Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,810)

Search Parameters:
Keywords = SVM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3327 KiB  
Article
Explainable Machine Learning Model to Accurately Predict Protein-Binding Peptides
by Sayed Mehedi Azim, Aravind Balasubramanyam, Sheikh Rabiul Islam, Jinglin Fu and Iman Dehzangi
Algorithms 2024, 17(9), 409; https://doi.org/10.3390/a17090409 - 12 Sep 2024
Abstract
Enzymes play key roles in the biological functions of living organisms, which serve as catalysts to and regulate biochemical reaction pathways. Recent studies suggest that peptides are promising molecules for modulating enzyme function due to their advantages in large chemical diversity and well-established [...] Read more.
Enzymes play key roles in the biological functions of living organisms, which serve as catalysts to and regulate biochemical reaction pathways. Recent studies suggest that peptides are promising molecules for modulating enzyme function due to their advantages in large chemical diversity and well-established methods for library synthesis. Experimental approaches to identify protein-binding peptides are time-consuming and costly. Hence, there is a demand to develop a fast and accurate computational approach to tackle this problem. Another challenge in developing a computational approach is the lack of a large and reliable dataset. In this study, we develop a new machine learning approach called PepBind-SVM to predict protein-binding peptides. To build this model, we extract different sequential and physicochemical features from peptides and use a Support Vector Machine (SVM) as the classification technique. We train this model on the dataset that we also introduce in this study. PepBind-SVM achieves 92.1% prediction accuracy, outperforming other classifiers at predicting protein-binding peptides. Full article
(This article belongs to the Special Issue Machine Learning for Pattern Recognition (2nd Edition))
Show Figures

Figure 1

20 pages, 3479 KiB  
Article
Fault Diagnosis of Wind Turbine Component Based on an Improved Dung Beetle Optimization Algorithm to Optimize Support Vector Machine
by Qiang Li, Ming Li, Chao Fu and Jin Wang
Electronics 2024, 13(18), 3621; https://doi.org/10.3390/electronics13183621 - 12 Sep 2024
Abstract
Due to high probability of blade faults, bearing faults, sensor faults, and communication faults in pitch systems during the long-term operation of wind turbine components, and the complex operation environment which increases the uncertainty of fault types, this paper proposes a fault diagnosis [...] Read more.
Due to high probability of blade faults, bearing faults, sensor faults, and communication faults in pitch systems during the long-term operation of wind turbine components, and the complex operation environment which increases the uncertainty of fault types, this paper proposes a fault diagnosis method for wind turbine components based on an Improved Dung Beetle Optimization (IDBO) algorithm to optimize Support Vector Machine (SVM). Firstly, the Halton sequence is initially employed to populate the population, effectively mitigating the issue of local optima. Secondly, the subtraction averaging optimization strategy is introduced to accelerate the dung beetle algorithm in solving complex problems and improve its global optimization ability. Finally, incorporating smooth development variation helps improve data quality and the accuracy of the model. The experimental results indicate that the IDBO-optimized SVM (IDBO-SVM) achieves a 96.7% fault diagnosis rate for wind turbine components. With the proposed IDBO-SVM method, fault diagnosis of wind turbine components is more accurate and stable, and its practical application is excellent. Full article
Show Figures

