Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,952)

Search Parameters:
Keywords = TEM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1544 KiB  
Article
Synthesis of Self-Assembled Nanostructured Cisplatin Using the RESS Process
by Sudhir Kumar Sharma, Loganathan Palanikumar, Renu Pasricha, Thirumurugan Prakasam, Mazin Magzoub and Ramesh Jagannathan
Pharmaceutics 2024, 16(11), 1471; https://doi.org/10.3390/pharmaceutics16111471 - 18 Nov 2024
Abstract
Background/Objectives: The primary goal of our research is to develop a process to prepare an aqueous dispersion of Cisplatin, an important anticancer drug, with increased solubility and storage stability. Method: In this context, we report the use of a customized RESS process for [...] Read more.
Background/Objectives: The primary goal of our research is to develop a process to prepare an aqueous dispersion of Cisplatin, an important anticancer drug, with increased solubility and storage stability. Method: In this context, we report the use of a customized RESS process for the synthesis of a novel, amber-colored and viscous aqueous cisplatin solution, an important anticancer drug, which we have denoted as “liquid” cisplatin. Results: Using specialized liquid cell in situ transmission electron microscopy (Liquid in situ TEM) and Raman spectroscopy, we demonstrated that “liquid” cisplatin comprises a bi-modal distribution of a highly solvated network of stable cisplatin nanoclusters in water and exhibited 27 times greater water solubility than standard cisplatin. More importantly, “liquid” cisplatin was stable at ambient conditions for over two years. Extensive analytical characterization of “liquid” cisplatin confirmed that it retained the original chemical identity of cisplatin. Cell viability and apoptosis studies on human lung adenocarcinoma A549 cells provided compelling evidence that “liquid” cisplatin demonstrated a more sustained anticancer effect compared to standard cisplatin. Conclusions: Aqueous cisplatin solubility was increased by 27X in the “liquid” cisplatin medium which retained its bio efficacy over a 2-year period. Our experimental results suggest the possibility of developing non-invasive and highly effective novel cisplatin drug-delivery platforms. Full article
(This article belongs to the Special Issue Supercritical Techniques for Pharmaceutical Applications)
17 pages, 1067 KiB  
Article
Carbon Nanotube–Phenyl Modified g-C3N4: A Visible Light Driven Efficient Charge Transfer System for Photocatalytic Degradation of Rhodamine B
by Sahar Aghapour Ghourichay, Samira Agbolaghi, Riccardo Corpino and Pier Carlo Ricci
Molecules 2024, 29(22), 5439; https://doi.org/10.3390/molecules29225439 (registering DOI) - 18 Nov 2024
Abstract
In this study, we report the synthesis and characterization of a novel photocatalyst composite composed of functionalized carbon nanotubes (f-CNT) and phenyl-modified graphitic carbon nitride (PhCN). The incorporation of the phenyl group extends the absorption range into the visible spectrum compared to pure [...] Read more.
In this study, we report the synthesis and characterization of a novel photocatalyst composite composed of functionalized carbon nanotubes (f-CNT) and phenyl-modified graphitic carbon nitride (PhCN). The incorporation of the phenyl group extends the absorption range into the visible spectrum compared to pure g-C3N4. Additionally, the formation of the heterostructure in the f-CNT/PhCN composite exhibits improved charge transfer efficiency, facilitating the separation and transfer of photogenerated electron-hole pairs and reducing recombination rates. The photocatalytic performance of this composite was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The f-CNT/PhCN composite exhibits remarkable efficiency in degrading RhB, achieving 60% degradation after 4 h, and 100% after 24 h under low-power white LED excitation. This represents a substantial improvement over the non-functionalized CNT/PhCN composite, which shows much lower performance. In contrast, pure PhCN demonstrates very little activity. Structural and optical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, and UV–Vis spectroscopy. Time-resolved photoluminescence measurements were used to study the behavior of photoexcited carriers, confirming that the composite improves charge transfer efficiency for photogenerated carriers by approximately 30%. The results indicate that the functionalization of CNTs significantly enhances the photocatalytic properties of the composite, making f-CNT/PhCN a promising candidate for environmental remediation applications, particularly in the degradation of organic pollutants in wastewater. Full article
(This article belongs to the Section Physical Chemistry)
13 pages, 3286 KiB  
Article
Improving the NO2 Gas Sensing Performances at Room Temperature Based on TiO2 NTs/rGO Heterojunction Nanocomposites
by Yan Ling, Yunjiang Yu, Canxin Tian and Changwei Zou
Nanomaterials 2024, 14(22), 1844; https://doi.org/10.3390/nano14221844 - 18 Nov 2024
Abstract
The development of energy-efficient, sensitive, and reliable gas sensors for monitoring NO2 concentrations has garnered considerable attention in recent years. In this manuscript, TiO2 nanotube arrays/reduced graphene oxide nanocomposites with varying rGO contents (TiO2 NTs/rGO) were synthesized via a two-step [...] Read more.
The development of energy-efficient, sensitive, and reliable gas sensors for monitoring NO2 concentrations has garnered considerable attention in recent years. In this manuscript, TiO2 nanotube arrays/reduced graphene oxide nanocomposites with varying rGO contents (TiO2 NTs/rGO) were synthesized via a two-step method for room temperature NO2 gas detection. From SEM and TEM images, it is evident that the rGO sheets not only partially surround the TiO2 nanotubes but also establish interconnection bridges between adjacent nanotubes, which is anticipated to enhance electron–hole separation by facilitating electron transfer. The optimized TiO2 NTs/rGO sensor demonstrated a sensitive response of 19.1 to 1 ppm of NO2, a 5.26-fold improvement over the undoped TiO2 sensor. Additionally, rGO doping significantly enhanced the sensor’s response/recovery times, reducing them from 24 s/42 s to 18 s/33 s with just 1 wt.% rGO. These enhancements are attributed to the increased specific surface area, higher concentration of chemisorbed oxygen species, and the formation of p-n heterojunctions between TiO2 and rGO within the nanocomposites. This study provides valuable insights for the development of TiO2/graphene-based gas sensors for detecting oxidizing gases at room temperature. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

