Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (202)

Search Parameters:
Keywords = TRPC6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1624 KiB  
Review
Are Aminoglycoside Antibiotics TRPing Your Metabolic Switches?
by Alfredo Franco-Obregón and Yee Kit Tai
Cells 2024, 13(15), 1273; https://doi.org/10.3390/cells13151273 - 29 Jul 2024
Viewed by 364
Abstract
Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that [...] Read more.
Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that instigates enzymatic cascades of developmental consequence and often impinge on mitochondrial function and biogenesis. Critically, aminoglycoside antibiotics (AGAs) have been shown to block the capacity of TRP channels to conduct calcium entry into the cell in response to a wide range of developmental stimuli of a biophysical nature, including mechanical, electromagnetic, thermal, and chemical. Paradoxically, in vitro paradigms commonly used to understand organismal muscle and adipose development may have been led astray by the conventional use of streptomycin, an AGA, to help prevent bacterial contamination. Accordingly, streptomycin has been shown to disrupt both in vitro and in vivo myogenesis, as well as the phenotypic switch of white adipose into beige thermogenic status. In vivo, streptomycin has been shown to disrupt TRP-mediated calcium-dependent exercise adaptations of importance to systemic metabolism. Alternatively, streptomycin has also been used to curb detrimental levels of calcium leakage into dystrophic skeletal muscle through aberrantly gated TRPC1 channels that have been shown to be involved in the etiology of X-linked muscular dystrophies. TRP channels susceptible to AGA antagonism are critically involved in modulating the development of muscle and adipose tissues that, if administered to behaving animals, may translate to systemwide metabolic disruption. Regenerative medicine and clinical communities need to be made aware of this caveat of AGA usage and seek viable alternatives, to prevent contamination or infection in in vitro and in vivo paradigms, respectively. Full article
Show Figures

Graphical abstract

18 pages, 6676 KiB  
Article
Selective Assembly of TRPC Channels in the Rat Retina during Photoreceptor Degeneration
by Elena Caminos, Susana López-López and Juan R. Martinez-Galan
Int. J. Mol. Sci. 2024, 25(13), 7251; https://doi.org/10.3390/ijms25137251 (registering DOI) - 30 Jun 2024
Viewed by 682
Abstract
Transient receptor potential canonical (TRPC) channels are calcium channels with diverse expression profiles and physiological implications in the retina. Neurons and glial cells of rat retinas with photoreceptor degeneration caused by retinitis pigmentosa (RP) exhibit basal calcium levels that are above those detected [...] Read more.
Transient receptor potential canonical (TRPC) channels are calcium channels with diverse expression profiles and physiological implications in the retina. Neurons and glial cells of rat retinas with photoreceptor degeneration caused by retinitis pigmentosa (RP) exhibit basal calcium levels that are above those detected in healthy retinas. Inner retinal cells are the last to degenerate and are responsible for maintaining the activity of the visual cortex, even after complete loss of photoreceptors. We considered the possibility that TRPC1 and TRPC5 channels might be associated with both the high calcium levels and the delay in inner retinal degeneration. TRPC1 is known to mediate protective effects in neurodegenerative processes while TRPC5 promotes cell death. In order to comprehend the implications of these channels in RP, the co-localization and subsequent physical interaction between TRPC1 and TRPC5 in healthy retina (Sprague-Dawley rats) and degenerating (P23H-1, a model of RP) retina were detected by immunofluorescence and proximity ligation assays. There was an overlapping signal in the innermost retina of all animals where TRPC1 and TRPC5 physically interacted. This interaction increased significantly as photoreceptor loss progressed. Both channels function as TRPC1/5 heteromers in the healthy and damaged retina, with a marked function of TRPC1 in response to retinal degenerative mechanisms. Furthermore, our findings support that TRPC5 channels also function in partnership with STIM1 in Müller and retinal ganglion cells. These results suggest that an increase in TRPC1/5 heteromers may contribute to the slowing of the degeneration of the inner retina during the outer retinal degeneration. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Graphical abstract