Figure 1

19 pages, 1822 KiB  
Article
Renal Cell Carcinoma Discrimination through Attenuated Total Reflection Fourier Transform Infrared Spectroscopy of Dried Human Urine and Machine Learning Techniques
by Bogdan Adrian Buhas, Lucia Ana-Maria Muntean, Guillaume Ploussard, Bogdan Ovidiu Feciche, Iulia Andras, Valentin Toma, Teodor Andrei Maghiar, Nicolae Crișan, Rareș-Ionuț Știufiuc and Constantin Mihai Lucaciu
Int. J. Mol. Sci. 2024, 25(18), 9830; https://doi.org/10.3390/ijms25189830 - 11 Sep 2024
Viewed by 244
Abstract
Renal cell carcinoma (RCC) is the sixth most common cancer in men and is often asymptomatic, leading to incidental detection in advanced disease stages that are associated with aggressive histology and poorer outcomes. Various cancer biomarkers are found in urine samples from patients [...] Read more.
Renal cell carcinoma (RCC) is the sixth most common cancer in men and is often asymptomatic, leading to incidental detection in advanced disease stages that are associated with aggressive histology and poorer outcomes. Various cancer biomarkers are found in urine samples from patients with RCC. In this study, we propose to investigate the use of Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) on dried urine samples for distinguishing RCC. We analyzed dried urine samples from 49 patients with RCC, confirmed by histopathology, and 39 healthy donors using ATR-FTIR spectroscopy. The vibrational bands of the dried urine were identified by comparing them with spectra from dried artificial urine, individual urine components, and dried artificial urine spiked with urine components. Urea dominated all spectra, but smaller intensity peaks, corresponding to creatinine, phosphate, and uric acid, were also identified. Statistically significant differences between the FTIR spectra of the two groups were obtained only for creatinine, with lower intensities for RCC cases. The discrimination of RCC was performed through Principal Component Analysis combined with Linear Discriminant Analysis (PCA–LDA) and Support Vector Machine (SVM). Using PCA–LDA, we achieved a higher discrimination accuracy (82%) (using only six Principal Components to avoid overfitting), as compared to SVM (76%). Our results demonstrate the potential of urine ATR-FTIR combined with machine learning techniques for RCC discrimination. However, further studies, especially of other urological diseases, must validate this approach. Full article
(This article belongs to the Special Issue Machine Learning in Disease Diagnosis and Treatment)
Show Figures

Figure 1

15 pages, 4552 KiB  
Communication
Research on On-Line Monitoring of Grinding Wheel Wear Based on Multi-Sensor Fusion
by Jingsong Duan, Guohua Cao, Guoqing Ma, Zhenglin Yu and Changshun Shao
Sensors 2024, 24(18), 5888; https://doi.org/10.3390/s24185888 - 11 Sep 2024
Viewed by 149
Abstract
The state of a grinding wheel directly affects the surface quality of the workpiece. The monitoring of grinding wheel wear state can allow one to efficiently identify grinding wheel wear information and to timely and effectively trim the grinding wheel. At present, on-line [...] Read more.
The state of a grinding wheel directly affects the surface quality of the workpiece. The monitoring of grinding wheel wear state can allow one to efficiently identify grinding wheel wear information and to timely and effectively trim the grinding wheel. At present, on-line monitoring technology using specific sensor signals can detect abnormal grinding wheel wear in a timely manner. However, due to the non-linearity and complexity of the grinding wheel wear process, as well as the interference and noise of the sensor signal, the accuracy and reliability of on-line monitoring technology still need to be improved. In this paper, an intelligent monitoring system based on multi-sensor fusion is established, and this system can be used for precise grinding wheel wear monitoring. The proposed system focuses on titanium alloy, a typical difficult-to-process aerospace material, and addresses the issue of low on-line monitoring accuracy found in traditional single-sensor systems. Additionally, a multi-eigenvalue fusion algorithm based on an improved support vector machine (SVM) is proposed. In this study, the mean square value of the wavelet packet decomposition coefficient of the acoustic emission signal, the grinding force ratio of the force signal, and the effective value of the vibration signal were taken as inputs for the improved support vector machine, and the recognition strategy was adjusted using the entropy weight evaluation method. A high-precision grinding machine was used to carry out multiple sets of grinding wheel wear experiments. After being processed by the multi-sensor integrated precision grinding wheel wear intelligent monitoring system, the collected signals can accurately reflect the grinding wheel wear state, and the monitoring accuracy can reach more than 92%. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 1836 KiB  
Article
Advanced Detection of Abnormal ECG Patterns Using an Optimized LADTree Model with Enhanced Predictive Feature: Potential Application in CKD
by Muhammad Binsawad and Bilal Khan
Algorithms 2024, 17(9), 406; https://doi.org/10.3390/a17090406 - 11 Sep 2024
Viewed by 317
Abstract
Detecting abnormal ECG patterns is a crucial area of study aimed at enhancing diagnostic accuracy and enabling early identification of Chronic Kidney Disease (CKD)-related abnormalities. This study compares a unique strategy for abnormal ECG patterns using the LADTree model to standard machine learning [...] Read more.
Detecting abnormal ECG patterns is a crucial area of study aimed at enhancing diagnostic accuracy and enabling early identification of Chronic Kidney Disease (CKD)-related abnormalities. This study compares a unique strategy for abnormal ECG patterns using the LADTree model to standard machine learning (ML) models. The study design includes data collection from the MIT-BIH Arrhythmia dataset, preprocessing to address missing values, and feature selection using the CfsSubsetEval method using Best First Search, Harmony Search, and Particle Swarm Optimization Search approaches. The performance assessment consists of two scenarios: percentage splitting and K-fold cross-validation, with several evaluation measures such as Kappa statistic (KS), Best First Search, recall, precision-recall curve (PRC) area, receiver operating characteristic (ROC) area, and accuracy. In scenario 1, LADTree outperforms other ML models in terms of mean absolute error (MAE), KS, recall, ROC area, and PRC. Notably, the Naïve Bayes (NB) model has the lowest MAE, but the Support Vector Machine (SVM) performs badly. In scenario 2, NB has the lowest MAE but the highest KS, recall, ROC area, and PRC area, closely followed by LADTree. Overall, the findings indicate that the LADTree model, when optimized for ECG signal data, delivers promising results in detecting abnormal ECG patterns potentially related with CKD. This study advances predictive modeling tools for identifying abnormal ECG patterns, which could enhance early detection and management of CKD, potentially leading to improved patient outcomes and healthcare practices. Full article
Show Figures

Figure 1

19 pages, 8192 KiB  
Article
Investigating the Relationship between Balanced Composition and Aesthetic Judgment through Computational Aesthetics and Neuroaesthetic Approaches
by Fangfu Lin, Wu Song, Yan Li and Wanni Xu
Symmetry 2024, 16(9), 1191; https://doi.org/10.3390/sym16091191 - 10 Sep 2024
Viewed by 203
Abstract
Background: Symmetry is a special kind of balance. This study aims to systematically explore and apply the role of balanced composition in aesthetic judgments by focusing on balanced composition features and employing research methods from computational aesthetics and neuroaesthetics. Methods: First, experimental materials [...] Read more.
Background: Symmetry is a special kind of balance. This study aims to systematically explore and apply the role of balanced composition in aesthetic judgments by focusing on balanced composition features and employing research methods from computational aesthetics and neuroaesthetics. Methods: First, experimental materials were classified by quantifying balanced composition using several indices, including symmetry, center of gravity, and negative space. An EEG experiment was conducted with 18 participants, who were asked to respond dichotomously to the same stimuli under different judgment tasks (balance and aesthetics), with both behavioral and EEG data being recorded and analyzed. Subsequently, participants’ data were combined with balanced composition indices to construct and analyze various SVM classification models. Results: Participants largely used balanced composition as a criterion for aesthetic evaluation. ERP data indicated that from 300–500 ms post-stimulus, brain activation was more significant in the aesthetic task, with unbeautiful and imbalanced stimuli eliciting larger frontal negative waves and occipital positive waves. From 600–1000 ms, beautiful stimuli caused smaller negative waves in the PZ channel. The results of the SVM models indicated that the model incorporating aesthetic subject data (ACC = 0.9989) outperforms the model using only balanced composition parameters of the aesthetic object (ACC = 0.7074). Conclusions: Balanced composition is a crucial indicator in aesthetics, with similar early processing stages in both balance and aesthetic judgments. Multi-modal data models validated the advantage of including human factors in aesthetic evaluation systems. This interdisciplinary approach not only enhances our understanding of the cognitive and emotional processes involved in aesthetic judgments but also enables the construction of more reasonable machine learning models to simulate and predict human aesthetic preferences. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

18 pages, 4990 KiB  
Article
Hyperspectral Imaging and Machine Learning: A Promising Tool for the Early Detection of Tetranychus urticae Koch Infestation in Cotton
by Mariana Yamada, Leonardo Vinicius Thiesen, Fernando Henrique Iost Filho and Pedro Takao Yamamoto
Agriculture 2024, 14(9), 1573; https://doi.org/10.3390/agriculture14091573 - 10 Sep 2024
Viewed by 231
Abstract
Monitoring Tetranychus urticae Koch in cotton crops is challenging due to the vast crop areas and clustered mite attacks, hindering early infestation detection. Hyperspectral imaging offers a solution to such a challenge by capturing detailed spectral information for more accurate pest detection. This [...] Read more.
Monitoring Tetranychus urticae Koch in cotton crops is challenging due to the vast crop areas and clustered mite attacks, hindering early infestation detection. Hyperspectral imaging offers a solution to such a challenge by capturing detailed spectral information for more accurate pest detection. This study evaluated machine learning models for classifying T. urticae infestation levels in cotton using proximal hyperspectral remote sensing. Leaf reflection data were collected over 21 days, covering various infestation levels: no infestation (0 mites/leaf), low (1–10), medium (11–30), and high (>30). Data were preprocessed, and spectral bands were selected to train six machine learning models, including Random Forest (RF), Principal Component Analysis–Linear Discriminant Analysis (PCA-LDA), Feedforward Neural Network (FNN), Support Vector Machine (SVM), k-Nearest Neighbor (kNN), and Partial Least Squares (PLS). Our analysis identified 31 out of 281 wavelengths in the near-infrared (NIR) region (817–941 nm) that achieved accuracies between 80% and 100% across 21 assessment days using Random Forest and Feedforward Neural Network models to distinguish infestation levels. The PCA loadings highlighted 907.69 nm as the most significant wavelength for differentiating levels of two-spotted mite infestation. These findings are significant for developing novel monitoring methodologies for T. urticae in cotton, offering insights for early detection, potential cost savings in cotton production, and the validation of the spectral signature of T. urticae damage, thus enabling more efficient monitoring methods. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

16 pages, 5268 KiB  
Article
Discrimination of Explosive Residues by Standoff Sensing Using Anodic Aluminum Oxide Microcantilever Laser Absorption Spectroscopy with Kernel-Based Machine Learning
by Ho-Jung Jeong, Chang-Ju Park, Kihyun Kim and Yangkyu Park
Sensors 2024, 24(18), 5867; https://doi.org/10.3390/s24185867 - 10 Sep 2024
Viewed by 184
Abstract
Standoff laser absorption spectroscopy (LAS) has attracted considerable interest across many applications for environmental safety. Herein, we propose an anodic aluminum oxide (AAO) microcantilever LAS combined with machine learning (ML) for sensitive and selective standoff discrimination of explosive residues. A nanoporous AAO microcantilever [...] Read more.
Standoff laser absorption spectroscopy (LAS) has attracted considerable interest across many applications for environmental safety. Herein, we propose an anodic aluminum oxide (AAO) microcantilever LAS combined with machine learning (ML) for sensitive and selective standoff discrimination of explosive residues. A nanoporous AAO microcantilever with a thickness of <1 μm was fabricated using a micromachining process; its spring constant (18.95 mN/m) was approximately one-third of that of a typical Si microcantilever (53.41 mN/m) with the same dimensions. The standoff infrared (IR) spectra of pentaerythritol tetranitrate, cyclotrimethylene trinitramine, and trinitrotoluene were measured using our AAO microcantilever LAS over a wide range of wavelengths, and they closely matched the spectra obtained using standard Fourier transform infrared spectroscopy. The standoff IR spectra were fed into ML models, such as kernel extreme learning machines (KELMs), support vector machines (SVMs), random forest (RF), and backpropagation neural networks (BPNNs). Among these four ML models, the kernel-based ML models (KELM and SVM) were found to be efficient learning models able to satisfy both a high prediction accuracy (KELM: 94.4%, SVM: 95.8%) and short hyperparameter optimization time (KELM: 5.9 s, SVM: 7.6 s). Thus, the AAO microcantilever LAS with kernel-based learners could emerge as an efficient sensing method for safety monitoring. Full article
(This article belongs to the Special Issue MEMS and NEMS Sensors: 2nd Edition)
Show Figures

Figure 1

14 pages, 1620 KiB  
Article
Interpretable Support Vector Machine and Its Application to Rehabilitation Assessment
by Woojin Kim, Hyunwoo Joe, Hyun-Suk Kim and Daesub Yoon
Electronics 2024, 13(18), 3584; https://doi.org/10.3390/electronics13183584 - 10 Sep 2024
Viewed by 185
Abstract
This paper does present an interpretable support vector machine (SVM) and its application to rehabilitation assessment. We introduce the concept of nearest boundary point to standardize the one-class SVM decision function and determine the shortest path for data from abnormal cases to become [...] Read more.
This paper does present an interpretable support vector machine (SVM) and its application to rehabilitation assessment. We introduce the concept of nearest boundary point to standardize the one-class SVM decision function and determine the shortest path for data from abnormal cases to become those from normal cases. This analytical approach is computationally simple and provides a unique solution. The nearest boundary point of abnormal data can also be used to analyze the cause of abnormal classification and indicate countermeasures for normalization. These properties render the proposed interpretable SVM valuable for medical assessment applications and other problems that require careful consideration of classification results for treatment. Simulation and application results demonstrate the feasibility and effectiveness of the proposed method. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

23 pages, 5184 KiB  
Article
Predictive Modeling of UHPC Compressive Strength: Integration of Support Vector Regression and Arithmetic Optimization Algorithm
by Liuyan Wang, Lin Liu, Dong Dai, Bo Liu and Zhenya Cheng
Appl. Sci. 2024, 14(17), 8083; https://doi.org/10.3390/app14178083 - 9 Sep 2024
Viewed by 269
Abstract
Based on an in-depth analysis of the factors influencing the compressive strength of ultra-high-performance concrete (UHPC), this study examined the impact of both single factorsand combined factors on UHPC performance using experimental data. The correlation analysis indicates that cement content, water content, steel [...] Read more.
Based on an in-depth analysis of the factors influencing the compressive strength of ultra-high-performance concrete (UHPC), this study examined the impact of both single factorsand combined factors on UHPC performance using experimental data. The correlation analysis indicates that cement content, water content, steel fiber, and fly ash significantly affect the strength of UHPC, whereas silica fume, superplasticizers, and slag powder have a relatively smaller influence. This analysis provides a scientific basis for model development. Furthermore, the support vector regression (SVR) model was optimized using the arithmetic optimization algorithm (AOA). The superior performance and computational efficiency of the AOA–SVR model in predicting UHPC compressive strength were validated. Compared to SVR, support vector machine (SVM), and other single models, the AOA–SVR model achieves the highest R2 value and the lowest error rates. The results demonstrate that the optimized AOA–SVR model possesses excellent generalization ability and can more accurately predict the compressive strength of UHPC. Full article
Show Figures

Figure 1

18 pages, 6499 KiB  
Article
Permeability Characteristics of Improved Loess and Prediction Method for Permeability Coefficient
by Guoliang Ran, Yanpeng Zhu, Xiaohui Yang, Anping Huang and Dong Chen
Appl. Sci. 2024, 14(17), 8072; https://doi.org/10.3390/app14178072 - 9 Sep 2024
Viewed by 251
Abstract
Due to its unique geotechnical properties, loess presents itself as a cost-effective and energy-efficient material for engineering construction, aiding in cost reduction and environmental sustainability. However, to meet engineering specifications, loess often requires enhancement. Evaluating its permeability properties holds significant importance for employing [...] Read more.
Due to its unique geotechnical properties, loess presents itself as a cost-effective and energy-efficient material for engineering construction, aiding in cost reduction and environmental sustainability. However, to meet engineering specifications, loess often requires enhancement. Evaluating its permeability properties holds significant importance for employing improved loess for construction materials in landfills and artificial water bodies. This study investigates the influence of dry densities, grain size characteristics, grain size distribution, and admixture contents and types on the permeability of improved loess, focusing on the Malan and Lishi loess. The falling head permeability test was conducted to analyze how each factor affects the permeability of the improved loess. The findings indicate that the permeability coefficient decreases with increased dry density and admixture content. Conversely, it demonstrates a linear increase with the average grain size (d50), restricted grain size (d60), and the product of the coefficient of uniformity and coefficient of curvature (Cu × Cc). The primary influencing factor is the type of admixture, followed by Cc and d60. Furthermore, this study developed a predictive model for permeability using a support vector machine (SVM), surpassing the predictive accuracy of linear regression and neural network models. The model provides a robust prediction for the permeability of superior loess material. Full article
Show Figures

Figure 1

12 pages, 617 KiB  
Article
Radiomic Analysis of Treatment Effect for Patients with Radiation Necrosis Treated with Pentoxifylline and Vitamin E
by Jimmy S. Patel, Elahheh Salari, Xuxin Chen, Jeffrey Switchenko, Bree R. Eaton, Jim Zhong, Xiaofeng Yang, Hui-Kuo G. Shu and Lisa J. Sudmeier
Tomography 2024, 10(9), 1501-1512; https://doi.org/10.3390/tomography10090110 - 9 Sep 2024
Viewed by 214
Abstract
Background: The combination of oral pentoxifylline (Ptx) and vitamin E (VitE) has been used to treat radiation-induced fibrosis and soft tissue injury. Here, we review outcomes and perform a radiomic analysis of treatment effects in patients prescribed Ptx + VitE at our institution [...] Read more.
Background: The combination of oral pentoxifylline (Ptx) and vitamin E (VitE) has been used to treat radiation-induced fibrosis and soft tissue injury. Here, we review outcomes and perform a radiomic analysis of treatment effects in patients prescribed Ptx + VitE at our institution for the treatment of radiation necrosis (RN). Methods: A total of 48 patients treated with stereotactic radiosurgery (SRS) had evidence of RN and had MRI before and after starting Ptx + VitE. The radiation oncologist’s impression of the imaging in the electronic medical record was used to score response to treatment. Support Vector Machine (SVM) was used to train a model of radiomics features derived from radiation necrosis on pre- and 1st post-treatment T1 post-contrast MRIs that can classify the ultimate response to treatment with Ptx + VitE. Results: A total of 43.8% of patients showed evidence of improvement, 18.8% showed no change, and 25% showed worsening RN upon imaging after starting Ptx + VitE. The median time-to-response assessment was 3.17 months. Nine patients progressed significantly and required Bevacizumab, hyperbaric oxygen therapy, or surgery. Patients who had multiple lesions treated with SRS were less likely to show improvement (p = 0.037). A total of 34 patients were also prescribed dexamethasone, either before (7), with (16), or after starting (11) treatment. The use of dexamethasone was not associated with an improved response to Ptx + VitE (p = 0.471). Three patients stopped treatment due to side effects. Finally, we were able to develop a machine learning (SVM) model of radiomic features derived from pre- and 1st post-treatment MRIs that was able to predict the ultimate treatment response to Ptx + VitE with receiver operating characteristic (ROC) area under curve (AUC) of 0.69. Conclusions: Ptx + VitE appears safe for the treatment of RN, but randomized data are needed to assess efficacy and validate radiomic models, which may assist with prognostication. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

19 pages, 2917 KiB  
Article
Comparative Analysis of Machine Learning Techniques for Water Consumption Prediction: A Case Study from Kocaeli Province
by Kasim Görenekli and Ali Gülbağ
Sensors 2024, 24(17), 5846; https://doi.org/10.3390/s24175846 - 9 Sep 2024
Viewed by 267
Abstract
This study presents a comparative analysis of various Machine Learning (ML) techniques for predicting water consumption using a comprehensive dataset from Kocaeli Province, Turkey. Accurate prediction of water consumption is crucial for effective water resource management and planning, especially considering the significant impact [...] Read more.
This study presents a comparative analysis of various Machine Learning (ML) techniques for predicting water consumption using a comprehensive dataset from Kocaeli Province, Turkey. Accurate prediction of water consumption is crucial for effective water resource management and planning, especially considering the significant impact of the COVID-19 pandemic on water usage patterns. A total of four ML models, Artificial Neural Networks (ANN), Random Forest (RF), Support Vector Machines (SVM), and Gradient Boosting Machines (GBM), were evaluated. Additionally, optimization techniques such as Particle Swarm Optimization (PSO) and the Second-Order Optimization (SOO) Levenberg–Marquardt (LM) algorithm were employed to enhance the performance of the ML models. These models incorporate historical data from previous months to enhance model accuracy and generalizability, allowing for robust predictions that account for both short-term fluctuations and long-term trends. The performance of each model was assessed using cross-validation. The R2 and correlation values obtained in this study for the best-performing models are highlighted in the results section. For instance, the GBM model achieved an R2 value of 0.881, indicating a strong capability in capturing the underlying patterns in the data. This study is one of the first to conduct a comprehensive analysis of water consumption prediction using machine learning algorithms on a large-scale dataset of 5000 subscribers, including the unique conditions imposed by the COVID-19 pandemic. The results highlight the strengths and limitations of each technique, providing insights into their applicability for water consumption prediction. This study aims to enhance the understanding of ML applications in water management and offers practical recommendations for future research and implementation. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

18 pages, 6210 KiB  
Article
Research on Small Sample Rolling Bearing Fault Diagnosis Method Based on Mixed Signal Processing Technology
by Peibo Yu, Jianjie Zhang, Baobao Zhang, Jianhui Cao and Yihang Peng
Symmetry 2024, 16(9), 1178; https://doi.org/10.3390/sym16091178 - 9 Sep 2024
Viewed by 260
Abstract
The diagnosis of bearing faults is a crucial aspect of ensuring the optimal functioning of mechanical equipment. However, in practice, the use of small samples and variable operating conditions may result in suboptimal generalization performance, reduced accuracy, and overfitting for these methods. To [...] Read more.
The diagnosis of bearing faults is a crucial aspect of ensuring the optimal functioning of mechanical equipment. However, in practice, the use of small samples and variable operating conditions may result in suboptimal generalization performance, reduced accuracy, and overfitting for these methods. To address this challenge, this study proposes a bearing fault diagnosis method based on a symmetric two-stream convolutional neural network (CNN). The method employs hybrid signal processing techniques to address the issue of limited data. The method employs a symmetric parallel convolutional neural network (CNN) for the analysis of bearing data. Initially, the data are transformed into time–frequency maps through the utilization of the short-time Fourier transform (STFT) and the simultaneous compressed wavelet transform (SCWT). Subsequently, two sets of one-dimensional vectors are generated by reconstructing the high-resolution features of the faulty samples using a symmetric parallel convolutional neural network (CNN). Feature splicing and fusion are then performed to generate bearing fault diagnosis information and assist fault classification. The experimental results demonstrate that the proposed mixed-signal processing method is effective on small-sample datasets, and verify the feasibility and generality of the symmetric parallel CNN-support vector machine (SVM) model for bearing fault diagnosis under small-sample conditions. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

25 pages, 1972 KiB  
Article
FL-DSFA: Securing RPL-Based IoT Networks against Selective Forwarding Attacks Using Federated Learning
by Rabia Khan, Noshina Tariq, Muhammad Ashraf, Farrukh Aslam Khan, Saira Shafi and Aftab Ali
Sensors 2024, 24(17), 5834; https://doi.org/10.3390/s24175834 - 8 Sep 2024
Viewed by 584
Abstract
The Internet of Things (IoT) is a significant technological advancement that allows for seamless device integration and data flow. The development of the IoT has led to the emergence of several solutions in various sectors. However, rapid popularization also has its challenges, and [...] Read more.
The Internet of Things (IoT) is a significant technological advancement that allows for seamless device integration and data flow. The development of the IoT has led to the emergence of several solutions in various sectors. However, rapid popularization also has its challenges, and one of the most serious challenges is the security of the IoT. Security is a major concern, particularly routing attacks in the core network, which may cause severe damage due to information loss. Routing Protocol for Low-Power and Lossy Networks (RPL), a routing protocol used for IoT devices, is faced with selective forwarding attacks. In this paper, we present a federated learning-based detection technique for detecting selective forwarding attacks, termed FL-DSFA. A lightweight model involving the IoT Routing Attack Dataset (IRAD), which comprises Hello Flood (HF), Decreased Rank (DR), and Version Number (VN), is used in this technique to increase the detection efficiency. The attacks on IoT threaten the security of the IoT system since they mainly focus on essential elements of RPL. The components include control messages, routing topologies, repair procedures, and resources within sensor networks. Binary classification approaches have been used to assess the training efficiency of the proposed model. The training step includes the implementation of machine learning algorithms, including logistic regression (LR), K-nearest neighbors (KNN), support vector machine (SVM), and naive Bayes (NB). The comparative analysis illustrates that this study, with SVM and KNN classifiers, exhibits the highest accuracy during training and achieves the most efficient runtime performance. The proposed system demonstrates exceptional performance, achieving a prediction precision of 97.50%, an accuracy of 95%, a recall rate of 98.33%, and an F1 score of 97.01%. It outperforms the current leading research in this field, with its classification results, scalability, and enhanced privacy. Full article
Show Figures

Figure 1

Back to TopTop