstract
The Bell Textron APT70 is a UAV concept developed for last mile delivery and other usual applications. It performs vertical takeoff and transition into aircraft mode for forward flight. It includes four rotor each with four rotating blades. A test campaign has been [...] Read more.
The Bell Textron APT70 is a UAV concept developed for last mile delivery and other usual applications. It performs vertical takeoff and transition into aircraft mode for forward flight. It includes four rotor each with four rotating blades. A test campaign has been performed to study the effects of ice accretion on rotor performance through a parametric study of different parameters, namely MVD, LWC, rotor speed, and pitch angle. This paper presents the last experimentations of this campaign for the drone rotor operating in forward flight under simulated icing conditions in a refrigerated, closed-loop wind tunnel. Results demonstrated that the different parameters studied greatly impacted the collection efficiency of the blades and thus, the resulting ice accretion. Smaller droplets were more easily influenced by the streamlines around the rotating blades, resulting in less droplets impacting the surface and thus slower ice accumulations. Higher rotation speeds and pitch angles generated more energetic streamlines, which again transported more droplets around the airfoils instead of them impacting on the surface, which also led to slower accumulation. Slower ice accumulation resulted in slower thrust losses, since the loss in performances can be directly linked to the amount of ice accreted. This research has not only allowed the obtainment of very insightful results on the effect of each test parameter on the ice accumulation, but it has also conducted the development of a unique test bench for UAV propellers. The new circular test sections along with the new instrumentation installed in and around the tunnel will allow the laboratory to be able to generate icing on various type of UAV in forward flight under representative atmospheric conditions. Full article
Show Figures

Figure 1

21 pages, 964 KiB  
Article
A Heuristic Routing Algorithm for Heterogeneous UAVs in Time-Constrained MEC Systems
by Long Chen, Guangrui Liu, Xia Zhu and Xin Li
Drones 2024, 8(8), 379; https://doi.org/10.3390/drones8080379 (registering DOI) - 6 Aug 2024
Viewed by 162
Abstract
The rapid proliferation of Internet of Things (IoT) ground devices (GDs) has created an unprecedented demand for computing resources and real-time data-processing capabilities. Integrating unmanned aerial vehicles (UAVs) into Mobile Edge Computing (MEC) emerges as a promising solution to bring computation and storage [...] Read more.
The rapid proliferation of Internet of Things (IoT) ground devices (GDs) has created an unprecedented demand for computing resources and real-time data-processing capabilities. Integrating unmanned aerial vehicles (UAVs) into Mobile Edge Computing (MEC) emerges as a promising solution to bring computation and storage closer to the data sources. However, UAV heterogeneity and the time window constraints for task execution pose a significant challenge. This paper addresses the multiple heterogeneity UAV routing problem in MEC environments, modeling it as a multi-traveling salesman problem (MTSP) with soft time constraints. We propose a two-stage heuristic algorithm, heterogeneous multiple UAV routing (HMUR). The approach first identifies task areas (TAs) and optimal hovering positions for the UAVs and defines an effective fitness measurement to handle UAV heterogeneity. A novel scoring function further refines the path determination, prioritizing real-time task compliance to enhance Quality of Service (QoS). The simulation results demonstrate that our proposed HMUR method surpasses the existing baseline algorithms on multiple metrics, validating its effectiveness in optimizing resource scheduling in MEC environments. Full article
(This article belongs to the Special Issue Path Planning, Trajectory Tracking and Guidance for UAVs)
Show Figures