13 pages, 3201 KiB  
Article
Synergistic Cellular Responses Conferred by Concurrent Optical and Magnetic Stimulation Are Attenuated by Simultaneous Exposure to Streptomycin: An Antibiotic Dilemma
by Jan Nikolas Iversen, Jürg Fröhlich, Yee Kit Tai and Alfredo Franco-Obregón
Bioengineering 2024, 11(7), 637; https://doi.org/10.3390/bioengineering11070637 - 21 Jun 2024
Viewed by 1132
Abstract
Concurrent optical and magnetic stimulation (COMS) combines extremely low-frequency electromagnetic and light exposure for enhanced wound healing. We investigated the potential mechanistic synergism between the magnetic and light components of COMS by comparing their individual and combined cellular responses. Lone magnetic field exposure [...] Read more.
Concurrent optical and magnetic stimulation (COMS) combines extremely low-frequency electromagnetic and light exposure for enhanced wound healing. We investigated the potential mechanistic synergism between the magnetic and light components of COMS by comparing their individual and combined cellular responses. Lone magnetic field exposure produced greater enhancements in cell proliferation than light alone, yet the combined effects of magnetic fields and light were supra-additive of the individual responses. Reactive oxygen species were incrementally reduced by exposure to light, magnetics fields, and their combination, wherein statistical significance was only achieved by the combined COMS modality. By contrast, ATP production was most greatly enhanced by magnetic exposure in combination with light, indicating that mitochondrial respiratory efficiency was improved by the combination of magnetic fields plus light. Protein expression pertaining to cell proliferation was preferentially enhanced by the COMS modality, as were the protein levels of the TRPC1 cation channel that had been previously implicated as part of a calcium–mitochondrial signaling axis invoked by electromagnetic exposure and necessary for proliferation. These results indicate that light facilitates functional synergism with magnetic fields that ultimately impinge on mitochondria-dependent developmental responses. Aminoglycoside antibiotics (AGAs) have been previously shown to inhibit TRPC1-mediated magnetotransduction, whereas their influence over photomodulation has not been explored. Streptomycin applied during exposure to light, magnetic fields, or COMS reduced their respective proliferation enhancements, whereas streptomycin added after the exposure did not. Magnetic field exposure and the COMS modality were capable of partially overcoming the antagonism of proliferation produced by streptomycin treatment, whereas light alone was not. The antagonism of photon-electromagnetic effects by streptomycin implicates TRPC1-mediated calcium entry in both magnetotransduction and photomodulation. Avoiding the prophylactic use of AGAs during COMS therapy will be crucial for maintaining clinical efficacy and is a common concern in most other electromagnetic regenerative paradigms. Full article
Show Figures