26 pages, 8062 KiB  
Article
Biosynthesis; Characterization; and Antibacterial, Antioxidant, and Docking Potentials of Doped Silver Nanoparticles Synthesized from Pine Needle Leaf Extract
by Nourhane A. Darwich, Malak Mezher, Alaa M. Abdallah, Ahmed F. El-Sayed, Rana El Hajj, Taymour A. Hamdalla and Mahmoud I. Khalil
Processes 2024, 12(11), 2590; https://doi.org/10.3390/pr12112590 - 18 Nov 2024
Abstract
The current study focused on the synthesis of doped silver nanoparticles (doped AgNPs) with yttrium (Y), gadolinium (Gd), and chromium (Cr) from pine needle leaf extract (PNLE). X-ray diffraction (XRD) was performed to assess the phase formation, detecting 61.83% from Ag and 38.17% [...] Read more.
The current study focused on the synthesis of doped silver nanoparticles (doped AgNPs) with yttrium (Y), gadolinium (Gd), and chromium (Cr) from pine needle leaf extract (PNLE). X-ray diffraction (XRD) was performed to assess the phase formation, detecting 61.83% from Ag and 38.17% for secondary phases of AgCl, AgO, Y, Cr-, and Gd phases. The size and shape of the NPs were determined by transmission electron microscopy (TEM), showing a spherical shape with an average particle size of 26.43 nm. X-ray photoelectron spectroscopy (XPS) detected the oxidation state of the presented elements. The scanning electron microscope (SEM) and the energy-dispersive X-ray analysis (EDX) determined the morphology and elemental composition of the NPs, respectively. Fourier transform infrared spectroscopy (FTIR) determined the different functional groups indicating the presence of Ag, Y, Gd, Cr, and other groups. Photoluminescence (PL) spectroscopy showed the optical properties of the NPs. A vibrating sample magnetometer (VSM) revealed the ferromagnetic behavior of the doped AgNPs. The antibacterial activity of the doped AgNPs was tested against six uro-pathogenic bacteria (Staphylococcus aureus, Staphylococcus haemolyticus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) microdilution assays, agar well diffusion assay, time–kill test, and antibiofilm screening assays, revealing significant activity, with MICs ranging between 0.0625 and 0.5 mg/mL and antibiofilm activity between 40 and 85%. The antioxidant activity was determined by the 1,1, diphenyl 1-2 picrylhydrazyl (DPPH) radical scavenging assay with a potential of 61.3%. The docking studies showed that the doped AgNPs had the potential to predict the inhibition of crucial enzymes such as penicillin-binding proteins, LasR-binding proteins, carbapenemase, DNA gyrase, and dihydropteroate synthase. The results suggest that the doped AgNPs can be applied in different medical domains. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

