Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (862)

Search Parameters:
Keywords = Runx

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2744 KiB  
Article
Enhancing the Biological Properties of Organic–Inorganic Hybrid Calcium Silicate Cements: An In Vitro Study
by Minji Choi, Jiyoung Kwon, Ji-Hyun Jang, Duck-Su Kim and Hyun-Jung Kim
J. Funct. Biomater. 2024, 15(11), 337; https://doi.org/10.3390/jfb15110337 - 10 Nov 2024
Viewed by 602
Abstract
(1) Background: This study aimed to enhance the biological properties of hydraulic calcium silicate cements (HCSCs) by incorporating organic and inorganic components, specifically elastin-like polypeptides (ELPs) and bioactive glass (BAG). We focused on the effects of these composites on the viability, migration, and [...] Read more.
(1) Background: This study aimed to enhance the biological properties of hydraulic calcium silicate cements (HCSCs) by incorporating organic and inorganic components, specifically elastin-like polypeptides (ELPs) and bioactive glass (BAG). We focused on the effects of these composites on the viability, migration, and osteogenic differentiation of human periodontal ligament fibroblasts (hPDLFs). (2) Methods: Proroot MTA was supplemented with 1–5 wt% 63S BAG and 10 wt% ELP. The experimental groups contained various combinations of HSCS with ELP and BAG. Cell viability was assessed using an MTT assay, cell migration was evaluated using wound healing and transwell assays, and osteogenic activity was determined through Alizarin Red S staining and a gene expression analysis of osteogenic markers (ALP, RUNX-2, OCN, and Col1A2). (3) Results: The combination of ELP and BAG significantly enhanced the viability of hPDLFs with an optimal BAG concentration of 1–4%. Cell migration assays demonstrated faster migration rates in groups with 2–4% BAG and ELP incorporation. Osteogenic activity was the highest with 2–3% BAG incorporation with ELP, as evidenced by intense Alizarin Red S staining and the upregulation of osteogenic differentiation markers. (4) Conclusions: The incorporation of ELP (organic) and BAG (inorganic) into HCSC significantly enhances the viability, migration, and osteogenic differentiation of hPDLFs. These findings suggest that composite HCSC might support healing in destructed bone lesions in endodontics. Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry)
Show Figures

Figure 1

17 pages, 1320 KiB  
Review
Sox17 and Other SoxF-Family Proteins Play Key Roles in the Hematopoiesis of Mouse Embryos
by Ikuo Nobuhisa, Gerel Melig and Tetsuya Taga
Cells 2024, 13(22), 1840; https://doi.org/10.3390/cells13221840 - 7 Nov 2024
Viewed by 422
Abstract
During mouse development, hematopoietic cells first form in the extraembryonic tissue yolk sac. Hematopoietic stem cells (HSCs), which retain their ability to differentiate into hematopoietic cells for a long time, form intra-aortic hematopoietic cell clusters (IAHCs) in the dorsal aorta at midgestation. These [...] Read more.
During mouse development, hematopoietic cells first form in the extraembryonic tissue yolk sac. Hematopoietic stem cells (HSCs), which retain their ability to differentiate into hematopoietic cells for a long time, form intra-aortic hematopoietic cell clusters (IAHCs) in the dorsal aorta at midgestation. These IAHCs emerge from the hemogenic endothelium, which is the common progenitor of hematopoietic cells and endothelial cells. HSCs expand in the fetal liver, and finally migrate to the bone marrow (BM) during the peripartum period. IAHCs are absent in the dorsal aorta in mice deficient in transcription factors such as Runx-1, GATA2, and c-Myb that are essential for definitive hematopoiesis. In this review, we focus on the transcription factor Sry-related high mobility group (HMG)-box (Sox) F family of proteins that is known to regulate hematopoiesis in the hemogenic endothelium and IAHCs. The SoxF family is composed of Sox7, Sox17, and Sox18, and they all have the HMG box, which has a DNA-binding ability, and a transcriptional activation domain. Here, we describe the functional and phenotypic properties of SoxF family members, with a particular emphasis on Sox17, which is the most involved in hematopoiesis in the fetal stages considering that enhanced expression of Sox17 in hemogenic endothelial cells and IAHCs leads to the production and maintenance of HSCs. We also discuss SoxF-inducing signaling pathways. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Figure 1