Figure 1

11 pages, 1591 KiB  
Article
Approximation of Closed-Loop Sensitivities in Robust Trajectory Optimization under Parametric Uncertainty
by Tuğba Akman, Joseph Z. Ben-Asher and Florian Holzapfel
Aerospace 2024, 11(8), 640; https://doi.org/10.3390/aerospace11080640 (registering DOI) - 6 Aug 2024
Viewed by 159
Abstract
Trajectory optimization is an essential tool for the high-fidelity planning of missions in aerospace engineering in order to increase their safety. Robust optimal control methods are utilized in the present study to address environmental or system uncertainties. To improve robustness, holistic approaches for [...] Read more.
Trajectory optimization is an essential tool for the high-fidelity planning of missions in aerospace engineering in order to increase their safety. Robust optimal control methods are utilized in the present study to address environmental or system uncertainties. To improve robustness, holistic approaches for robust trajectory optimization using sensitivity minimization with system feedback and predicted feedback are presented. Thereby, controller gains to handle uncertainty influences are optimized. The proposed method is demonstrated in an application for UAV trajectories. The resulting trajectories are less prone to unknown factors, which increases mission safety. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 9956 KiB  
Article
Optimized Radio Frequency Footprint Identification Based on UAV Telemetry Radios
by Yuan Tian, Hong Wen, Jiaxin Zhou, Zhiqiang Duan and Tao Li
Sensors 2024, 24(16), 5099; https://doi.org/10.3390/s24165099 - 6 Aug 2024
Viewed by 254
Abstract
With the widespread use of unmanned aerial vehicles (UAVs), the detection and identification of UAVs is a vital security issue for the safety of airspace and ground facilities in the no-fly zone. Telemetry radios are important wireless communication devices for UAVs, especially in [...] Read more.
With the widespread use of unmanned aerial vehicles (UAVs), the detection and identification of UAVs is a vital security issue for the safety of airspace and ground facilities in the no-fly zone. Telemetry radios are important wireless communication devices for UAVs, especially in UAVs beyond the visual line of sight (BVLOS) operating mode. This work focuses on the UAV identification approach using transient signals from UAV telemetry radios instead of the signals from UAV controllers that the former research work depended on. In our novel UAV Radio Frequency (RF) identification system framework based on telemetry radio signals, the ECα algorithm is optimized to detect the starting point of the UAV transient signal and the detection accuracy at different signal-to-noise ratios (SNR) is evaluated. In the training stage, the Convolutional Neural Network (CNN) model is trained to extract features from raw I/Q data of the transient signals with different waveforms. Its architecture and hyperparameters are analyzed and optimized. In the identification stage, the extracted transient signals are clustered through the Self-Organizing Map (SOM) algorithm and the Clustering Signals Joint Identification (CSJI) algorithm is proposed to improve the accuracy of RF fingerprint identification. To evaluate the performance of our proposed approach, we design a testbed, including two UAVs as the flight platform, a Universal Software Radio Peripheral (USRP) as the receiver, and 20 telemetry radios with the same model as targets for identification. Indoor test results show that the optimized identification approach achieves an average accuracy of 92.3% at 30 dB. In comparison, the identification accuracy of SVM and KNN is 69.7% and 74.5%, respectively, at the same SNR condition. Extensive experiments are conducted outdoors to demonstrate the feasibility of this approach. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 10564 KiB  
Article
YOLOTree-Individual Tree Spatial Positioning and Crown Volume Calculation Using UAV-RGB Imagery and LiDAR Data
by Taige Luo, Shuyu Rao, Wenjun Ma, Qingyang Song, Zhaodong Cao, Huacheng Zhang, Junru Xie, Xudong Wen, Wei Gao, Qiao Chen, Jiayan Yun and Dongyang Wu
Forests 2024, 15(8), 1375; https://doi.org/10.3390/f15081375 - 6 Aug 2024
Viewed by 335
Abstract
Individual tree canopy extraction plays an important role in downstream studies such as plant phenotyping, panoptic segmentation and growth monitoring. Canopy volume calculation is an essential part of these studies. However, existing volume calculation methods based on LiDAR or based on UAV-RGB imagery [...] Read more.
Individual tree canopy extraction plays an important role in downstream studies such as plant phenotyping, panoptic segmentation and growth monitoring. Canopy volume calculation is an essential part of these studies. However, existing volume calculation methods based on LiDAR or based on UAV-RGB imagery cannot balance accuracy and real-time performance. Thus, we propose a two-step individual tree volumetric modeling method: first, we use RGB remote sensing images to obtain the crown volume information, and then we use spatially aligned point cloud data to obtain the height information to automate the calculation of the crown volume. After introducing the point cloud information, our method outperforms the RGB image-only based method in 62.5% of the volumetric accuracy. The AbsoluteError of tree crown volume is decreased by 8.304. Compared with the traditional 2.5D volume calculation method using cloud point data only, the proposed method is decreased by 93.306. Our method also achieves fast extraction of vegetation over a large area. Moreover, the proposed YOLOTree model is more comprehensive than the existing YOLO series in tree detection, with 0.81% improvement in precision, and ranks second in the whole series for mAP50-95 metrics. We sample and open-source the TreeLD dataset to contribute to research migration. Full article
(This article belongs to the Special Issue Panoptic Segmentation of Tree Scenes from Mobile LiDAR Data)
Show Figures