15 pages, 7053 KiB  
Article
Effects of Temperature and Secondary Orientations on the Deformation Behavior of Single-Crystal Superalloys
by Sujie Liu, Cui Zong, Guangcai Ma, Yafeng Zhao, Junjie Huang, Yi Guo and Xingqiu Chen
Crystals 2024, 14(11), 996; https://doi.org/10.3390/cryst14110996 (registering DOI) - 18 Nov 2024
Viewed by 77
Abstract
The tensile behavior of single-crystal superalloys was investigated at room temperature (RT) and 850 °C, focusing on various secondary orientations. Transmission electron microscopy (TEM) and quasi in situ electron backscatter diffraction (EBSD) were employed to study the deformation mechanisms across length scales. Deformation [...] Read more.
The tensile behavior of single-crystal superalloys was investigated at room temperature (RT) and 850 °C, focusing on various secondary orientations. Transmission electron microscopy (TEM) and quasi in situ electron backscatter diffraction (EBSD) were employed to study the deformation mechanisms across length scales. Deformation at 850 °C enhanced the tensile ductility of the samples, evidenced by the more uniform coverage of dislocations across the γ and γ′ phases, and the fracture mode switched from pure cleavage at room temperature to mixed mode due to accelerated void growth. The influence of secondary orientations on mechanical properties is insignificant at room temperature. However, the ductility of the different secondary orientation samples shows significant variations at 850 °C, among which the one with [001] rotated 37° demonstrated superior ductility compared to others. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Behaviour of Structural Materials)
Show Figures

Figure 1

15 pages, 3122 KiB  
Article
Fe3O4@SiO2-NH2 Functionalized Nanoparticles as a Potential Contrast Agent in Magnetic Resonance
by Brayan Stick Betin Bohorquez, Indry Milena Saavedra Gaona, Carlos Arturo Parra Vargas, Karina Vargas-Sánchez, Jahaziel Amaya, Mónica Losada-Barragán, Javier Rincón and Daniel Llamosa Pérez
Condens. Matter 2024, 9(4), 49; https://doi.org/10.3390/condmat9040049 (registering DOI) - 17 Nov 2024
Viewed by 442
Abstract
The present work proposes a method for the synthesis of a nanoparticle with a superparamagnetic Fe3O4 core coated with SiO2-NH2 by ultrasound-assisted coprecipitation. Additionally, the nanoparticle is functionalized with a microinflammation biomarker peptide, and its effects on [...] Read more.
The present work proposes a method for the synthesis of a nanoparticle with a superparamagnetic Fe3O4 core coated with SiO2-NH2 by ultrasound-assisted coprecipitation. Additionally, the nanoparticle is functionalized with a microinflammation biomarker peptide, and its effects on the viability of monkey kidney endothelial cells and the Vero cell line were evaluated. The main physicochemical properties of the nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray Photoemission Spectroscopy (XPS), a vibrating sample magnetometer (VSM), a field emission scanning electron, Scanning Electron Microscopy (SEM), and High-Resolution Transmission Electron Microscopy (HR-TEM). The results showed that the nanoparticles are spherical, with sizes smaller than 10 nm, with high thermal stability and superparamagnetic properties. They also demonstrated cell viability rates exceeding 85% through Magnetic Resonance Imaging (MRI). The results indicate the potential of these nanoparticles to be used as a contrast agent in magnetic resonance to detect mild brain lesions. Full article
Show Figures