17 pages, 999 KiB  
Review
“A Friend Among Strangers” or the Ambiguous Roles of Runx2
by Kseniia Azarkina, Ekaterina Gromova and Anna Malashicheva
Biomolecules 2024, 14(11), 1392; https://doi.org/10.3390/biom14111392 - 31 Oct 2024
Viewed by 508
Abstract
The transcription factor Runx2 plays a crucial role in regulating osteogenic differentiation and skeletal development. This factor not only controls the expression of genes involved in bone formation, but also interacts with signaling pathways such as the Notch pathway, which are essential for [...] Read more.
The transcription factor Runx2 plays a crucial role in regulating osteogenic differentiation and skeletal development. This factor not only controls the expression of genes involved in bone formation, but also interacts with signaling pathways such as the Notch pathway, which are essential for body development. However, studies have produced conflicting results regarding the relationship between Runx2 and the Notch pathway. Some studies suggest a synergistic interaction between these molecules, while others suggest an inhibitory one, for example, the interplay between Notch signaling, Runx2, and vitamin D3 in osteogenic differentiation and bone remodeling. The findings suggest a complex relationship between Notch signaling and osteogenic differentiation, with ongoing research needed to clarify the mechanisms involved and resolve existing contradictions regarding role of Notch in this process. Additionally, there is increasing evidence of contradictory roles for Runx2 in various tissues and organs, both under normal conditions and in pathological states. This diversity of roles makes Runx2 a potential therapeutic target, offering new directions for research. In this review, we have discussed the mechanisms of osteogenic differentiation and the important role of Runx2 in this process. We have also examined its relationship with different signaling pathways. However, there are still many uncertainties and inconsistencies in our current understanding of these interactions. Additionally, given that Runx2 is also involved in numerous other events in various tissues, we have tried to comprehensively examine its functions outside the skeletal system. Full article
Show Figures

Figure 1

17 pages, 4608 KiB  
Article
Slow H2S-Releasing Donors and 3D Printable Arrays Cellular Models in Osteo-Differentiation of Mesenchymal Stem Cells for Personalized Therapies
by Ilaria Arciero, Silvia Buonvino and Sonia Melino
Biomolecules 2024, 14(11), 1380; https://doi.org/10.3390/biom14111380 - 30 Oct 2024
Viewed by 527
Abstract
The effects of the hydrogen sulfide (H2S) slow-releasing donor, named GSGa, a glutathione-conjugate water-soluble garlic extract, on human mesenchymal stem cells (hMSCs) in both bidimensional (2D) and three-dimensional (3D) cultures were investigated, demonstrating increased expression of the antioxidant enzyme HO-1 and [...] Read more.
The effects of the hydrogen sulfide (H2S) slow-releasing donor, named GSGa, a glutathione-conjugate water-soluble garlic extract, on human mesenchymal stem cells (hMSCs) in both bidimensional (2D) and three-dimensional (3D) cultures were investigated, demonstrating increased expression of the antioxidant enzyme HO-1 and decreased expression of the pro-inflammatory cytokine interleukin-6 (IL-6). The administration of the H2S donor can therefore increase the expression of antioxidant enzymes, which may have potential therapeutic applications in osteoarthritis (OA). Moreover, GSGa was able to promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), but not of cardiac mesenchymal stem cells (cMSCs) in a 2D culture system. This result highlights the varying sensitivity of hMSCs to the H2S donor GSGa, suggesting that the induction of osteogenic differentiation in stem cells by chemical factors is dependent on the tissue of origin. Additionally, a 3D-printable mesenchymal stem cells–bone matrix array (MSCBM), designed to closely mimic the stiffness of bone tissue, was developed to serve as a versatile tool for evaluating the effects of drugs and stem cells on bone repair in chronic diseases, such as OA. We demonstrated that the osteogenic differentiation process in cMSCs can be induced just by simulating bone stiffness in a 3D system. The expression of osteocalcin, RUNX2, and antioxidant enzymes was also assessed after treating MSCs with GSGa and/or increasing the stiffness of the culture environment. The printability of the array may enable better customization of the cavities, enabling an accurate replication of real bone defects. This could optimize the BM array to mimic bone defects not only in terms of stiffness, but also in terms of shape. This culture system may enable a rapid screening of antioxidant and anti-inflammatory compounds, facilitating a more personalized approach to regenerative therapy. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

21 pages, 7968 KiB  
Article
Transcriptome Sequencing Analysis of Genes Associated with Different Developmental Periods of the Ovarian Follicle in the Duolang Sheep
by Chengqian Wang, Hang Yan, Wen Hao, Fugui Li, Tianci Liu and Hui’e Wang
Genes 2024, 15(11), 1394; https://doi.org/10.3390/genes15111394 - 29 Oct 2024
Viewed by 393
Abstract
Background: The ovaries are crucial reproductive organs in female mammals, directly influencing the reproductive efficiency and productivity of these animals. The Duolang sheep, native to Xinjiang, is known for its rapid growth and high fertility. However, the mechanisms underlying ovarian follicle development and [...] Read more.
Background: The ovaries are crucial reproductive organs in female mammals, directly influencing the reproductive efficiency and productivity of these animals. The Duolang sheep, native to Xinjiang, is known for its rapid growth and high fertility. However, the mechanisms underlying ovarian follicle development and regulation in sheep remain unclear. Methods: Employing transcriptome sequencing technology, this study methodically analyzed ovaries from sheep across various estrous cycles to uncover key genes and signaling pathways that play a role in the development of ovarian follicles. Results: The results indicated that a total of 130, 183, and 175 differentially expressed genes were identified in the DTA/DTB, DTB/DTC, and DTA/DTC groups, respectively. Key genes like BAG3, GDF5, RHOB, RUNX2, LGALS3, and CDH1, along with pathways such as endoplasmic reticulum protein processing, the NOTCH signaling pathway, and the MAPK signaling pathway, were found to be involved. RT-qPCR confirmed the differential expression of BAG3, RHOB, and RUNX2. Conclusions: This research provides insights into the molecular mechanisms of ovarian follicle development and a basis for enhancing the reproductive performance of Duolang sheep. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 4594 KiB  
Article
Rolling-Translated circRUNX2.2 Promotes Lymphoma Cell Proliferation and Cycle Transition in Marek’s Disease Model
by Lulu Wang, Gang Zheng, Yuqin Yang, Junfeng Wu, Yushuang Du, Jiahua Chen, Changjun Liu, Yongzhen Liu, Bo Zhang, Hao Zhang, Xuemei Deng and Ling Lian
Int. J. Mol. Sci. 2024, 25(21), 11486; https://doi.org/10.3390/ijms252111486 - 25 Oct 2024
Viewed by 425
Abstract
Marek’s disease (MD), an immunosuppressive disease induced by the Marek’s disease virus (MDV), is regarded as an ideal model for lymphoma research to elucidate oncogenic and anti-oncogene genes. Using this model, we found that circRUNX2.2, derived from exon 6 of RUNX2, was significantly [...] Read more.
Marek’s disease (MD), an immunosuppressive disease induced by the Marek’s disease virus (MDV), is regarded as an ideal model for lymphoma research to elucidate oncogenic and anti-oncogene genes. Using this model, we found that circRUNX2.2, derived from exon 6 of RUNX2, was significantly upregulated in MDV-infected tumorous spleens. In this study, we deeply analyzed the potential role of circRUNX2.2 in lymphoma cells. An open reading frame (ORF) in circRUNX2.2 with no stop codon was predicted, and small peptides (named circRUNX2.2-rt) presenting multiple ladder-like bands with different molecular weights encoded by circRUNX2.2 were detected via Western blotting assay. The polysome fraction assay reconfirmed the translation ability of circRUNX2.2, which could be detected in polysome fractions. Subsequent analysis verified that it translated in a rolling circle manner, rather than being assisted by the internal ribosome entry site (IRES) or m6A-mediated mechanism. Furthermore, we found that circRUNX2.2-rt was potently induced in MSB1 cells treated with sodium butyrate (NaB), which reactivated MDV and forced the MDV transition from the latent to reactivation phase. During this phase, MDV particles were clearly observed by electron microscopy, and the viral gene pp38 was also significantly upregulated. A biological function study showed that circRUNX2.2-rt promoted cell proliferation and cell cycle transition from the S to G2 phase and inhibited the apoptosis of MSB1. Further immunoprecipitation and mass spectrometry assays showed that 168 proteins potentially interacting with circRUNX2.2-rt were involved in multiple pathways related to cell cycle regulation, which proved that circRUNX2.2-rt could bind or recruit proteins to mediate the cell cycle. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

29 pages, 10148 KiB  
Article
Development of a Custom Fluid Flow Chamber for Investigating the Effects of Shear Stress on Periodontal Ligament Cells
by Mustafa Nile, Matthias Folwaczny, Andreas Kessler, Andrea Wichelhaus, Mila Janjic Rankovic and Uwe Baumert
Cells 2024, 13(21), 1751; https://doi.org/10.3390/cells13211751 - 23 Oct 2024
Viewed by 688
Abstract
The periodontal ligament (PDL) is crucial for maintaining the integrity and functionality of tooth-supporting structures. Mechanical forces applied to the tooth during orthodontic tooth movement generate pore pressure gradients, leading to interstitial fluid movement within the PDL. The generated fluid shear stress (FSS) [...] Read more.
The periodontal ligament (PDL) is crucial for maintaining the integrity and functionality of tooth-supporting structures. Mechanical forces applied to the tooth during orthodontic tooth movement generate pore pressure gradients, leading to interstitial fluid movement within the PDL. The generated fluid shear stress (FSS) stimulates the remodeling of PDL and alveolar bone. Herein, we present the construction of a parallel fluid-flow apparatus to determine the effect of FSS on PDL cells. The chamber was designed and optimized using computer-aided and computational fluid dynamics software. The chamber was formed by PDMS using a negative molding technique. hPDLCs from two donors were seeded on microscopic slides and exposed to FSS of 6 dyn/cm2 for 1 h. The effect of FSS on gene and protein expression was determined using RT-qPCR and Western blot. FSS upregulated genes responsible for mechanosensing (FOS), tissue formation (RUNX2, VEGFA), and inflammation (PTGS2/COX2, CXCL8/IL8, IL6) in both donors, with donor 2 showing higher gene upregulation. Protein expression of PTGS2/COX2 was higher in donor 2 but not in donor 1. RUNX2 protein was not expressed in either donor after FSS. In summary, FSS is crucial in regulating gene expression linked to PDL remodeling and inflammation, with donor variability potentially affecting outcomes. Full article
(This article belongs to the Special Issue Modelling Tissue Microenvironments in Development and Disease)
Show Figures

Figure 1

13 pages, 1952 KiB  
Article
7-Ketocholesterol Effects on Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells
by Beatriz Araújo Oliveira, Débora Levy, Jessica Liliane Paz, Fabio Alessandro de Freitas, Cadiele Oliana Reichert, Alessandro Rodrigues and Sérgio Paulo Bydlowski
Int. J. Mol. Sci. 2024, 25(21), 11380; https://doi.org/10.3390/ijms252111380 - 23 Oct 2024
Viewed by 492
Abstract
Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation. ATMSCs were incubated with 7-KC in [...] Read more.
Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation. ATMSCs were incubated with 7-KC in osteogenic or adipogenic media. Osteogenic and adipogenic differentiation was evaluated by Alizarin red and Oil Red O staining, respectively. Osteogenic (ALPL, RUNX2, BGLAP) and adipogenic markers (PPARƔ, C/EBPα) were determined by RT-PCR. Differentiation signaling pathways (SHh, Smo, Gli-3, β-catenin) were determined by indirect immunofluorescence. ATMSCs treated with 7-KC in osteogenic media stained positively for Alizarin Red. 7-KC in adipogenic media decreased the number of adipocytes. 7-KC increased ALPL and RUNX2 but not BGLAP expressions. 7-KC decreased expression of PPARƔ and C/EBPα, did not change SHh, Smo, and Gli-3 expression, and increased the expression of β-catenin. In conclusion, 7-KC favors osteogenic differentiation of ATMSCs through the expression of early osteogenic genes (matrix maturation phase) by activating the Wnt/β-catenin signaling pathway, while inhibiting adipogenic differentiation. This knowledge can be potentially useful in regenerative medicine, in treatments for bone diseases. Full article
(This article belongs to the Special Issue Molecular Insights into Cholesterol Metabolism)
Show Figures

Figure 1

18 pages, 5871 KiB  
Article
The Therapeutic Potential of Adipose-Derived Mesenchymal Stem Cell Secretome in Osteoarthritis: A Comprehensive Study
by Elsa González-Cubero, Maria Luisa González-Fernández, Marta Esteban-Blanco, Saúl Pérez-Castrillo, Esther Pérez-Fernández, Nicolás Navasa, Ana M. Aransay, Juan Anguita and Vega Villar-Suárez
Int. J. Mol. Sci. 2024, 25(20), 11287; https://doi.org/10.3390/ijms252011287 - 20 Oct 2024
Viewed by 994
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. This study investigates the therapeutic potential of secretome derived from adipose tissue mesenchymal stem cells (ASCs) in mitigating inflammation and promoting cartilage repair in an in vitro model of OA. [...] Read more.
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. This study investigates the therapeutic potential of secretome derived from adipose tissue mesenchymal stem cells (ASCs) in mitigating inflammation and promoting cartilage repair in an in vitro model of OA. Our in vitro model comprised chondrocytes inflamed with TNF. To assess the therapeutic potential of secretome, inflamed chondrocytes were treated with it and concentrations of pro-inflammatory cytokines, metalloproteinases (MMPs) and extracellular matrix markers were measured. In addition, secretome-treated chondrocytes were subject to a microarray analysis to determine which genes were upregulated and which were downregulated. Treating TNF-inflamed chondrocytes with secretome in vitro inhibits the NF-κB pathway, thereby mediating anti-inflammatory and anti-catabolic effects. Additional protective effects of secretome on cartilage are revealed in the inhibition of hypertrophy markers such as RUNX2 and COL10A1, increased production of COL2A1 and ACAN and upregulation of SOX9. These findings suggest that ASC-derived secretome can effectively reduce inflammation, promote cartilage repair, and maintain chondrocyte phenotype. This study highlights the potential of ASC-derived secretome as a novel, non-cell-based therapeutic approach for OA, offering a promising alternative to current treatments by targeting inflammation and cartilage repair mechanisms. Full article
(This article belongs to the Special Issue Biomedical Applications of Mesenchymal Stem Cells)
Show Figures

Figure 1

19 pages, 4508 KiB  
Article
Limited Adipogenic Differentiation Potential of Human Dental Pulp Stem Cells Compared to Human Bone Marrow Stem Cells
by Isaac Maximiliano Bugueno, Giuseppe Alastra, Anamaria Balic, Bernd Stadlinger and Thimios A. Mitsiadis
Int. J. Mol. Sci. 2024, 25(20), 11105; https://doi.org/10.3390/ijms252011105 - 16 Oct 2024
Viewed by 586
Abstract
Bone marrow and teeth contain mesenchymal stem cells (MSCs) that could be used for cell-based regenerative therapies. MSCs from these two tissues represent heterogeneous cell populations with varying degrees of lineage commitment. Although human bone marrow stem cells (hBMSCs) and human dental pulp [...] Read more.
Bone marrow and teeth contain mesenchymal stem cells (MSCs) that could be used for cell-based regenerative therapies. MSCs from these two tissues represent heterogeneous cell populations with varying degrees of lineage commitment. Although human bone marrow stem cells (hBMSCs) and human dental pulp stem cells (hDPSCs) have been extensively studied, it is not yet fully defined if their adipogenic potential differs. Therefore, in this study, we compared the in vitro adipogenic differentiation potential of hDPSCs and hBMSCs. Both cell populations were cultured in adipogenic differentiation media, followed by specific lipid droplet staining to visualise cytodifferentiation. The in vitro differentiation assays were complemented with the expression of specific genes for adipogenesis and osteogenesis–dentinogenesis, as well as for genes involved in the Wnt and Notch signalling pathways. Our findings showed that hBMSCs formed adipocytes containing numerous and large lipid vesicles. In contrast to hBMSCs, hDPSCs did not acquire the typical adipocyte morphology and formed fewer lipid droplets of small size. Regarding the gene expression, cultured hBMSCs upregulated the expression of adipogenic-specific genes (e.g., PPARγ2, LPL, ADIPONECTIN). Furthermore, in these cells most Wnt pathway genes were downregulated, while the expression of NOTCH pathway genes (e.g., NOTCH1, NOTCH3, JAGGED1, HES5, HEY2) was upregulated. hDPSCs retained their osteogenic/dentinogenic molecular profile (e.g., RUNX2, ALP, COLIA1) and upregulated the WNT-specific genes but not the NOTCH pathway genes. Taken together, our in vitro findings demonstrate that hDPSCs are not entirely committed to the adipogenic fate, in contrast to the hBMSCs, which are more effective to fully differentiate into adipocytes. Full article
Show Figures

Graphical abstract

11 pages, 1307 KiB  
Case Report
Blast Transformation of Chronic Myeloid Leukemia Driven by Acquisition of t(8;21)(q22;q22)/RUNX1::RUNX1T1: Selecting Optimal Treatment Based on Clinical and Molecular Findings
by Adolfo Fernández-Sánchez, Alberto Hernández-Sánchez, Cristina De Ramón, María-Carmen Chillón, María Belén Vidriales, Mónica Baile-González, Cristina-Teresa Fuentes-Morales, Magdalena Sierra-Pacho, Lucía López-Corral and Fermín Sánchez-Guijo
Biomedicines 2024, 12(10), 2339; https://doi.org/10.3390/biomedicines12102339 - 15 Oct 2024
Viewed by 865
Abstract
The advent of tyrosine kinase inhibitors (TKIs) has changed the natural history of chronic myeloid leukemia (CML), and the transformation from the chronic phase to the blast phase (BP) is currently an uncommon situation. However, it is one of the major remaining challenges [...] Read more.
The advent of tyrosine kinase inhibitors (TKIs) has changed the natural history of chronic myeloid leukemia (CML), and the transformation from the chronic phase to the blast phase (BP) is currently an uncommon situation. However, it is one of the major remaining challenges in the management of this disease, as it is associated with dismal outcomes. We report the case of a 63-year-old woman with a history of CML with poor response to imatinib who progressed to myeloid BP-CML, driven by the acquisition of t(8;21)(q22;q22)/RUNX1::RUNX1T1. The patient received intensive chemotherapy and dasatinib, followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, she suffered an early relapse after allo-HSCT with the acquisition of the T315I mutation in ABL1. Ponatinib and azacitidine were started as salvage treatment, allowing for the achievement of complete remission with deep molecular response after five cycles. Advances in the knowledge of disease biology and clonal evolution are crucial for optimal treatment selection, which ultimately translates into better patient outcomes. Full article
(This article belongs to the Special Issue Advances in the Pathogenesis and Treatment of Acute Myeloid Leukemia)
Show Figures

Figure 1

20 pages, 2775 KiB  
Systematic Review
Genetics of Calcific Aortic Stenosis: A Systematic Review
by Vassilios S. Vassiliou, Nicholas Johnson, Kenneth Langlands and Vasiliki Tsampasian
Genes 2024, 15(10), 1309; https://doi.org/10.3390/genes15101309 - 10 Oct 2024
Viewed by 922
Abstract
Background: Calcific aortic stenosis is the most prevalent valvular abnormality in the Western world. Factors commonly associated with calcific aortic stenosis include advanced age, male sex, hypertension, diabetes and impaired renal function. This review synthesises the existing literature on genetic associations with calcific [...] Read more.
Background: Calcific aortic stenosis is the most prevalent valvular abnormality in the Western world. Factors commonly associated with calcific aortic stenosis include advanced age, male sex, hypertension, diabetes and impaired renal function. This review synthesises the existing literature on genetic associations with calcific aortic stenosis. Methods: A systematic search was conducted in the PubMed, Ovid and Cochrane libraries from inception to 21 July 2024 to identify human studies investigating the genetic factors involved in calcific aortic stenosis. From an initial pool of 1392 articles, 78 were selected for full-text review and 31 were included in the final qualitative synthesis. The risk of bias in these studies was assessed using the Newcastle Ottawa Scale. Results: Multiple genes have been associated with calcific aortic stenosis. These genes are involved in different biological pathways, including the lipid metabolism pathway (PLA, LDL, APO, PCSK9, Lp-PLA2, PONS1), the inflammatory pathway (IL-6, IL-10), the calcification pathway (PALMD, TEX41) and the endocrine pathway (PTH, VIT D, RUNX2, CACNA1C, ALPL). Additional genes such as NOTCH1, NAV1 and FADS1/2 influence different pathways. Mechanistically, these genes may promote a pro-inflammatory and pro-calcific environment in the aortic valve itself, leading to increased osteoblastic activity and subsequent calcific degeneration of the valve. Conclusions: Numerous genetic associations contribute to calcific aortic stenosis. Recognition of these associations can enhance risk stratification for individuals and their first-degree relatives, facilitate family screening, and importantly, pave the way for targeted therapeutic interventions focusing on the identified genetic factors. Understanding these genetic factors can also lead to gene therapy to prevent calcific aortic stenosis in the future. Full article
(This article belongs to the Special Issue Genomics and Genetics of Cardiovascular Diseases)
Show Figures

Graphical abstract

17 pages, 3752 KiB  
Article
Extracorporeal Magnetotransduction Therapy as a New Form of Electromagnetic Wave Therapy: From Gene Upregulation to Accelerated Matrix Mineralization in Bone Healing
by Lennart Gerdesmeyer, Jutta Tübel, Andreas Obermeier, Norbert Harrasser, Claudio Glowalla, Rüdiger von Eisenhart-Rothe and Rainer Burgkart
Biomedicines 2024, 12(10), 2269; https://doi.org/10.3390/biomedicines12102269 - 7 Oct 2024
Viewed by 1614
Abstract
Background: Electromagnetic field therapy is gaining attention for its potential in treating bone disorders, with Extracorporeal Magnetotransduction Therapy (EMTT) emerging as an innovative approach. EMTT offers a higher oscillation frequency and magnetic field strength compared to traditional Pulsed Electromagnetic Field (PEMF) therapy, showing [...] Read more.
Background: Electromagnetic field therapy is gaining attention for its potential in treating bone disorders, with Extracorporeal Magnetotransduction Therapy (EMTT) emerging as an innovative approach. EMTT offers a higher oscillation frequency and magnetic field strength compared to traditional Pulsed Electromagnetic Field (PEMF) therapy, showing promise in enhancing fracture healing and non-union recovery. However, the mechanisms underlying these effects remain unclear. Results: This study demonstrates that EMTT significantly enhances osteoblast bone formation at multiple levels, from gene expression to extracellular matrix mineralization. Key osteoblastogenesis regulators, including SP7 and RUNX2, and bone-related genes such as COL1A1, ALPL, and BGLAP, were upregulated, with expression levels surpassing those of the control group by over sevenfold (p < 0.001). Enhanced collagen synthesis and mineralization were confirmed by von Kossa and Alizarin Red staining, indicating increased calcium and phosphate deposition. Additionally, calcium imaging revealed heightened calcium influx, suggesting a cellular mechanism for EMTT’s osteogenic effects. Importantly, EMTT did not compromise cell viability, as confirmed by live/dead staining and WST-1 assays. Conclusion: This study is the first to show that EMTT can enhance all phases of osteoblastogenesis and improve the production of critical mineralization components, offering potential clinical applications in accelerating fracture healing, treating osteonecrosis, and enhancing implant osseointegration. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

18 pages, 6667 KiB  
Article
Impact of Polydeoxyribonucleotides on the Morphology, Viability, and Osteogenic Differentiation of Gingiva-Derived Stem Cell Spheroids
by Heera Lee, Somyeong Hwa, Sunga Cho, Ju-Hwan Kim, Hye-Jung Song, Youngkyung Ko and Jun-Beom Park
Medicina 2024, 60(10), 1610; https://doi.org/10.3390/medicina60101610 - 1 Oct 2024
Viewed by 935
Abstract
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic [...] Read more.
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic activity, stimulate angiogenesis, and promote tissue regeneration. In the field of dentistry, PDRN has shown potential in promoting periodontal healing and bone regeneration. This study aims to investigate the effects of PDRN on the morphology, survival, and osteogenic differentiation of gingiva-derived stem cell spheroids, with a focus on its potential applications in tissue engineering and regenerative dentistry. Materials and Methods: Gingiva-derived mesenchymal stem cells were cultured and formed into spheroids using microwells. The cells were treated with varying concentrations of PDRN (0, 25, 50, 75, and 100 μg/mL) and cultivated in osteogenic media. Cell morphology was observed over seven days using an inverted microscope, and viability was assessed with Live/Dead Kit assays and Cell Counting Kit-8. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity and calcium deposition. The expression levels of osteogenic markers RUNX2 and COL1A1 were quantified using real-time polymerase chain reaction. RNA sequencing was performed to assess the gene expression profiles related to osteogenesis. Results: The results demonstrated that PDRN treatment had no significant effect on spheroid diameter or cellular viability during the observation period. However, a PDRN concentration of 75 μg/mL significantly enhanced calcium deposition by Day 14, suggesting increased mineralization. RUNX2 and COL1A1 mRNA expression levels varied with PDRN concentration, with the highest RUNX2 expression observed at 25 μg/mL and the highest COL1A1 expression at 75 μg/mL. RNA sequencing further confirmed the upregulation of genes involved in osteogenic differentiation, with enhanced expression of RUNX2 and COL1A1 in PDRN-treated gingiva-derived stem cell spheroids. Conclusions: In summary, PDRN did not significantly affect the viability or morphology of gingiva-derived stem cell spheroids but influenced their osteogenic differentiation and mineralization in a concentration-dependent manner. These findings suggest that PDRN may play a role in promoting osteogenic processes in tissue engineering and regenerative dentistry applications, with specific effects observed at different concentrations. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

24 pages, 13262 KiB  
Article
Placental Tissue Calcification and Its Molecular Pathways in Female Patients with Late-Onset Preeclampsia
by Miguel A. Ortega, Tatiana Pekarek, Diego De Leon-Oliva, Diego Liviu Boaru, Oscar Fraile-Martinez, Cielo García-Montero, Julia Bujan, Leonel Pekarek, Silvestra Barrena-Blázquez, Raquel Gragera, Patrocinio Rodríguez-Benitez, Mauricio Hernández-Fernández, Laura López-González, Raul Díaz-Pedrero, Ángel Asúnsolo, Melchor Álvarez-Mon, Natalio García-Honduvilla, Miguel A. Saez, Juan A. De León-Luis and Coral Bravo
Biomolecules 2024, 14(10), 1237; https://doi.org/10.3390/biom14101237 - 30 Sep 2024
Viewed by 724
Abstract
Preeclampsia (PE) is a complex multisystem disease characterized by hypertension of sudden onset (>20 weeks’ gestation) coupled with the presence of at least one additional complication, such as proteinuria, maternal organ dysfunction, or uteroplacental dysfunction. Hypertensive states during pregnancy carry life-threatening risks for [...] Read more.
Preeclampsia (PE) is a complex multisystem disease characterized by hypertension of sudden onset (>20 weeks’ gestation) coupled with the presence of at least one additional complication, such as proteinuria, maternal organ dysfunction, or uteroplacental dysfunction. Hypertensive states during pregnancy carry life-threatening risks for both mother and baby. The pathogenesis of PE develops due to a dysfunctional placenta with aberrant architecture that releases factors contributing to endothelial dysfunction, an antiangiogenic state, increased oxidative stress, and maternal inflammatory responses. Previous studies have shown a correlation between grade 3 placental calcifications and an elevated risk of developing PE at term. However, little is known about the molecular pathways leading to placental calcification. In this work, we studied the gene and protein expression of c-Jun N-terminal kinase (JNK), Runt-related transcription factor 2 (RUNX2), osteocalcin (OSC), osteopontin (OSP), pigment epithelium-derived factor (PEDF), MSX-2/HOX8, SOX-9, WNT-1, and β-catenin in placental tissue from women with late-onset PE (LO-PE). In addition, we employed von Kossa staining to detect mineral deposits in placental tissues. Our results show a significant increase of all these components in placentas from women with LO-PE. Therefore, our study suggests that LO-PE may be associated with the activation of molecular pathways of placental calcification. These results could be the starting point for future research to describe the molecular mechanisms that promote placental calcification in PE and the development of therapeutic strategies directed against it. Full article
(This article belongs to the Special Issue Tissue Calcification in Normal and Pathological Environments)
Show Figures

Figure 1

Back to TopTop