Figure 1

24 pages, 44227 KiB  
Article
Assessment of Trees’ Structural Defects via Hybrid Deep Learning Methods Used in Unmanned Aerial Vehicle (UAV) Observations
by Qiwen Qiu and Denvid Lau
Forests 2024, 15(8), 1374; https://doi.org/10.3390/f15081374 - 6 Aug 2024
Viewed by 211
Abstract
Trees’ structural defects are responsible for the reduction in forest product quality and the accident of tree collapse under extreme environmental conditions. Although the manual view inspection for assessing tree health condition is reliable, it is inefficient in discriminating, locating, and quantifying the [...] Read more.
Trees’ structural defects are responsible for the reduction in forest product quality and the accident of tree collapse under extreme environmental conditions. Although the manual view inspection for assessing tree health condition is reliable, it is inefficient in discriminating, locating, and quantifying the defects with various features (i.e., crack and hole). There is a general need for investigation of efficient ways to assess these defects to enhance the sustainability of trees. In this study, the deep learning algorithms of lightweight You Only Look Once (YOLO) and encoder-decoder network named DeepLabv3+ are combined in unmanned aerial vehicle (UAV) observations to evaluate trees’ structural defects. Experimentally, we found that the state-of-the-art detector YOLOv7-tiny offers real-time (i.e., 50–60 fps) and long-range sensing (i.e., 5 m) of tree defects but has limited capacity to acquire the patterns of defects at the millimeter scale. To address this limitation, we further utilized DeepLabv3+ cascaded with different network architectures of ResNet18, ResNet50, Xception, and MobileNetv2 to obtain the actual morphology of defects through close-range and pixel-wise image semantic segmentation. Moreover, the proposed hybrid scheme YOLOv7-tiny_DeepLabv3+_UAV assesses tree’s defect size with an averaged accuracy of 92.62% (±6%). Full article
(This article belongs to the Special Issue UAV Application in Forestry)
Show Figures

Figure 1

26 pages, 6549 KiB  
Article
Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios
by Yifei Liu, Xiaoshuai Li, Jian Wang, Feiyu Wei and Junan Yang
Viewed by 224
Abstract
Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple [...] Read more.
Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively. Full article
Show Figures

Figure 1

19 pages, 7931 KiB  
Article
Improving Aerial Targeting Precision: A Study on Point Cloud Semantic Segmentation with Advanced Deep Learning Algorithms
by Salih Bozkurt, Muhammed Enes Atik and Zaide Duran
Viewed by 314
Abstract
The integration of technological advancements has significantly impacted artificial intelligence (AI), enhancing the reliability of AI model outputs. This progress has led to the widespread utilization of AI across various sectors, including automotive, robotics, healthcare, space exploration, and defense. Today, air defense operations [...] Read more.
The integration of technological advancements has significantly impacted artificial intelligence (AI), enhancing the reliability of AI model outputs. This progress has led to the widespread utilization of AI across various sectors, including automotive, robotics, healthcare, space exploration, and defense. Today, air defense operations predominantly rely on laser designation. This process is entirely dependent on the capability and experience of human operators. Considering that UAV systems can have flight durations exceeding 24 h, this process is highly prone to errors due to the human factor. Therefore, the aim of this study is to automate the laser designation process using advanced deep learning algorithms on 3D point clouds obtained from different sources, thereby eliminating operator-related errors. As different data sources, dense 3D point clouds produced with photogrammetric methods containing color information, and point clouds produced with LiDAR systems were identified. The photogrammetric point cloud data were generated from images captured by the Akinci UAV’s multi-axis gimbal camera system within the scope of this study. For the point cloud data obtained from the LiDAR system, the DublinCity LiDAR dataset was used for testing purposes. The segmentation of point cloud data utilized the PointNet++ and RandLA-Net algorithms. Distinct differences were observed between the evaluated algorithms. The RandLA-Net algorithm, relying solely on geometric features, achieved an approximate accuracy of 94%, while integrating color features significantly improved its performance, raising its accuracy to nearly 97%. Similarly, the PointNet++ algorithm, relying solely on geometric features, achieved an accuracy of approximately 94%. Notably, the model developed as a unique contribution in this study involved enriching the PointNet++ algorithm by incorporating color attributes, leading to significant improvements with an approximate accuracy of 96%. The obtained results demonstrate a notable improvement in the PointNet++ algorithm with the proposed approach. Furthermore, it was demonstrated that the methodology proposed in this study can be effectively applied directly to data generated from different sources in aerial scanning systems. Full article
Show Figures

Figure 1

23 pages, 8343 KiB  
Article
A Multi-Area Task Path-Planning Algorithm for Agricultural Drones Based on Improved Double Deep Q-Learning Net
by Jian Li, Weijian Zhang, Junfeng Ren, Weilin Yu, Guowei Wang, Peng Ding, Jiawei Wang and Xuen Zhang
Agriculture 2024, 14(8), 1294; https://doi.org/10.3390/agriculture14081294 - 5 Aug 2024
Viewed by 297
Abstract
With the global population growth and increasing food demand, the development of precision agriculture has become particularly critical. In precision agriculture, accurately identifying areas of nitrogen stress in crops and planning precise fertilization paths are crucial. However, traditional coverage path-planning (CPP) typically considers [...] Read more.
With the global population growth and increasing food demand, the development of precision agriculture has become particularly critical. In precision agriculture, accurately identifying areas of nitrogen stress in crops and planning precise fertilization paths are crucial. However, traditional coverage path-planning (CPP) typically considers only single-area tasks and overlooks the multi-area tasks CPP. To address this problem, this study proposed a Regional Framework for Coverage Path-Planning for Precision Fertilization (RFCPPF) for crop protection UAVs in multi-area tasks. This framework includes three modules: nitrogen stress spatial distribution extraction, multi-area tasks environmental map construction, and coverage path-planning. Firstly, Sentinel-2 remote-sensing images are processed using the Google Earth Engine (GEE) platform, and the Green Normalized Difference Vegetation Index (GNDVI) is calculated to extract the spatial distribution of nitrogen stress. A multi-area tasks environmental map is constructed to guide multiple UAV agents. Subsequently, improvements based on the Double Deep Q Network (DDQN) are introduced, incorporating Long Short-Term Memory (LSTM) and dueling network structures. Additionally, a multi-objective reward function and a state and action selection strategy suitable for stress area plant protection operations are designed. Simulation experiments verify the superiority of the proposed method in reducing redundant paths and improving coverage efficiency. The proposed improved DDQN achieved an overall step count that is 60.71% of MLP-DDQN and 90.55% of Breadth-First Search–Boustrophedon Algorithm (BFS-BA). Additionally, the total repeated coverage rate was reduced by 7.06% compared to MLP-DDQN and by 8.82% compared to BFS-BA. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

23 pages, 1335 KiB  
Article
Leveraging Edge Computing for Video Data Streaming in UAV-Based Emergency Response Systems
by Mekhla Sarkar and Prasan Kumar Sahoo
Sensors 2024, 24(15), 5076; https://doi.org/10.3390/s24155076 - 5 Aug 2024
Viewed by 196
Abstract
The rapid advancement of technology has greatly expanded the capabilities of unmanned aerial vehicles (UAVs) in wireless communication and edge computing domains. The primary objective of UAVs is the seamless transfer of video data streams to emergency responders. However, live video data streaming [...] Read more.
The rapid advancement of technology has greatly expanded the capabilities of unmanned aerial vehicles (UAVs) in wireless communication and edge computing domains. The primary objective of UAVs is the seamless transfer of video data streams to emergency responders. However, live video data streaming is inherently latency dependent, wherein the value of the video frames diminishes with any delay in the stream. This becomes particularly critical during emergencies, where live video streaming provides vital information about the current conditions. Edge computing seeks to address this latency issue in live video streaming by bringing computing resources closer to users. Nonetheless, the mobile nature of UAVs necessitates additional trajectory supervision alongside the management of computation and networking resources. Consequently, efficient system optimization is required to maximize the overall effectiveness of the collaborative system with limited UAV resources. This study explores a scenario where multiple UAVs collaborate with end users and edge servers to establish an emergency response system. The proposed idea takes a comprehensive approach by considering the entire emergency response system from the incident site to video distribution at the user level. It includes an adaptive resource management strategy, leveraging deep reinforcement learning by simultaneously addressing video streaming latency, UAV and user mobility factors, and varied bandwidth resources. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2024)
Show Figures