Figure 1

21 pages, 3951 KiB  
Article
Smart Coating of Carbon Steel Using Polystyrene Clay Nanocomposites Loaded with Cerium and Silanol Inhibitors: Characterization and Electrochemical Study
by Layla A. Al Juhaiman, Mona A. Al Jufareen, Saeed M. Al-Zahrani, Ubair Abdus Samad and Tahani S. Al-Garni
Polymers 2024, 16(22), 3196; https://doi.org/10.3390/polym16223196 - 17 Nov 2024
Viewed by 304
Abstract
Local Khulays clay was modified to prepare polystyrene clay nanocomposite (PCN) coatings on carbon steel. The PCN coatings were added to microcapsules (MCs) loaded with the corrosion inhibitor PCN(MC). The microcapsules were prepared by the encapsulation of rare-earth metal Ce+3 ions and [...] Read more.
Local Khulays clay was modified to prepare polystyrene clay nanocomposite (PCN) coatings on carbon steel. The PCN coatings were added to microcapsules (MCs) loaded with the corrosion inhibitor PCN(MC). The microcapsules were prepared by the encapsulation of rare-earth metal Ce+3 ions and isobutyl silanol into polystyrene via the double emulsion solvent evaporation (DESE) technique. From characterization techniques, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with EDX. SEM and FT-IR confirmed the success of the preparation of the PCN(MC). Nanoindentation tests were performed on the thin-film samples. A significant reduction in both the hardness and the reduced modulus was observed for the PCN film compared to the PS film. Electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) all showed an enhanced protection efficiency (%PE) of 3% PCN(MC) over 3% PCN at high temperatures and at different times. The smart coatings were proven by applying the thermal and the mechanical triggers for the 3% PCN(MC) coating. The mechanism of the release of inhibitors was discussed. The self-healing properties of 3% PCN(MC) were evaluated. The enhanced properties of the developed PCN(MC) coatings make them attractive for potential applications in the oil and other industries. Full article
Show Figures

Figure 1

22 pages, 8434 KiB  
Article
Highly Efficient Visible-Light Photocatalysts: Bi2O3@TiO2 Derived from Ti-MOFs for Eriochrome Black T Degradation: A Joint Experimental and Computational Study
by Jing Meng, Asmaa G. Ashry, Ahmed S. Abou-Elyazed, Zhe Zhang, Xiaolin Li, Tamer Z. Sharara and Safinaz H. El-Demerdash
Catalysts 2024, 14(11), 829; https://doi.org/10.3390/catal14110829 (registering DOI) - 17 Nov 2024
Viewed by 423
Abstract
Herein, we synthesized Ti-MOF through a solvothermal method and subsequently calcined it to form anatase TiO2. We further developed a Bi2O3@TiO2 mixed oxide using impregnation and calcination processes. These oxides showed significant photocatalytic activity for degrading [...] Read more.
Herein, we synthesized Ti-MOF through a solvothermal method and subsequently calcined it to form anatase TiO2. We further developed a Bi2O3@TiO2 mixed oxide using impregnation and calcination processes. These oxides showed significant photocatalytic activity for degrading Eriochrome Black T (EBT) dye under visible light irradiation. We characterized the prepared samples using various techniques, including XRD, XPS, FTIR, BET, SEM, EDX, TEM, and UV-DRS analyses. Our results indicated that TiO2 and 10%Bi2O3@TiO2 achieved 80% and 100% degradation of EBT dye solution (50 ppm) within 30 min in acidic medium with a 50 mg catalyst dose, respectively. The calcination of the Ti-MOF into TiO2 improved its sensitivity to visible light. The Bi2O3@TiO2 composite was also effective in degrading other organic pollutants, such as Congo Red (degradation ~99%), Malachite Green (degradation ~95%), Methylene Blue (degradation ~81%), and Safranine O (degradation ~69%). The impregnation of Bi2O3 increased the surface acidity of TiO2, enhancing its photocatalytic activity by promoting hydroxyl group formation through increased water adsorption. Additionally, 10%Bi2O3@TiO2 demonstrated excellent chemical stability and reusability, maintaining high degradation efficiency over four cycles. Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) calculations were performed to understand the degradation mechanisms. UV-Vis absorption spectrum simulations suggested that the anionic HEB−2 (O24) or EB−3 forms of the EBT dye are likely to undergo degradation. This study highlights the potential of Bi2O3@TiO2 composites for effective photocatalytic applications in environmental remediation. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

