Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,221)

Search Parameters:
Keywords = Silicon carbide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 11613 KiB  
Article
Gate Oxide Reliability in Silicon Carbide Planar and Trench Metal-Oxide-Semiconductor Field-Effect Transistors Under Positive and Negative Electric Field Stress
by Limeng Shi, Jiashu Qian, Michael Jin, Monikuntala Bhattacharya, Shiva Houshmand, Hengyu Yu, Atsushi Shimbori, Marvin H. White and Anant K. Agarwal
Electronics 2024, 13(22), 4516; https://doi.org/10.3390/electronics13224516 (registering DOI) - 18 Nov 2024
Viewed by 145
Abstract
This work investigates the gate oxide reliability of commercial 1.2 kV silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) with planar and trench gate structures. The performance of threshold voltage (Vth) and gate leakage current [...] Read more.
This work investigates the gate oxide reliability of commercial 1.2 kV silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) with planar and trench gate structures. The performance of threshold voltage (Vth) and gate leakage current (Igss) in SiC MOSFETs is evaluated under positive and negative gate voltage stress. The oxide lifetimes of SiC planar and trench MOSFETs at 150 °C are measured using constant voltage Time-Dependent Dielectric Breakdown (TDDB) testing. From the test results, it is found that electron trapping and hole trapping in SiO2 caused by oxide electric field (Eox) stress affect the Vth of SiC MOSFETs. The saturation and turnaround behavior of the Vth shift during positive and negative gate voltage stresses indicates that the influence of charge trapping in the gate oxide varies with stress time. The Igss under positive and negative gate voltages depends on the tunneling barrier height for electrons and holes, respectively, which can be calculated using the Fowler–Nordheim (FN) tunneling mechanism. Moreover, the presence of near-interface traps (NITs) affects the barrier height for holes under negative gate voltages. The behavior of Vth shift and Igss under high-temperature gate bias reflects the charge trapping occurring in different regions of the gate oxide. In addition, compared to SiC planar MOSFETs, SiC trench MOSFETs with thicker gate oxide tend to exhibit higher lifetimes in TDDB tests. Full article
Show Figures

Figure 1

10 pages, 7589 KiB  
Communication
A Theoretical Examination of Various Complexes of a Proposed Novel Chemosensor Material—Graphene/SiC
by Dobromir A. Kalchevski, Stefan Kolev, Dimitar Dimov, Dimitar Trifonov, Ivalina Avramova, Pavlina Ivanova and Teodor Milenov
Chemosensors 2024, 12(11), 239; https://doi.org/10.3390/chemosensors12110239 - 17 Nov 2024
Viewed by 197
Abstract
The potential of semiconducting, corrugated graphene, grown on silicon carbide, as an active element in chemosensors is studied in the present work. For this purpose, the adsorption of benzene, diazepam and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the material’s surface was modeled. According to [...] Read more.
The potential of semiconducting, corrugated graphene, grown on silicon carbide, as an active element in chemosensors is studied in the present work. For this purpose, the adsorption of benzene, diazepam and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the material’s surface was modeled. According to the graphene sheet bending and adsorbate–adsorbent distances, the heterostructure favors the ligands in the order of diazepam < benzene < TCDD. The apparent ambiguity in the results for diazepam is easy to explain. The abundance of lone pairs and π-electrons compensates for the low-symmetry, non-planar, far from optimal (adsorption-wise) geometry. The maximum band gap change in the heterostructure, caused by adsorption, is 0.02 eV. Intermolecular binding does not alter the HOMO–LUMO difference in benzene and TCDD by more than 0.01 eV. The completely planar molecules are not expected to undergo significant geometrical changes; hence, the alteration in their frontier orbitals is also minimal. The adsorption of diazepam, however, causes significant changes in the projected density of states of both structures in the complex. In conclusion, corrugated graphene is applicable as an active material in selective chemosensors for non-planar aromatic molecules. Full article
(This article belongs to the Special Issue Recent Advances in Electrode Materials for Electrochemical Sensing)
Show Figures

Figure 1

13 pages, 4106 KiB  
Article
A Paradox of LED Road Lighting: Reducing Light Pollution Is Not Always Linked to Energy Savings
by Irena Fryc, Maciej Listowski, Christophe Martinsons, Jiajie Fan and Dariusz Czyżewski
Energies 2024, 17(22), 5727; https://doi.org/10.3390/en17225727 (registering DOI) - 15 Nov 2024
Viewed by 283
Abstract
A variety of LED types can be employed for street and road lighting purposes. White phosphor-converted LEDs represent the most widely used option. However, amber LEDs are increasingly being used to reduce some negative effects associated with light pollution. These LEDs can be [...] Read more.
A variety of LED types can be employed for street and road lighting purposes. White phosphor-converted LEDs represent the most widely used option. However, amber LEDs are increasingly being used to reduce some negative effects associated with light pollution. These LEDs can be manufactured using both phosphor-converted and monochromatic direct chip technologies. This paper addresses the link between the reduction in short-wavelength light emissions which contribute to sky glow and the energy efficiency of LED-based road lighting. This paper focuses on an example illustrating the common misconception that reducing light pollution also means saving energy. Through the consideration of how spectral power distribution influences both mesopic vision and the amount of emitted blue light, it has been concluded that while monochromatic direct amber LEDs consume more energy than their white or amber phosphor-converted counterparts, their use in outdoor lighting is justifiable due to their potential effects of reducing sky brightness. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

15 pages, 5787 KiB  
Review
A Review of Ku-Band GaN HEMT Power Amplifiers Development
by Jihoon Kim
Micromachines 2024, 15(11), 1381; https://doi.org/10.3390/mi15111381 - 15 Nov 2024
Viewed by 300
Abstract
This review article investigates the current status and advances in Ku-band gallium nitride (GaN) high-electron mobility transistor (HEMT) high-power amplifiers (HPAs), which are critical for satellite communications, unmanned aerial vehicle (UAV) systems, and military radar applications. The demand for high-frequency, high-power amplifiers is [...] Read more.
This review article investigates the current status and advances in Ku-band gallium nitride (GaN) high-electron mobility transistor (HEMT) high-power amplifiers (HPAs), which are critical for satellite communications, unmanned aerial vehicle (UAV) systems, and military radar applications. The demand for high-frequency, high-power amplifiers is growing, driven by the global expansion of high-speed data communication and enhanced national security requirements. First, we compare the main GaN HEMT process technologies employed in Ku-band HPA development, categorizing the HPAs into monolithic microwave integrated circuits (MMICs) and internally matched power amplifier modules (IM-PAMs) and examining their respective characteristics. Then, by reviewing the literature, we explore design topologies, major issues like oscillation prevention and bias circuits, and heat sink technologies for thermal management. Our findings indicate that silicon carbide (SiC) substrates with gate lengths of 0.25 μm and 0.15 μm are predominantly used, with ongoing developments enabling MMICs and IM-PAMs to achieve up to 100 W output power and 30% power-added efficiency. Notably, the performance of MMIC power amplifiers is advancing more rapidly than that of IM-PAMs, highlighting MMICs as a promising direction for achieving higher efficiency and integration in future Ku-band applications. This paper can provide insights into the overall key technologies for Ku-band GaN HPA design and future development directions. Full article
Show Figures

Figure 1

19 pages, 24669 KiB  
Article
Investigation of the Thermophysical Simulation and Material Removal Mechanism of the High-Volume-Fraction SiCp/Al Composite in Wire Electrical Discharge Machining
by Zhi Chen, Jiawen Hu, Hongbing Zhou, Yumeng Wei, Guojun Zhang and Fenglin Han
Materials 2024, 17(22), 5546; https://doi.org/10.3390/ma17225546 - 13 Nov 2024
Viewed by 271
Abstract
SiC particle reinforced aluminum matrix composites (SiCp/Al) are widely used in aviation, weaponry, and automobiles because of their excellent service performance. Wire electrical discharge machining (WEDM) regardless of workpiece hardness has become an alternative method for processing SiCp/Al composites. In this paper, the [...] Read more.
SiC particle reinforced aluminum matrix composites (SiCp/Al) are widely used in aviation, weaponry, and automobiles because of their excellent service performance. Wire electrical discharge machining (WEDM) regardless of workpiece hardness has become an alternative method for processing SiCp/Al composites. In this paper, the temperature distribution and the discharge crater size of the SiCp/Al composite are simulated by a thermophysical model during a single-pulse discharge process (SPDP) based on the random distribution of SiC particles. The material removal mechanism of the SiCp/Al composite during the multi-pulse discharge process (MPDP) is revealed, and the surface roughness (Ra) of the SiCp/Al composite is predicted during the MPDP. The thermophysical model simulation results during the MPDP and experimental characterization data indicate that the removal mechanism of SiCp/Al composite material consists of the melting and vaporization of the aluminum matrix, as well as the heat decomposition and shedding of silicon carbide particles. Pulse-on time (Ton), pulse-off time (Toff), and servo voltage (SV) have a great influence on surface roughness. The Ra increases with an increase in Ton and SV, but decreases slightly with an increase in Toff. Moreover, compared with experimental data, the relative error of Ra calculated from the thermophysical model is 0.47–7.54%. This means that the developed thermophysical model has a good application and promotion value for the WEDM of metal matrix composite material. Full article
Show Figures

Figure 1

10 pages, 1087 KiB  
Article
Co-Extraction of DNA and RNA from Candida albicans Using a Chemical Method in Conjunction with Silicon Carbide with Few Cells
by Elizabeth Cristina Vieira de Freitas, Francisca Alves dos Santos, Maria Raíssa Vieira Lopes, Dárcio Luiz de Sousa Júnior, Tássia Thaís Al Yafawi, Ana Carolina Ferreira Araújo, Priscilla Ramos Freitas, Irwin Rose Alencar de Menezes, Henrique Douglas Melo Coutinho and Maria Karollyna do Nascimento Silva Leandro
DNA 2024, 4(4), 417-426; https://doi.org/10.3390/dna4040029 - 12 Nov 2024
Viewed by 329
Abstract
Objective: The study aimed to optimize protocols for the joint extraction of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from 0.025 × 106 CFU of Candida albicans, targeting to overcome the challenges in the extraction of these genetic materials. Materials and [...] Read more.
Objective: The study aimed to optimize protocols for the joint extraction of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from 0.025 × 106 CFU of Candida albicans, targeting to overcome the challenges in the extraction of these genetic materials. Materials and methods: From this, treated silicon carbide (SiC) granules were added to fungal samples from methods 1, 2, and 3 obtained from aliquots of BHI or Sabouraud medium to cause cell lysis and enable the isolation of these macromolecules by phenol and chloroform. The concentration and integrity of the extracted nucleic acids were analyzed, respectively, by spectrophotometry using the A260/A280 ratios and 1% agarose gel electrophoresis. Results: Therefore, method 3 is the one that most comprises samples considered pure of both DNA and RNA, simultaneously. Furthermore, the presence of intact RNAs corresponding to the base pair size such as 5.8 S rRNA and tRNA was verified during electrophoresis, considering the particularities of RNA, which makes it very unstable and easily degraded. Conclusions: Thus, it results in a faster and simpler method in addition to obtain promising results using minimal amounts of biological sample and offering a valuable alternative for small laboratories to work with molecular biology. Full article
Show Figures

Figure 1

12 pages, 5731 KiB  
Article
A Programmable Gate Driver Module-Based Multistage Voltage Regulation SiC MOSFET Switching Strategy
by Jixiang Tan, Zhongfu Zhou and Gongjie Zou
Electronics 2024, 13(22), 4379; https://doi.org/10.3390/electronics13224379 - 8 Nov 2024
Viewed by 382
Abstract
Silicon carbide (SiC) metal-oxide semiconductor field-effect transistors (MOSFETs), as a new material, have the advantages of low drain-source resistance, high thermal conductivity, low leakage current, and high switching frequency compared with silicon (Si)-based MOSFETs. Therefore, in many industrial applications, Si MOSFETs have been [...] Read more.
Silicon carbide (SiC) metal-oxide semiconductor field-effect transistors (MOSFETs), as a new material, have the advantages of low drain-source resistance, high thermal conductivity, low leakage current, and high switching frequency compared with silicon (Si)-based MOSFETs. Therefore, in many industrial applications, Si MOSFETs have been replaced by SiC MOSFETs. However, as the switching speed increases exponentially, some problems are amplified, the most serious of which is the overshoot of current and voltage. The increase in voltage and current slope caused by high switching speeds inevitably leads to overshoot, oscillations, and additional losses in the circuit. This paper focusses on the actual performance of the optimised switching strategy (OSS) in circuit testing and combines the existing simulation results to verify the practicability of OSS. In this paper, the optimised switching strategy is introduced first, and then, the LTspice model of SiC MOSFET is established in detail and verifies the feasibility of the OSS through half-bridge circuit simulation. Finally, the test platform is built using a programmable gate drive module (2ASC-12A1HP). Through a 400 V/30 A double-pulse test, the practicality of the OSS is verified. The experiments show that the OSS can greatly improve the switching performance of SiC MOSFETs. Full article
(This article belongs to the Special Issue New Horizons and Recent Advances of Power Electronics)
Show Figures

Figure 1

20 pages, 27328 KiB  
Article
Enhancing Wear Resistance of AA7075/SiC/Fly Ash Composites Through Friction Stir Processing
by Namdev Ashok Patil, Santoshi Pedapati and Srinivasa Rao Pedapati
J. Compos. Sci. 2024, 8(11), 461; https://doi.org/10.3390/jcs8110461 - 7 Nov 2024
Viewed by 438
Abstract
In this study, the wear behavior of AA7075/silicon carbide/fly ash hybrid surface composites processed with a clean and green friction stir processing technique was investigated. The microstructure of the composites was investigated to determine the particle dispersion. Wear tests using a pin-on-disc tribometer [...] Read more.
In this study, the wear behavior of AA7075/silicon carbide/fly ash hybrid surface composites processed with a clean and green friction stir processing technique was investigated. The microstructure of the composites was investigated to determine the particle dispersion. Wear tests using a pin-on-disc tribometer were conducted, and wear tracks and debris analyses were conducted using scanning electron microscopic imaging, EDX, and mapping. The wear rate of the composites was higher in the case of the composites with agglomerated zones, which led to the loose SiC/fly ash particles pulling out during the action of dry sliding. However, on the other hand, the wear resistance was improved in the composites with uniformly distributed SiC/fly ash particles. The hard SiC/fly ash particles acted as optimized load-bearing asperities and induced more wear resistance during the action of dry sliding against the mating plate, which was made of mild steel. In the case of the well-dispersed composites, the wear mechanisms shifted from fretting fatigue and adhesion to abrasion. The presence of a high Fe content in the wear debris was confirmed in the most wear-resistant composite sample, S-20, which was produced with the following parameters: tool rotation (w) of 1000 rpm, tool traverse (v) of 40 mm/min, hybrid ratio (HR) of 75:25, and a volume percentage of reinforcements (vol.%) of 8. Full article
(This article belongs to the Special Issue Welding and Friction Stir Processes for Composite Materials)
Show Figures

Figure 1

9 pages, 2684 KiB  
Article
Effect of Heat Treatment on Mechanical Properties and Thermal Expansion of Al6063-SiC-Graphite, Molybdenum Disulfide Hybrid Composite
by Kawita Chattrakul, Nuttaphong Sornsuwit and Phisith Muangnoy
Processes 2024, 12(11), 2464; https://doi.org/10.3390/pr12112464 - 7 Nov 2024
Viewed by 432
Abstract
The effect of casting and T6 heat treatment at 540 °C for 3 h, quenching in water, heating to 180 °C for 4 h and cooling at room temperature on the mechanical properties and thermal expansion of Al6063 with reinforcement of 10 wt.% [...] Read more.
The effect of casting and T6 heat treatment at 540 °C for 3 h, quenching in water, heating to 180 °C for 4 h and cooling at room temperature on the mechanical properties and thermal expansion of Al6063 with reinforcement of 10 wt.% SiC/1 wt.% Y2O3/3 wt.% Graphite, 3 wt.% MoS2 was studied, comparing the properties of the material before and after treatment. The results of the tensile test found that the ultimate tensile stress (UTS) increased without reinforcement applied but decreased the elongation at breaking point (%El). This contrasts with the reinforcement applied group, which showed an increase in the UTS and %EL by 4.1% and 32.5% in Gr, 10.5% and 44.9% in MoS2, respectively. Meanwhile, the UTS and %EL increased by 23.5% and 26.98% in Gr, 22.7% and 15.0% in MoS2, respectively, after the T6. Cracking analysis in the treatment without the addition of reinforcement showed ductile and brittle fracture after casting, similar to the effects of being treated by T6, which was characterized by brittle fracture. This was contrary to the reinforcement-added treatment, which was characterized by ductile fracture before and after treatment. The thermal expansion coefficient (CTE) after treatment without reinforcement applied was reduced, while no significant difference was seen with reinforcement applied. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 2718 KiB  
Article
Crystal Chemistry at Interfaces Between Liquid Al and Polar SiC{0001} Substrates
by Changming Fang and Zhongyun Fan
Metals 2024, 14(11), 1258; https://doi.org/10.3390/met14111258 - 6 Nov 2024
Viewed by 446
Abstract
Silicon carbide (SiC) has been widely added into light metals, e.g., Al, to enhance their mechanical performance and corrosion resistance. SiC particle-reinforced metal matrix composites (SiC-MMCs) exhibit low weight/volume ratios, high strength/hardness, high corrosion resistance, and thermal stability. They have potential applications in [...] Read more.
Silicon carbide (SiC) has been widely added into light metals, e.g., Al, to enhance their mechanical performance and corrosion resistance. SiC particle-reinforced metal matrix composites (SiC-MMCs) exhibit low weight/volume ratios, high strength/hardness, high corrosion resistance, and thermal stability. They have potential applications in aerospace, automobiles, and other specialized equipment. The macro-mechanical properties of Al/SiC composites depend on the local structures and chemical interactions at the Al/SiC interfaces at the atomic level. Moreover, the added SiC particles may act as potential nucleation sites during solidification. We investigate local atomic ordering and chemical interactions at the interfaces between liquid Al (Al(l) in short) and polar SiC substrates using ab initio molecular dynamics (AIMD) methods. The simulations reveal a rich variety of interfacial interactions. Charge transfer occurs from Al(l) to C-terminating atoms (Δq = 0.3e/Al on average), while chemical bonding between interfacial Si and Al(l) atoms is more covalent with a minor charge transfer of Δq = 0.04e/Al. The prenucleation at both interfaces is moderate with three to four recognizable layers. The information obtained here helps increase understanding of the interfacial interactions at Al/SiC at the atomic level and the related macro-mechanical properties, which is helpful in designing novel SiC-MMC materials with desirable properties and optimizing related manufacturing and machining processes. Full article
(This article belongs to the Special Issue Multi-scale Simulation of Metallic Materials (2nd Edition))
Show Figures

Figure 1

10 pages, 14826 KiB  
Article
Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants
by Haochen Zhu, Xinyi Xia, Chao-Ching Chiang, Rachael S. Watson Levings, Justin Correa, Fernanda Regina Godoy Rocha, Steve C. Ghivizzani, Fan Ren, Dan Neal, Patricia dos Santos Calderon and Josephine F. Esquivel-Upshaw
Materials 2024, 17(21), 5392; https://doi.org/10.3390/ma17215392 - 4 Nov 2024
Viewed by 427
Abstract
The demand for dental implants has increased, establishing them as the standard of care for replacing missing teeth. Several factors contribute to the success or failure of an implant post-placement. Modifications to implant surfaces can enhance the biological interactions between bone cells and [...] Read more.
The demand for dental implants has increased, establishing them as the standard of care for replacing missing teeth. Several factors contribute to the success or failure of an implant post-placement. Modifications to implant surfaces can enhance the biological interactions between bone cells and the implant, promoting better outcomes. Surface coatings have been developed to electrochemically alter implant surfaces, aiming to reduce healing time, enhance bone growth, and prevent bacterial adhesion. Quaternized silicon carbon nitride (QSiCN) is a novel material with unique electrochemical and biological properties. This study aimed to assess the influence of QSiCN, silicon carbide nitride (SiCN), and silicon carbide (SiC) coatings on the viability of osteoblast cells on nanostructured titanium surfaces. The experiment utilized thirty-two titanium sheets with anodized TiO2 nanotubes featuring nanotube diameters of 50 nm and 150 nm. These sheets were divided into eight groups (n = 4): QSiCN-coated 50 nm, QSiCN-coated 150 nm, SiCN-coated 50 nm, SiCN-coated 150 nm, SiC-coated 50 nm, SiC-coated 150 nm, non-coated 50 nm, and non-coated 150 nm. Preosteoblast MC3T3-E1 Subclone 4 cells (ATCC, USA) were used to evaluate osteoblast viability. After three days of cell growth, samples were assessed using scanning electron microscopy (SEM). The results indicated that QSiCN coatings significantly increased osteoblast proliferation (p < 0.005) compared to other groups. The enhanced cell adhesion observed with QSiCN coatings is likely due to the positive surface charge imparted by N+. Full article
(This article belongs to the Special Issue Materials for Hard Tissue Repair and Regeneration (Third Edition))
Show Figures

Figure 1

20 pages, 15459 KiB  
Article
Test Methodology for Short-Circuit Assessment and Safe Operation Identification for Power SiC MOSFETs
by Joao Oliveira, Jean-Michel Reynes, Hervé Morel, Pascal Frey, Olivier Perrotin, Laurence Allirand, Stéphane Azzopardi, Michel Piton and Fabio Coccetti
Energies 2024, 17(21), 5476; https://doi.org/10.3390/en17215476 - 1 Nov 2024
Viewed by 430
Abstract
The short-circuit (SC) immunity of power silicon carbide (SiC) MOSFETs is critical for high-reliability applications, where robust monitoring and protection strategies are essential to ensure system safety. Despite their superior voltage blocking capabilities and high energy efficiency, SiC MOSFETs exhibit greater sensitivity to [...] Read more.
The short-circuit (SC) immunity of power silicon carbide (SiC) MOSFETs is critical for high-reliability applications, where robust monitoring and protection strategies are essential to ensure system safety. Despite their superior voltage blocking capabilities and high energy efficiency, SiC MOSFETs exhibit greater sensitivity to SC-induced degradation compared to their silicon counterparts. This increased vulnerability necessitates the precise assessment of the key SC performance metrics, such as short-circuit withstand time (TSCWT), as well as a deeper understanding of the failure mechanisms. In this study, a comprehensive experimental methodology for evaluating the SC behavior of SiC MOSFETs is presented and validated using industrial references. The investigation further explores the concept of a Safe Operating Area (SOA) under SC conditions, highlighting the significant impact of quasi-simultaneous SC events on device lifetime. Additionally, an application case study demonstrates how these events can drastically reduce the device’s lifespan. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

30 pages, 68179 KiB  
Article
Microstructure and Corrosion Resistance of 7075 Aluminium Alloy Composite Material Obtained from Chips in the High-Energy Ball Milling Process
by Barbara Kościelniak, Diana Groch, Wojciech J. Nowak, Marcin Drajewicz and Przemysław Kwolek
Materials 2024, 17(21), 5331; https://doi.org/10.3390/ma17215331 - 31 Oct 2024
Viewed by 408
Abstract
The high-energy ball milling process was applied to fabricate a composite material from 7075 aluminium alloy milling chips, silicon carbide, and titanium dioxide powders. Raw materials were ground, and the obtained powders were cold pressed and sintered. It was demonstrated that this method [...] Read more.
The high-energy ball milling process was applied to fabricate a composite material from 7075 aluminium alloy milling chips, silicon carbide, and titanium dioxide powders. Raw materials were ground, and the obtained powders were cold pressed and sintered. It was demonstrated that this method can be used in the recycling of aluminium alloy scrap characterised by a high surface-to-volume ratio, and also that chemical removal of the oxide layer from chips is not necessary. The finest particles, with 50 vol.% of their population below 36 μm, were obtained after grinding for 60 min at a 1000 rpm rotational speed. Such an intensive grinding was necessary to fabricate the compact composite material with a homogeneous microstructure and a low porosity of 0.7%. The corrosion resistance of the composites was studied in 3.5 wt.% NaCl solution using cyclic voltammetry and electrochemical impedance spectroscopy, and corrosion rates in the range of ca. 342 and 3 μA∙cm−2 were obtained. The corrosion mechanism includes aluminium alloy dissolution at the matrix/reinforcement interphase and around intermetallic particles localised within the matrix grains. Full article
(This article belongs to the Special Issue Research on Enhancing Properties of Aluminum-Based Materials)
Show Figures

Figure 1

12 pages, 8249 KiB  
Article
Characteristics of a 1200 V Hybrid Power Switch Comprising a Si IGBT and a SiC MOSFET
by Alireza Sheikhan and E. M. Sankara Narayanan
Micromachines 2024, 15(11), 1337; https://doi.org/10.3390/mi15111337 - 31 Oct 2024
Viewed by 517
Abstract
Hybrid Power Switches (HPS) combine the advantages of SiC unipolar and Si bipolar devices and therefore can bridge the gap between these technologies. In this paper, the performance of a hybrid power switch configuration based on the latest SiC MOSFET and Si IGBT [...] Read more.
Hybrid Power Switches (HPS) combine the advantages of SiC unipolar and Si bipolar devices and therefore can bridge the gap between these technologies. In this paper, the performance of a hybrid power switch configuration based on the latest SiC MOSFET and Si IGBT technologies is presented. The device is evaluated through experimental measurements of its characteristics under various conditions. The results show the HPS can achieve switching losses as low as a SiC MOSFET while offering the high current capability of the IGBT without significant increase in costs. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules)
Show Figures

Figure 1

14 pages, 1663 KiB  
Article
Effects of Finishing on Surface Roughness of Four Different Glass-Ionomer Cements and One Alkasite: In Vitro Investigation over Time Using Aging Simulation
by Alexander Behlau, Isabelle Behlau, Michael Payer, Gerd Leitinger, Katharina Hanscho, Lumnije Kqiku and Karl Glockner
J. Funct. Biomater. 2024, 15(11), 325; https://doi.org/10.3390/jfb15110325 - 31 Oct 2024
Viewed by 552
Abstract
In 2017, Europe implemented a ban on amalgam restorations for children aged <15 years and for pregnant/breastfeeding women, highlighting the need for alternative filling materials exhibiting less surface roughness and enhanced longevity. This in vitro study aimed to examine the surface roughness variations [...] Read more.
In 2017, Europe implemented a ban on amalgam restorations for children aged <15 years and for pregnant/breastfeeding women, highlighting the need for alternative filling materials exhibiting less surface roughness and enhanced longevity. This in vitro study aimed to examine the surface roughness variations of five amalgam-replacement materials across three time points and using six finishing methods: (1) no finishing (control), (2) Arkansas burs, (3) diamond burs, (4) tungsten carbide burs, (5) SofLex discs in descending grit size, and (6) coarse SofLex discs combined with silicone polishing. We prepared 960 samples. Each material group, i.e., Cention Forte (CNF), DeltaFil (DLF), Ketac Universal (KTU), IonoStar Molar (ISM), and Equia Forte HT (EQF), comprised 60 samples (n = 10 per finishing method) created using standardized 3D-printed metal molds. Surface roughness (Sa) was measured immediately after finishing, after 30 days of storage in distilled water, and after thermocycling (5000 cycles) using a non-contact profilometer. The results indicate that conventional and hybrid glass-ionomer cements have smoother surfaces than high-viscosity GICs. The DLF and CNF groups exhibited stable outcomes. These findings underscore the importance of selecting appropriate finishing methods based on the restorative material to minimize surface roughness. Full article
(This article belongs to the Special Issue Biomaterials in Restorative Dentistry and Endodontics)
Show Figures

Figure 1

Back to TopTop