Figure 1

12 pages, 4434 KiB  
Article
Agronomic and Technical Evaluation of Herbicide Spot Spraying in Maize Based on High-Resolution Aerial Weed Maps—An On-Farm Trial
by Alicia Allmendinger, Michael Spaeth, Marcus Saile, Gerassimos G. Peteinatos and Roland Gerhards
Plants 2024, 13(15), 2164; https://doi.org/10.3390/plants13152164 - 5 Aug 2024
Viewed by 239
Abstract
Spot spraying can significantly reduce herbicide use while maintaining equal weed control efficacy as a broadcast application of herbicides. Several online spot-spraying systems have been developed, with sensors mounted on the sprayer or by recording the RTK-GNSS position of each crop seed. In [...] Read more.
Spot spraying can significantly reduce herbicide use while maintaining equal weed control efficacy as a broadcast application of herbicides. Several online spot-spraying systems have been developed, with sensors mounted on the sprayer or by recording the RTK-GNSS position of each crop seed. In this study, spot spraying was realized offline based on georeferenced unmanned aerial vehicle (UAV) images with high spatial resolution. Studies were conducted in four maize fields in Southwestern Germany in 2023. A randomized complete block design was used with seven treatments containing broadcast and spot applications of pre-emergence and post-emergence herbicides. Post-emergence herbicides were applied at 2–4-leaf and at 6–8-leaf stages of maize. Weed and crop density, weed control efficacy (WCE), crop losses, accuracy of weed classification in UAV images, herbicide savings and maize yield were measured and analyzed. On average, 94% of all weed plants were correctly identified in the UAV images with the automatic classifier. Spot-spraying achieved up to 86% WCE, which was equal to the broadcast herbicide treatment. Early spot spraying saved 47% of herbicides compared to the broadcast herbicide application. Maize yields in the spot-spraying plots were equal to the broadcast herbicide application plots. This study demonstrates that spot-spraying based on UAV weed maps is feasible and provides a significant reduction in herbicide use. Full article
Show Figures

Figure 1

18 pages, 7434 KiB  
Article
CFD Analysis of Aerodynamic Characteristics in a Square-Shaped Swarm Formation of Four Quadcopter UAVs
by Ahmet Talat İnan and Berkay Çetin
Appl. Sci. 2024, 14(15), 6820; https://doi.org/10.3390/app14156820 - 5 Aug 2024
Viewed by 281
Abstract
The aerodynamic behavior of a square-shaped formation of four quadcopter UAVs flying in a swarm is investigated in detail through three-dimensional computer simulations utilizing Computational Fluid Dynamics (CFD) methodology. The swarm configuration comprises four UAVs positioned with two in the upper row and [...] Read more.
The aerodynamic behavior of a square-shaped formation of four quadcopter UAVs flying in a swarm is investigated in detail through three-dimensional computer simulations utilizing Computational Fluid Dynamics (CFD) methodology. The swarm configuration comprises four UAVs positioned with two in the upper row and two in the lower row along the same propeller axes. The flow profile generated by the UAV propellers rotating at 10,000 revolutions per minute is analyzed parametrically using the Multiple Reference Frame (MRF) technique. UAVs within the swarm are positioned at 75 cm from the motion centers of adjacent propellers. This distance, the effects of horizontally and vertically positioned UAVs on each other, and the collective behavior of the swarm are thoroughly examined. Pressure, velocity, and turbulent kinetic energy values are meticulously analyzed. This research represents a milestone in understanding the aerodynamic characteristics of UAV swarms and the optimization of swarm performance. The findings highlight effective factors in swarm flights and their consequences for UAVs. Additionally, the article describes the “near-UAV phenomenon”. Furthermore, the methodology developed for CFD simulations provides an approach to analyzing close flight scenarios and evaluating their performance in various swarm configurations. These achievements contribute to the future development of UAV technology. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

Back to TopTop