15 pages, 3359 KiB  
Article
Improvement in Curcumin’s Stability and Release by Formulation in Flexible Nano-Liposomes
by Hua-Wei Chen, Su-Der Chen, Hung-Ta Wu, Chun-Hung Cheng, Chyow-San Chiou and Wei-Ting Chen
Nanomaterials 2024, 14(22), 1836; https://doi.org/10.3390/nano14221836 - 17 Nov 2024
Viewed by 245
Abstract
Curcumin is utilized extensively as Chinese medicine in Asia due to its antioxidant, antimicrobial, and inflammatory activities. However, its use has the challenges of low oral bioavailability and high heat sensitivity. The aim of this research was to produce flexible nano-liposomes containing curcumin [...] Read more.
Curcumin is utilized extensively as Chinese medicine in Asia due to its antioxidant, antimicrobial, and inflammatory activities. However, its use has the challenges of low oral bioavailability and high heat sensitivity. The aim of this research was to produce flexible nano-liposomes containing curcumin using an innovative approach of ethanol injection and Tween 80 to enhance the stability and preservation of curcumin. The mean particle size, encapsulation efficiency, thermal degradation, storage stability, and curcumin release in flexible nano-liposomes were also investigated. We found that the mean particle size of curcumin-loaded flexible nano-liposome decreased from 278 nm to 27.6 nm. At the same time, the Tween 80 concentration increased from 0 to 0.15 wt%, which corresponded with the results of transmission electron microscopy (TEM) morphology analyses, and particle size decreased with an enhancement in Tween 80 concentration. Further, pure curcumin was quickly released within one hour at 37 °C, and first-order kinetics matched with its release curve. However, curcumin encapsulated in flexible nano-liposomes showed a slow release of 71.24% within 12 h, and a slower release pattern matched with the Higuchi model over 24 h, ultimately reaching 84.63% release. Hence, flexible nano-liposomes of curcumin made by a combination of ethanol injection and Tween 80 addition prevented the thermal degradation of curcumin, and enhanced its storage stability and preservation for future drug delivery applications. Full article
(This article belongs to the Special Issue Green Nanoparticles for Topical Administration of Drugs)
Show Figures