Graphical abstract

10 pages, 882 KiB  
Article
Genetic Foundation of Male Spur Length and Its Correlation with Female Egg Production in Chickens
by Anqi Chen, Xiaoyu Zhao, Xiurong Zhao, Gang Wang, Xinye Zhang, Xufang Ren, Yalan Zhang, Xue Cheng, Xiaofan Yu, Huie Wang, Menghan Guo, Xiaoyu Jiang, Xiaohan Mei, Guozhen Wei, Xue Wang, Runshen Jiang, Xing Guo, Zhonghua Ning and Lujiang Qu
Animals 2024, 14(12), 1780; https://doi.org/10.3390/ani14121780 - 13 Jun 2024
Viewed by 568
Abstract
Spurs, which mainly appear in roosters, are protrusions near the tarsometatarsus on both sides of the calves of chickens, and are connected to the tarsometatarsus by a bony core. As a male-biased morphological characteristic, the diameter and length of spurs vary significantly between [...] Read more.
Spurs, which mainly appear in roosters, are protrusions near the tarsometatarsus on both sides of the calves of chickens, and are connected to the tarsometatarsus by a bony core. As a male-biased morphological characteristic, the diameter and length of spurs vary significantly between different individuals, mainly related to genetics and age. As a specific behavior of hens, egg-laying also varies greatly between individuals in terms of traits such as age at first egg (AFE), egg weight (EW), and so on. At present, there are few studies on chicken spurs. In this study, we investigated the inheritance pattern of the spur trait in roosters with different phenotypes and the correlations between spur length, body weight at 18 weeks of age (BW18), shank length at 18 weeks of age (SL18), and the egg-laying trait in hens (both hens and roosters were from the same population and were grouped according to their family). These traits related to egg production included AFE, body weight at first egg (BWA), and first egg weight (FEW). We estimated genetic parameters based on pedigree and phenotype data, and used variance analysis to calculate broad-sense heritability for correcting the parameter estimation results. The results showed that the heritability of male left and right spurs ranged from 0.6 to 0.7. There were significant positive correlations between left and right spur length, BW18, SL18, and BWA, as well as between left and right spur length and AFE. We selected 35 males with the longest spurs and 35 males with the shortest spurs in the population, and pooled them into two sets to obtain the pooled genome sequencing data. After genome-wide association and genome divergency analysis by FST, allele frequency differences (AFDs), and XPEHH methods, we identified 7 overlapping genes (CENPE, FAT1, FAM149A, MANBA, NFKB1, SORBS2, UBE2D3) and 14 peak genes (SAMD12, TSPAN5, ENSGALG00000050071, ENSGALG00000053133, ENSGALG00000050348, CNTN5, TRPC6, ENSGALG00000047655,TMSB4X, LIX1, CKB, NEBL, PRTFDC1, MLLT10) related to left and right spur length through genome-wide selection signature analysis and a genome-wide association approach. Our results identified candidate genes associated with chicken spurs, which helps to understand the genetic mechanism of this trait and carry out subsequent research around it. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3974 KiB  
Review
The Two Levels of Podocyte Dysfunctions Induced by Apolipoprotein L1 Risk Variants
by Etienne Pays
Kidney Dial. 2024, 4(2), 126-143; https://doi.org/10.3390/kidneydial4020010 - 7 Jun 2024
Viewed by 817
Abstract
Apolipoprotein L1 (APOL1) nephropathy results from several podocyte dysfunctions involving morphological and motility changes, mitochondrial perturbations, inflammatory stress, and alterations in cation channel activity. I propose that this phenotype results from increased hydrophobicity of the APOL1 risk variants, which induces two distinct types [...] Read more.
Apolipoprotein L1 (APOL1) nephropathy results from several podocyte dysfunctions involving morphological and motility changes, mitochondrial perturbations, inflammatory stress, and alterations in cation channel activity. I propose that this phenotype results from increased hydrophobicity of the APOL1 risk variants, which induces two distinct types of podocyte dysfunctions. On one hand, increased hydrophobic interactions with APOL3 cause intracellular variant isoforms to impair both APOL3 control of Golgi PI(4)P kinase-B (PI4KB) activity and APOL3 control of mitochondrial membrane fusion, triggering actomyosin reorganisation together with mitophagy and apoptosis inhibition (hit 1). On the other hand, increased hydrophobic interactions with the podocyte plasma membrane may cause the extracellular variant isoforms to activate toxic Ca2+ influx and K+ efflux by the TRPC6 and BK channels, respectively (hit 2), presumably due to APOL1-mediated cholesterol clustering in microdomains. I propose that hit 2 depends on low HDL-C/high extracellular APOL1 ratio, such as occurs in cell culture in vitro, or during type I-interferon (IFN-I)-mediated inflammation. Full article
Show Figures

Figure 1

11 pages, 3078 KiB  
Article
Investigating Contributions of Canonical Transient Receptor Potential Channel 3 to Hippocampal Hyperexcitability and Seizure-Induced Neuronal Cell Death
by Kevin D. Phelan, U Thaung Shwe, Hong Wu and Fang Zheng
Int. J. Mol. Sci. 2024, 25(11), 6260; https://doi.org/10.3390/ijms25116260 - 6 Jun 2024
Viewed by 458
Abstract
Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons [...] Read more.
Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons and seizures. Genetic ablation of TRPC3 channel expression reduced the intensity of pilocarpine-induced status epilepticus (SE). However, the underlying cellular mechanisms remain unexplored and the contribution of TRPC3 channels to SE-induced neurodegeneration is not determined. In this study, we investigated the contribution of TRPC3 channels to the electrophysiological properties of hippocampal pyramidal neurons and hippocampal synaptic plasticity, and the contribution of TRPC3 channels to seizure-induced neuronal cell death. We found that genetic ablation of TRPC3 expression did not alter basic electrophysiological properties of hippocampal pyramidal neurons and had a complex impact on epileptiform bursting in CA3. However, TRPC3 channels contribute significantly to long-term potentiation in CA1 and SE-induced neurodegeneration. Our results provided further support for therapeutic potential of TRPC3 inhibitors and raised new questions that need to be answered by future studies. Full article
Show Figures

Figure 1

15 pages, 2153 KiB  
Article
CYP24A1 and TRPC3 Gene Expression in Kidneys and Their Involvement in Calcium and Phosphate Metabolism in Laying Hens
by Letícia Alves Salmória, Adriana Mércia Guaratini Ibelli, Fernando Castro Tavernari, Jane Oliveira Peixoto, Marcos Antônio Zanella Morés, Débora Ester Petry Marcelino, Karine Daenquele Silva Pinto, Arlei Coldebella, Diego Surek, Vicky Lilge Kawski and Mônica Corrêa Ledur
Animals 2024, 14(10), 1407; https://doi.org/10.3390/ani14101407 - 8 May 2024
Viewed by 684
Abstract
Ca and P homeostasis across the egg-laying cycle is a complex process involving absorption in the small intestine, reabsorption/excretion in the kidneys, and eggshell gland secretion. Diets with inadequate calcium and phosphorus can interfere with their absorption and digestibility, resulting in eggshell quality [...] Read more.
Ca and P homeostasis across the egg-laying cycle is a complex process involving absorption in the small intestine, reabsorption/excretion in the kidneys, and eggshell gland secretion. Diets with inadequate calcium and phosphorus can interfere with their absorption and digestibility, resulting in eggshell quality losses and reduced productive life, affecting egg production and welfare. A better understanding of gene expression profiles in the kidneys of laying hens during the late egg-laying period could clarify the renal role in mineral metabolism at this late stage. Therefore, the performance, egg quality and bone integrity-related traits, and expression profiles of kidney candidate genes were evaluated in 73-week-old laying hens receiving different Ca and P ratios in their diet: a high Ca/P ratio (HR, 22.43), a low ratio (LR, 6.71), and a medium ratio (MR, 11.43). The laying hens receiving the HR diet had improved egg production and eggshell quality traits compared to the other two groups. Humerus length was shorter in the HR than in the other groups. The CYP24A1 and TRPC3 genes were differentially expressed (p.adj ≤ 0.05) among the groups. Therefore, their expression profiles could be involved in calcium and phosphate transcellular transport in 73-week-old laying hens as a way to keep mineral absorption at adequate levels. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Poultry)
Show Figures

Figure 1

14 pages, 3938 KiB  
Article
The Rise in Tubular pH during Hypercalciuria Exacerbates Calcium Stone Formation
by Farai C. Gombedza, Samuel Shin, Jaclyn Sadiua, George B. Stackhouse and Bidhan C. Bandyopadhyay
Int. J. Mol. Sci. 2024, 25(9), 4787; https://doi.org/10.3390/ijms25094787 - 27 Apr 2024
Viewed by 793
Abstract
In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. [...] Read more.
In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease 2.0)
Show Figures

Figure 1

12 pages, 1560 KiB  
Article
TRPC3 Is Downregulated in Primary Hyperparathyroidism
by Emilie Kirstein, Dirk Schaudien, Mathias Wagner, Coline M. Diebolt, Alessandro Bozzato, Thomas Tschernig and Colya N. Englisch
Int. J. Mol. Sci. 2024, 25(8), 4392; https://doi.org/10.3390/ijms25084392 - 16 Apr 2024
Cited by 1 | Viewed by 684
Abstract
Transient receptor potential canonical sub-family channel 3 (TRPC3) is considered to play a critical role in calcium homeostasis. However, there are no established findings in this respect with regard to TRPC6. Although the parathyroid gland is a crucial organ in calcium household regulation, [...] Read more.
Transient receptor potential canonical sub-family channel 3 (TRPC3) is considered to play a critical role in calcium homeostasis. However, there are no established findings in this respect with regard to TRPC6. Although the parathyroid gland is a crucial organ in calcium household regulation, little is known about the protein distribution of TRPC channels—especially TRPC3 and TRPC6—in this organ. Our aim was therefore to investigate the protein expression profile of TRPC3 and TRPC6 in healthy and diseased human parathyroid glands. Surgery samples from patients with healthy parathyroid glands and from patients suffering from primary hyperparathyroidism (pHPT) were investigated by immunohistochemistry using knockout-validated antibodies against TRPC3 and TRPC6. A software-based analysis similar to an H-score was performed. For the first time, to our knowledge, TRPC3 and TRPC6 protein expression is described here in the parathyroid glands. It is found in both chief and oxyphilic cells. Furthermore, the TRPC3 staining score in diseased tissue (pHPT) was statistically significantly lower than that in healthy tissue. In conclusion, TRPC3 and TRPC6 proteins are expressed in the human parathyroid gland. Furthermore, there is strong evidence indicating that TRPC3 plays a role in pHPT and subsequently in parathyroid hormone secretion regulation. These findings ultimately require further research in order to not only confirm our results but also to further investigate the relevance of these channels and, in particular, that of TRPC3 in the aforementioned physiological functions and pathophysiological conditions. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 4125 KiB  
Article
Transient Receptor Potential Canonical 5 (TRPC5): Regulation of Heart Rate and Protection against Pathological Cardiac Hypertrophy
by Pratish Thakore, James E. Clark, Aisah A. Aubdool, Dibesh Thapa, Anna Starr, Paul A. Fraser, Keith Farrell-Dillon, Elizabeth S. Fernandes, Ian McFadzean and Susan D. Brain
Biomolecules 2024, 14(4), 442; https://doi.org/10.3390/biom14040442 - 4 Apr 2024
Viewed by 1254
Abstract
TRPC5 is a non-selective cation channel that is expressed in cardiomyocytes, but there is a lack of knowledge of its (patho)physiological role in vivo. Here, we examine the role of TRPC5 on cardiac function under basal conditions and during cardiac hypertrophy. Cardiovascular parameters [...] Read more.
TRPC5 is a non-selective cation channel that is expressed in cardiomyocytes, but there is a lack of knowledge of its (patho)physiological role in vivo. Here, we examine the role of TRPC5 on cardiac function under basal conditions and during cardiac hypertrophy. Cardiovascular parameters were assessed in wild-type (WT) and global TRPC5 knockout (KO) mice. Despite no difference in blood pressure or activity, heart rate was significantly reduced in TRPC5 KO mice. Echocardiography imaging revealed an increase in stroke volume, but cardiac contractility was unaffected. The reduced heart rate persisted in isolated TRPC5 KO hearts, suggesting changes in basal cardiac pacing. Heart rate was further investigated by evaluating the reflex change following drug-induced pressure changes. The reflex bradycardic response following phenylephrine was greater in TRPC5 KO mice but the tachycardic response to SNP was unchanged, indicating an enhancement in the parasympathetic control of the heart rate. Moreover, the reduction in heart rate to carbachol was greater in isolated TRPC5 KO hearts. To evaluate the role of TRPC5 in cardiac pathology, mice were subjected to abdominal aortic banding (AAB). An exaggerated cardiac hypertrophy response to AAB was observed in TRPC5 KO mice, with an increased expression of hypertrophy markers, fibrosis, reactive oxygen species, and angiogenesis. This study provides novel evidence for a direct effect of TRPC5 on cardiac function. We propose that (1) TRPC5 is required for maintaining heart rate by regulating basal cardiac pacing and in response to pressure lowering, and (2) TRPC5 protects against pathological cardiac hypertrophy. Full article
(This article belongs to the Special Issue TRP Channels in Cardiovascular and Inflammatory Disease)
Show Figures

Figure 1

14 pages, 2859 KiB  
Article
The Xanthine Derivative KMUP-1 Inhibits Hypoxia-Induced TRPC1 Expression and Store-Operated Ca2+ Entry in Pulmonary Arterial Smooth Muscle Cells
by Zen-Kong Dai, Yi-Chen Chen, Su-Ling Hsieh, Jwu-Lai Yeh, Jong-Hau Hsu and Bin-Nan Wu
Pharmaceuticals 2024, 17(4), 440; https://doi.org/10.3390/ph17040440 - 29 Mar 2024
Viewed by 935
Abstract
Exposure to hypoxia results in the development of pulmonary arterial hypertension (PAH). An increase in the intracellular Ca2+ concentration ([Ca2+]i) in pulmonary artery smooth muscle cells (PASMCs) is a major trigger for pulmonary vasoconstriction and proliferation. This study [...] Read more.
Exposure to hypoxia results in the development of pulmonary arterial hypertension (PAH). An increase in the intracellular Ca2+ concentration ([Ca2+]i) in pulmonary artery smooth muscle cells (PASMCs) is a major trigger for pulmonary vasoconstriction and proliferation. This study investigated the mechanism by which KMUP-1, a xanthine derivative with phosphodiesterase inhibitory activity, inhibits hypoxia-induced canonical transient receptor potential channel 1 (TRPC1) protein overexpression and regulates [Ca2+]i through store-operated calcium channels (SOCs). Ex vivo PASMCs were cultured from Sprague-Dawley rats in a modular incubator chamber under 1% O2/5% CO2 for 24 h to elucidate TRPC1 overexpression and observe the Ca2+ release and entry. KMUP-1 (1 μM) inhibited hypoxia-induced TRPC family protein encoded for SOC overexpression, particularly TRPC1. KMUP-1 inhibition of TRPC1 protein was restored by the protein kinase G (PKG) inhibitor KT5823 (1 μM) and the protein kinase A (PKA) inhibitor KT5720 (1 μM). KMUP-1 attenuated protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 1 μM)-upregulated TRPC1. We suggest that the effects of KMUP-1 on TRPC1 might involve activating the cyclic guanosine monophosphate (cGMP)/PKG and cyclic adenosine monophosphate (cAMP)/PKA pathways and inhibiting the PKC pathway. We also used Fura 2-acetoxymethyl ester (Fura 2-AM, 5 μM) to measure the stored calcium release from the sarcoplasmic reticulum (SR) and calcium entry through SOCs in hypoxic PASMCs under treatment with thapsigargin (1 μM) and nifedipine (5 μM). In hypoxic conditions, store-operated calcium entry (SOCE) activity was enhanced in PASMCs, and KMUP-1 diminished this activity. In conclusion, KMUP-1 inhibited the expression of TRPC1 protein and the activity of SOC-mediated Ca2+ entry upon SR Ca2+ depletion in hypoxic PASMCs. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 2249 KiB  
Article
Pharmacological Activation of TRPC6 Channel Prevents Colitis Progression
by Kazuhiro Nishiyama, Yuri Kato, Akiyuki Nishimura, Xinya Mi, Ryu Nagata, Yasuo Mori, Yasu-Taka Azuma and Motohiro Nishida
Int. J. Mol. Sci. 2024, 25(4), 2401; https://doi.org/10.3390/ijms25042401 - 18 Feb 2024
Cited by 1 | Viewed by 1161
Abstract
We recently reported that transient receptor potential canonical (TRPC) 6 channel activity contributes to intracellular Zn2+ homeostasis in the heart. Zn2+ has also been implicated in the regulation of intestinal redox and microbial homeostasis. This study aims to investigate the role [...] Read more.
We recently reported that transient receptor potential canonical (TRPC) 6 channel activity contributes to intracellular Zn2+ homeostasis in the heart. Zn2+ has also been implicated in the regulation of intestinal redox and microbial homeostasis. This study aims to investigate the role of TRPC6-mediated Zn2+ influx in the stress resistance of the intestine. The expression profile of TRPC1-C7 mRNAs in the actively inflamed mucosa from inflammatory bowel disease (IBD) patients was analyzed using the GEO database. Systemic TRPC3 knockout (KO) and TRPC6 KO mice were treated with dextran sulfate sodium (DSS) to induce colitis. The Zn2+ concentration and the mRNA expression levels of oxidative/inflammatory markers in colon tissues were quantitatively analyzed, and gut microbiota profiles were compared. TRPC6 mRNA expression level was increased in IBD patients and DSS-treated mouse colon tissues. DSS-treated TRPC6 KO mice, but not TRPC3 KO mice, showed severe weight loss and increased disease activity index compared with DSS-treated WT mice. The mRNA abundances of antioxidant proteins were basically increased in the TRPC6 KO colon, with changes in gut microbiota profiles. Treatment with TRPC6 activator prevented the DSS-induced colitis progression accompanied by increasing Zn2+ concentration. We suggest that TRPC6-mediated Zn2+ influx activity plays a key role in stress resistance against IBD, providing a new strategy for treating colitis. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Figure 1

20 pages, 3850 KiB  
Article
TRPV4 Channels Promote Pathological, but Not Physiological, Cardiac Remodeling through the Activation of Calcineurin/NFAT and TRPC6
by Laia Yáñez-Bisbe, Mar Moya, Antonio Rodríguez-Sinovas, Marisol Ruiz-Meana, Javier Inserte, Marta Tajes, Montserrat Batlle, Eduard Guasch, Aleksandra Mas-Stachurska, Elisabet Miró, Nuria Rivas, Ignacio Ferreira González, Anna Garcia-Elias and Begoña Benito
Int. J. Mol. Sci. 2024, 25(3), 1541; https://doi.org/10.3390/ijms25031541 - 26 Jan 2024
Viewed by 1280
Abstract
TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 [...] Read more.
TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4−/− mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4−/−, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4−/− mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 1472 KiB  
Review
Cytoskeleton Rearrangement in Podocytopathies: An Update
by Sijia Ma, Yang Qiu and Chun Zhang
Int. J. Mol. Sci. 2024, 25(1), 647; https://doi.org/10.3390/ijms25010647 - 4 Jan 2024
Cited by 2 | Viewed by 2091
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus’s key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the [...] Read more.
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus’s key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton. Full article
(This article belongs to the Special Issue Molecular Advances in Glomerular Diseases)
Show Figures

Figure 1

18 pages, 3158 KiB  
Article
Disruption of Atrial Rhythmicity by the Air Pollutant 1,2-Naphthoquinone: Role of Beta-Adrenergic and Sensory Receptors
by Antonio G. Soares, Simone A. Teixeira, Pratish Thakore, Larissa G. Santos, Walter dos R. P. Filho, Vagner R. Antunes, Marcelo N. Muscará, Susan D. Brain and Soraia K. P. Costa
Biomolecules 2024, 14(1), 57; https://doi.org/10.3390/biom14010057 - 31 Dec 2023
Viewed by 1495
Abstract
The combustion of fossil fuels contributes to air pollution (AP), which was linked to about 8.79 million global deaths in 2018, mainly due to respiratory and cardiovascular-related effects. Among these, particulate air pollution (PM2.5) stands out as a major risk factor for heart [...] Read more.
The combustion of fossil fuels contributes to air pollution (AP), which was linked to about 8.79 million global deaths in 2018, mainly due to respiratory and cardiovascular-related effects. Among these, particulate air pollution (PM2.5) stands out as a major risk factor for heart health, especially during vulnerable phases. Our prior study showed that premature exposure to 1,2-naphthoquinone (1,2-NQ), a chemical found in diesel exhaust particles (DEP), exacerbated asthma in adulthood. Moreover, increased concentration of 1,2-NQ contributed to airway inflammation triggered by PM2.5, employing neurogenic pathways related to the up-regulation of transient receptor potential vanilloid 1 (TRPV1). However, the potential impact of early-life exposure to 1,2-naphthoquinone (1,2-NQ) on atrial fibrillation (AF) has not yet been investigated. This study aims to investigate how inhaling 1,2-NQ in early life affects the autonomic adrenergic system and the role played by TRPV1 in these heart disturbances. C57Bl/6 neonate male mice were exposed to 1,2-NQ (100 nM) or its vehicle at 6, 8, and 10 days of life. Early exposure to 1,2-NQ impairs adrenergic responses in the right atria without markedly affecting cholinergic responses. ECG analysis revealed altered rhythmicity in young mice, suggesting increased sympathetic nervous system activity. Furthermore, 1,2-NQ affected β1-adrenergic receptor agonist-mediated positive chronotropism, which was prevented by metoprolol, a β1 receptor blocker. Capsazepine, a TRPV1 blocker but not a TRPC5 blocker, reversed 1,2-NQ-induced cardiac changes. In conclusion, neonate mice exposure to AP 1,2-NQ results in an elevated risk of developing cardiac adrenergic dysfunction, potentially leading to atrial arrhythmia at a young age. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

Back to TopTop