Figure 1

16 pages, 4312 KiB  
Article
Peptide-Functionalized Gold Nanoparticles as Organocatalysts for Asymmetric Aldol Reactions
by Thabo Peme, Dean Brady, Ndivhuwo P. Shumbula, Khanani Machumele, Nosipho Moloto, Taryn Adams and Maya M. Makatini
Catalysts 2024, 14(11), 826; https://doi.org/10.3390/catal14110826 (registering DOI) - 16 Nov 2024
Viewed by 308
Abstract
The use of high catalyst loading is required for most of the organocatalyzed asymmetric aldol reactions in organic synthesis, and this often presents challenges during purification and difficulties in catalyst recovery from the reaction mixture. The immobilization of the catalyst onto gold nanoparticles [...] Read more.
The use of high catalyst loading is required for most of the organocatalyzed asymmetric aldol reactions in organic synthesis, and this often presents challenges during purification and difficulties in catalyst recovery from the reaction mixture. The immobilization of the catalyst onto gold nanoparticles (AuNPs) can change the structural conformations of the catalyst, thereby improving its catalytic activity and reusability. Herein we report on the synthesis of aldolase mimetic peptide coupled to gold nanoparticles (AuNPs) as efficient organocatalysts for asymmetric aldol reaction. AuNPs were synthesized using the Turkevich method. The conjugation of the peptide to AuNPs was characterized using surface plasmon resonance (SPR), Raman and X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM) was used for particle size determination. The produced nanoparticles, whose sizes depended on the reduction method, were quasi-spherical with a relatively narrow size distribution. The peptide–AuNP conjugates were evaluated for aldol reaction catalytic activity between carbonyls p-nitrobenzaldehyde and cyclohexanone. The products were obtained with good yields (up to 85%) and enantioselectivity (up to 94%). The influence of organic solvents, pH and buffer solutions was also investigated. The results showed that the buffer solutions regulated the colloidal stability of AuNPs, resulting in a significant enhancement in the catalytic rate of the peptide–AuNP conjugate. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Figure 1

20 pages, 6222 KiB  
Article
Extracellular Biosynthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles Synthesized by Filamentous Fungi
by Iuliana Răut, Mariana Constantin, Raluca Șuică-Bunghez, Cristina Firincă, Elvira Alexandrescu, Ioana Cătălina Gîfu, Mihaela Doni, Lucian-Gabriel Zamfir, Ana-Maria Gurban and Luiza Jecu
J. Fungi 2024, 10(11), 798; https://doi.org/10.3390/jof10110798 (registering DOI) - 16 Nov 2024
Viewed by 266
Abstract
The green synthesis of metal nanoparticles has received substantial attention due to their applications in various domains. The aim of the study was to obtain silver nanoparticles (AgNPs) by green synthesis with filamentous fungi, such as Cladosporium cladosporoides, Penicillium chrysogenum, and [...] Read more.
The green synthesis of metal nanoparticles has received substantial attention due to their applications in various domains. The aim of the study was to obtain silver nanoparticles (AgNPs) by green synthesis with filamentous fungi, such as Cladosporium cladosporoides, Penicillium chrysogenum, and Purpureocillium lilacinum. Fungal species were grown on nutrient media and aqueous mycelium extracts were used to reduce Ag+ to Ag (0). The silver nanoparticles were analyzed by various techniques, such as UV-Visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), and Zeta potential. The formation of silver nanoparticles was confirmed by UV-Vis spectroscopy and the color change of the mixture containing metal precursor and aqueous mycelium extract. FTIR displayed different functional groups as capping and reducing agents for the biosynthesis of AgNPs. SEM and TEM provided information on the particles’ morphology. DLS diagrams indicated mean particle diameters in the 124–168 nm region. All biosynthesized AgNPs had negative zeta values, which is a sign of good stability. Silver nanoparticles were evaluated for antimicrobial activity, and the most active were those synthesized with metabolites from Cladosporium, leading to 93.75% inhibition of Staphylococcus aureus, 67.20% of Escherichia coli, and 69.56% of Candida albicans. With the highest microbial inhibition percentage and a very good Poly Dispersion Index (Pd I), Cladosporium cladosporoides was selected as an environmentally friendly source of silver nanoparticles that could be used as a potential antimicrobial agent. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Bioprocesses)
Show Figures

Figure 1

10 pages, 10078 KiB  
Article
Study on the Effect of Coal Grain Size on the Morphology of Soot Generated During Combustion
by Jiani Liu, Mengting Si, Yindi Zhang, Bing Liu and Changqian Shi
Energies 2024, 17(22), 5734; https://doi.org/10.3390/en17225734 (registering DOI) - 16 Nov 2024
Viewed by 261
Abstract
This study performed an experimental exploration to analyze the influence of different grain sizes of coal on the nanostructure and morphological parameters of soot generated during combustion. Initially, primary and mature soot samples were gained from the combustion flames of two different grain [...] Read more.
This study performed an experimental exploration to analyze the influence of different grain sizes of coal on the nanostructure and morphological parameters of soot generated during combustion. Initially, primary and mature soot samples were gained from the combustion flames of two different grain sizes of coal (less than 150 μm, named sample #1, and 6–8 mm, named sample #2) by using thermophoresis sampling technology. Subsequently, the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to investigate and analyze the soot samples, with the aim of obtaining their morphological parameters and nanostructure characteristics. The TEM images indicate that the nascent soot produced during the flame formed by small-sized coal is relatively uniform, with individual particles 8–14 nm in size. The grain size of the nascent soot produced by large-sized coal is much larger, within a wide range of 50–350 nm. Additionally, the nanostructures of the nascent soot particles produced by samples #1 and #2 mainly consist of upright parallel crystal stripes. The crystal stripes of the soot particles formed by sample #1 have obvious microcrystalline structures, whereas only a small amount of microcrystalline structure is found at the edge of sample #2. Compared with sample #2, the soot formed during the combustion of sample #1 exhibits a denser crystalline structure. The SEM results indicate that the mature soot agglomerates formed in sample #2 are larger and more in quantity compared to sample #1. Furthermore, the mature soot agglomerates formed in sample #2 have a stronger coagulation performance and a more compact structure than that formed in sample #1. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

13 pages, 7273 KiB  
Article
Catalytic Methane Decomposition on In Situ Reduced FeCo Alloy Catalysts Derived from Layered Double Hydroxides
by Dianfeng Cao, Yuwen Li, Chao Lv, Yongtao An, Jiangfeng Song, Mingcan Li and Xin Zhang
Nanomaterials 2024, 14(22), 1831; https://doi.org/10.3390/nano14221831 - 15 Nov 2024
Viewed by 252
Abstract
Catalytic methane decomposition (CMD) reaction is considered a promising process for converting greenhouse gas CH4 into hydrogen and high-value-added carbon materials. In this work, a series of Al2O3-supported FeCo alloy catalysts were successfully prepared in the CMD process. [...] Read more.
Catalytic methane decomposition (CMD) reaction is considered a promising process for converting greenhouse gas CH4 into hydrogen and high-value-added carbon materials. In this work, a series of Al2O3-supported FeCo alloy catalysts were successfully prepared in the CMD process. Compared to the pre-reduced catalysts, the in situ reduced FeCo alloy catalysts showed higher methane conversion rates, with the highest reaching 83% at 700 °C, due to the finer active nanoparticle size and greater exposure of active site. Furthermore, the time-on-stream tests demonstrated that the catalytic activity of in situ reduced FeCo alloy catalysts could remain above 92.3% of the highest catalytic activity after 10 h. In addition, TEM analyses of the carbon products from the CMD in situ reduced catalysts revealed the production of carbon nanofibers and nanotubes several microns in length after the reaction. This indicates that the in situ reduced FeCo alloy catalysts more effectively promoted the growth of carbon nanofibers. These results could provide a viable strategy for future methane decomposition development aimed at producing hydrogen and high-value carbon. Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Green Energy)
Show Figures

Figure 1

26 pages, 14150 KiB  
Article
New Insights on the Formation of the Mitral Valve Chordae Tendineae in Fetal Life
by Meghan Martin, Kate Gillett, Parker Whittick and Sarah Melissa Wells
J. Cardiovasc. Dev. Dis. 2024, 11(11), 367; https://doi.org/10.3390/jcdd11110367 (registering DOI) - 15 Nov 2024
Viewed by 264
Abstract
There is an increasing understanding that some mitral valve pathologies have developmental origins. The time course of valvulogenesis varies by animal model; in cattle, the branched chordae tendineae architecture becomes fully developed at full term. The mechanism by which chordae tendineae bifurcate during [...] Read more.
There is an increasing understanding that some mitral valve pathologies have developmental origins. The time course of valvulogenesis varies by animal model; in cattle, the branched chordae tendineae architecture becomes fully developed at full term. The mechanism by which chordae tendineae bifurcate during fetal development remains unknown. The current study presents a detailed description of bovine chordae tendineae formation and bifurcation during fetal development. Analysis of Movat Pentachrome-stained histological sections of the developing mitral valve apparatus was accompanied by micro-CT imaging. TEM imaging of chordae branches and common trunks allowed the measurement of collagen fibril diameter distributions. We observed a proteoglycan-rich “transition zone” at the junction between the fetal mitral valve anterior leaflet and chordae tendineae with “perforations” lined by MMP1/2 and Ki-67 expressing endothelial cells. This region also contained clusters of proliferating endothelial cells within the bulk of the tissue. We hypothesize this zone marks a region where chordae tendineae bifurcate during fetal development. In particular, perforations created by localized MMP activity serve as a site for the initiation of a “split” of a single chordae attachment into two. This is supported by TEM results that suggest a similar population of collagen fibrils runs from the branches into a common trunk. A clear understanding of normal mitral valvulogenesis and its signaling mechanisms will be crucial in developing therapeutics and/or tissue-engineered valve replacements. Full article
Show Figures

Figure 1

16 pages, 9149 KiB  
Article
Cd-Resistant Plant Growth-Promoting Rhizobacteria Bacillus siamensis R27 Absorbed Cd and Reduced Cd Accumulation in Lettuce (Lactuca sativa L.)
by Shaofang Liu, Yushan Huang, Qinyuan Zheng, Mengting Zhan, Zhihong Hu, Hongjie Ji, Du Zhu and Xia Zhao
Microorganisms 2024, 12(11), 2321; https://doi.org/10.3390/microorganisms12112321 - 15 Nov 2024
Viewed by 276
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of heavy metal cadmium (Cd) and for enhancing plant growth in Cd-polluted soil is widely recognized as an effective approach. This study aimed to isolate Cd-resistant bacteria with plant growth-promoting (PGP) traits from [...] Read more.
The use of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of heavy metal cadmium (Cd) and for enhancing plant growth in Cd-polluted soil is widely recognized as an effective approach. This study aimed to isolate Cd-resistant bacteria with plant growth-promoting (PGP) traits from the rhizosphere of vegetables subjected to metal contamination and to investigate the mechanisms associated with Cd adsorption as well as its impact on Cd uptake in lettuce. Six Cd-resistant bacterial strains were isolated from rhizosphere soil, among which the R27 strain exhibited the highest tolerance to Cd (minimum inhibitory concentration of 2000 mg/L) along with PGP traits, including phosphate solubilization (385.11 mg/L), the production of indole-3-acetic acid (IAA) (35.92 mg/L), and siderophore production (3.34 mg/L). Through a range of physiological, biochemical, and molecular assessments, the R27 strain was classified as Bacillus siamensis. This strain demonstrated notable efficiency in removing Cd2+ from the growth medium, achieving an efficacy of 80.1%. This removal was facilitated by cell surface adsorption through functional groups such as O–H, C=O, –CO–NH–, and C–O, alongside intracellular Cd accumulation, as evidenced by SEM, TEM, EDX, and FTIR analyses. Pot culture experiments indicated that R27 significantly promoted lettuce seedling growth and helped plants tolerate Cd stress, with the underlying mechanisms likely involving increased antioxidant activities for scavenging reactive oxygen species (ROS) induced by Cd stress, and reduced Cd2+ levels in lettuce seedlings to mitigate Cd2+ toxicity. These physiological changes were further supported by the down-regulation of genes associated with cadmium transport, including IRT1, Nramp1, HMA2, HMA4, ZIP4, and ZIP12, as well as the significantly reduced root bio-concentration factor (BCF) and translocation factor (TF). In summary, the R27 strain offers considerable potential in the bioremediation of Cd-polluted soils and can serve as a bio-fertilizer to enhance plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop