Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Rhodnius prolixus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 40855 KiB  
Communication
Climate and Environmental Changes and Their Potential Effects on the Dynamics of Chagas Disease: Hybridization in Rhodniini (Hemiptera, Triatominae)
by Amanda Ravazi, Jader de Oliveira, Fernanda Fernandez Madeira, Giovana Menezes Nunes, Yago Visinho dos Reis, Ana Beatriz Bortolozo de Oliveira, Luísa Martins Sensato Azevedo, Cleber Galvão, Maria Tercília Vilela de Azeredo-Oliveira, João Aristeu da Rosa and Kaio Cesar Chaboli Alevi
Insects 2023, 14(4), 378; https://doi.org/10.3390/insects14040378 - 12 Apr 2023
Cited by 2 | Viewed by 2278
Abstract
Chagas disease affects about eight million people. In view of the issues related to the influence of anthropogenic changes in the dynamics of the distribution and reproductive interaction of triatomines, we performed experimental crosses between species of the Rhodniini tribe in order to [...] Read more.
Chagas disease affects about eight million people. In view of the issues related to the influence of anthropogenic changes in the dynamics of the distribution and reproductive interaction of triatomines, we performed experimental crosses between species of the Rhodniini tribe in order to evaluate interspecific reproductive interactions and hybrid production capacity. Reciprocal crossing experiments were conducted among Rhodnius brethesi × R. pictipes, R. colombiensis × R. ecuadoriensis, R. neivai × R. prolixus, R. robustus × R. prolixus, R. montenegrensis × R. marabaensis; R. montenegrensis × R. robustus, R. prolixus × R. nasutus and R. neglectus × R. milesi. With the exception of crosses between R. pictipes ♀ × R. brethesi ♂, R. ecuadoriensis ♀ × R. colombiensis ♂ and R. prolixus ♀ × R. neivai ♂, all experimental crosses resulted in hybrids. Our results demonstrate that both allopatric and sympatric species produce hybrids, which can generate concern for public health agencies in the face of current anthropogenic events. Thus, we demonstrate that species of the Rhodniini tribe are capable of producing hybrids under laboratory conditions. These results are of great epidemiological importance and raise an important discussion about the influence of climatic and environmental interactions on Chagas disease dynamics. Full article
Show Figures

Figure 1

14 pages, 2086 KiB  
Article
The Male Reproductive System of the Kissing Bug, Rhodnius prolixus Stål, 1859 (Hemiptera: Reduviidae: Triatominae): Arrangements of the Muscles and the Myoactivity of the Selected Neuropeptides
by Angela B. Lange, Anika Kisana, Jimena Leyria and Ian Orchard
Insects 2023, 14(4), 324; https://doi.org/10.3390/insects14040324 - 28 Mar 2023
Viewed by 2995
Abstract
The gross anatomy of the male reproductive structures and their associated musculature are described in the blood-gorging vector of Chagas disease, Rhodnius prolixus. The male reproductive system is composed of muscular tissues each performing contractions that aid in the movement of sperm [...] Read more.
The gross anatomy of the male reproductive structures and their associated musculature are described in the blood-gorging vector of Chagas disease, Rhodnius prolixus. The male reproductive system is composed of muscular tissues each performing contractions that aid in the movement of sperm out of the testis into the vas deferens, seminal vesicle and then into the ejaculatory duct, along with proteins and lipids from the transparent and opaque accessory glands. Phalloidin staining shows the various patterns of muscle fiber layers, from thin circular to more complex crisscross patterns, implying subtle differences in the form of the contractions and movement of each of the structures, allowing for waves of contractions or twisting patterns. The transcripts for the receptors for proctolin, myosuppressin (RhoprMS) and for the extended FMRFamides are expressed in the various regions of the reproductive system, and the nerve processes extending over the reproductive structures are positive for FMRFamide-like immunoreactivity, as are neurosecretory cells lying on the nerves. Proctolin and AKDNFIRFamide are strong stimulators for the frequency of the contractions, and RhoprMS can inhibit the proctolin-induced contractions. Taken together, this work implicates these two families of peptides in coordinating the male reproductive structures for the successful transfer of sperm and the associated accessory gland fluid to the female during copulation. Full article
(This article belongs to the Collection Hemiptera: Ecology, Physiology, and Economic Importance)
Show Figures

Figure 1

22 pages, 3276 KiB  
Article
Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus
by Jimena Leyria, Samiha Benrabaa, Marcela Nouzova, Fernando G. Noriega, Lilian Valadares Tose, Francisco Fernandez-Lima, Ian Orchard and Angela B. Lange
Int. J. Mol. Sci. 2023, 24(1), 7; https://doi.org/10.3390/ijms24010007 - 20 Dec 2022
Cited by 14 | Viewed by 3032
Abstract
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel [...] Read more.
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle. Full article
(This article belongs to the Special Issue Neuropeptides and Endocrine Regulations in Insects and Crustaceans)
Show Figures

Figure 1

13 pages, 1868 KiB  
Article
Trypanosoma cruzi Parasite Burdens of Several Triatomine Species in Colombia
by Natalia Velásquez-Ortiz, Carolina Hernández, Omar Cantillo-Barraza, Nathalia Ballesteros, Lissa Cruz-Saavedra, Giovanny Herrera, Luz Stella Buitrago, Hugo Soto, Manuel Medina, Jatney Palacio, Marina Stella González, Andrés Cuervo, Gustavo Vallejo, Liliana Zuleta Dueñas, Plutarco Urbano, Marina Muñoz and Juan David Ramírez
Trop. Med. Infect. Dis. 2022, 7(12), 445; https://doi.org/10.3390/tropicalmed7120445 - 19 Dec 2022
Cited by 8 | Viewed by 2247
Abstract
Trypanosoma cruzi, the causal agent of Chagas disease, is mainly transmitted by insects of the Triatominae subfamily. In Colombia, there are 26 triatomine species, and 16 of them are naturally infected with the parasite. The parasite loads of naturally infected vectors can [...] Read more.
Trypanosoma cruzi, the causal agent of Chagas disease, is mainly transmitted by insects of the Triatominae subfamily. In Colombia, there are 26 triatomine species, and 16 of them are naturally infected with the parasite. The parasite loads of naturally infected vectors can be significant in targeting specific species that can affect the epidemiology of the disease. Studying their ecology and behavior is vital to understand their role in T. cruzi transmission dynamics. We evaluated the parasite loads of 182 field-collected triatomines corresponding to 10 species in 13 departments across Colombia. We standardized a methodology to quantify T. cruzi DNA in these insects. We obtained a LOD (limit of detection) of 3.05 p-eq/mL. The 82% of triatomines we evaluated were positive for T. cruzi infection, with loads ranging from hundreds to millions of equivalent parasites per milliliter. Panstrongylus geniculatus, Rhodnius prolixus, and Triatoma dimidiata were the species with the highest loads of T. cruzi; however, other species whose role as vectors is still unknown were also found with high loads of parasites. Our results suggest the relevance of secondary species for T. cruzi transmission in Colombia. We hope our data can help improve entomological surveillance and vector control programs in the country and the region. Full article
(This article belongs to the Special Issue Advances in Chagas Disease Control)
Show Figures

Figure 1

12 pages, 1073 KiB  
Article
Laboratory Evaluation and Field Feasibility of Micro-Encapsulated Insecticide Effect on Rhodnius prolixus and Triatoma dimidiata Mortality in Rural Households in Boyacá, Colombia
by Lídia Gual-Gonzalez, Manuel Medina, César Valverde-Castro, Virgilio Beltrán, Rodrigo Caro, Omar Triana-Chávez, Melissa S. Nolan and Omar Cantillo-Barraza
Insects 2022, 13(11), 1061; https://doi.org/10.3390/insects13111061 - 17 Nov 2022
Cited by 2 | Viewed by 1682
Abstract
Chagas disease is a neglected vector-borne zoonosis caused by the parasite Trypanosoma cruzi that is primarily transmitted by insects of the subfamily Triatominae. Although control efforts targeting domestic infestations of Rhodnius prolixus have been largely successful, with several regions in Boyacá department certified [...] Read more.
Chagas disease is a neglected vector-borne zoonosis caused by the parasite Trypanosoma cruzi that is primarily transmitted by insects of the subfamily Triatominae. Although control efforts targeting domestic infestations of Rhodnius prolixus have been largely successful, with several regions in Boyacá department certified free of T. cruzi transmission by intradomicile R. prolixus, novel native species are emerging, increasing the risk of disease. Triatoma dimidiata is the second most important species in Colombia, and conventional control methods seem to be less effective. In this study we evaluated the efficacy and usefulness of micro-encapsulated insecticide paints in laboratory conditions and its applicability in rural communities to avoid triatomine domiciliation. Laboratory conditions measured mortality at 6 months and 12 months, with an average mortality between 93–100% for T. dimidiata and 100% for R. prolixus. Evaluation of triatomine infestation in rural households was measured after one year, with an overall perception of effectiveness in reducing household domiciliation. Although triatomines were still spotted inside and around the homes, our findings demonstrate the ability of micro-encapsulated insecticide to prevent colonization inside the households when comparing infestation rates from previous years. Current control measures suggest insecticide spraying every six months, which implies great economic cost and logistical effort. Complementary triatomine control measures with insecticide spraying and micro-encapsulated insecticide paint would make public health efforts more efficient and reduce the frequency of treatment. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

20 pages, 2667 KiB  
Article
Impact of JH Signaling on Reproductive Physiology of the Classical Insect Model, Rhodnius prolixus
by Jimena Leyria, Ian Orchard and Angela B. Lange
Int. J. Mol. Sci. 2022, 23(22), 13832; https://doi.org/10.3390/ijms232213832 - 10 Nov 2022
Cited by 11 | Viewed by 2118
Abstract
In adult females of several insect species, juvenile hormones (JHs) act as gonadotrophic hormones, regulating egg production. JH binds to its nuclear receptor, Methoprene tolerant (Met), triggering its dimerization with the protein Taiman (Tai). The resulting active complex induces transcription of JH response [...] Read more.
In adult females of several insect species, juvenile hormones (JHs) act as gonadotrophic hormones, regulating egg production. JH binds to its nuclear receptor, Methoprene tolerant (Met), triggering its dimerization with the protein Taiman (Tai). The resulting active complex induces transcription of JH response genes, such as Krüppel homolog 1 (Kr-h1). In this study we report for the first time the participation of the isoform JH III skipped bisepoxide (JHSB3) and its signaling pathway in the reproductive fitness of the classical insect model Rhodnius prolixus. The topical application of synthetic JHSB3 increases transcript and protein expression of yolk protein precursors (YPPs), mainly by the fat body but also by the ovaries, the second source of YPPs. These results are also confirmed by ex vivo assays. In contrast, when the JH signaling cascade is impaired via RNA interference by downregulating RhoprMet and RhoprTai mRNA, egg production is inhibited. Although RhoprKr-h1 transcript expression is highly dependent on JHSB3 signaling, it is not involved in egg production but rather in successful hatching. This research contributes missing pieces of JH action in the insect model in which JH was first postulated almost 100 years ago. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

13 pages, 889 KiB  
Article
New Cell Lines Derived from Laboratory Colony Triatoma infestans and Rhodnius prolixus, Vectors of Trypanosoma cruzi, Do Not Harbour Triatoma Virus
by Rebekah Penrice-Randal, Catherine Hartley, Alexandra Beliavskaia, Xiaofeng Dong, Luke Brandner-Garrod, Miranda Whitten and Lesley Bell-Sakyi
Insects 2022, 13(10), 906; https://doi.org/10.3390/insects13100906 - 5 Oct 2022
Viewed by 1662
Abstract
Triatomine bugs of the genera Triatoma and Rhodnius are vectors of Chagas disease, a neglected tropical disease of humans in South America caused by Trypanosoma cruzi. Triatoma virus (TrV), a natural pathogen of Triatoma infestans, has been proposed as a possible [...] Read more.
Triatomine bugs of the genera Triatoma and Rhodnius are vectors of Chagas disease, a neglected tropical disease of humans in South America caused by Trypanosoma cruzi. Triatoma virus (TrV), a natural pathogen of Triatoma infestans, has been proposed as a possible tool for the bio-control of triatomine bugs, but research into this virus has been hampered by a lack of suitable host cells for in vitro propagation. Here we report establishment and partial characterisation of continuous cell lines from embryos of T. infestans (TIE/LULS54) and Rhodnius prolixus (RPE/LULS53 and RPE/LULS57). RNAseq screening by a sequence-independent, single primer amplification approach confirmed the absence of TrV and other RNA viruses known to infect R. prolixus, indicating that these new cell lines could be used for propagation of TrV. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

6 pages, 576 KiB  
Communication
Trends in Taxonomy of the Rhodniini Tribe (Hemiptera, Triatominae): Reproductive Incompatibility between Rhodnius neglectus Lent, 1954 and Psammolestes spp. Confirms the Generic Status of Psammolestes Bergroth, 1911
by Amanda Ravazi, Jader de Oliveira, Fernanda Fernandez Madeira, Yago Visinho dos Reis, Ana Beatriz Bortolozo de Oliveira, Cleber Galvão, Maria Tercília Vilela de Azeredo-Oliveira, João Aristeu da Rosa and Kaio Cesar Chaboli Alevi
Diversity 2022, 14(9), 761; https://doi.org/10.3390/d14090761 - 15 Sep 2022
Cited by 5 | Viewed by 1558
Abstract
The tribe Rhodniini is a monophyletic group composed of 24 species grouped in two genera: Rhodnius and Psammolestes. Rhodnius is a paraphyletic genus formed by 21 species. The event of paraphilia is supported by the greater evolutionary proximity of the species of [...] Read more.
The tribe Rhodniini is a monophyletic group composed of 24 species grouped in two genera: Rhodnius and Psammolestes. Rhodnius is a paraphyletic genus formed by 21 species. The event of paraphilia is supported by the greater evolutionary proximity of the species of the prolixus groups with the genus Psammolestes than with the other groups of Rhodnius. Based on this phenomenon, it was proposed the alteration of the genus of the species of Psammolestes to Rhodnius. Thus, we performed experimental crosses between Psammolestes spp. and R. neglectus to assess the degree of reproductive compatibility between Psammolestes and Rhodnius. Hybrids were not obtained for intergeneric crosses. Based on this, we have demonstrated that Rhodnius and Psammolestes have reproductive incompatibility. These data are important to confirm the validity of the specific status of Psammolestes, based on the biological concept of the species. Full article
(This article belongs to the Special Issue Heteroptera: Biodiversity, Evolution, Taxonomy and Conservation)
Show Figures

Figure 1

26 pages, 69595 KiB  
Article
Rhodnius prolixus Hemolymph Immuno-Physiology: Deciphering the Systemic Immune Response Triggered by Trypanosoma cruzi Establishment in the Vector Using Quantitative Proteomics
by Radouane Ouali, Larissa Rezende Vieira, Didier Salmon and Sabrina Bousbata
Cells 2022, 11(9), 1449; https://doi.org/10.3390/cells11091449 - 25 Apr 2022
Cited by 4 | Viewed by 3016
Abstract
Understanding the development of Trypanosoma cruzi within the triatomine vector at the molecular level should provide novel targets for interrupting parasitic life cycle and affect vectorial competence. The aim of the current study is to provide new insights into triatomines immunology through the [...] Read more.
Understanding the development of Trypanosoma cruzi within the triatomine vector at the molecular level should provide novel targets for interrupting parasitic life cycle and affect vectorial competence. The aim of the current study is to provide new insights into triatomines immunology through the characterization of the hemolymph proteome of Rhodnius prolixus, a major Chagas disease vector, in order to gain an overview of its immune physiology. Surprisingly, proteomics investigation of the immunomodulation of T. cruzi-infected blood reveals that the parasite triggers an early systemic response in the hemolymph. The analysis of the expression profiles of hemolymph proteins from 6 h to 24 h allowed the identification of a broad range of immune proteins expressed already in the early hours post-blood-feeding regardless of the presence of the parasite, ready to mount a rapid response exemplified by the significant phenol oxidase activation. Nevertheless, we have also observed a remarkable induction of the immune response triggered by an rpPGRP-LC and the overexpression of defensins 6 h post-T. cruzi infection. Moreover, we have identified novel proteins with immune properties such as the putative c1q-like protein and the immunoglobulin I-set domain-containing protein, which have never been described in triatomines and could play a role in T. cruzi recognition. Twelve proteins with unknown function are modulated by the presence of T. cruzi in the hemolymph. Determining the function of these parasite-induced proteins represents an exciting challenge for increasing our knowledge about the diversity of the immune response from the universal one studied in holometabolous insects. This will provide us with clear answers for misunderstood mechanisms in host–parasite interaction, leading to the development of new generation strategies to control vector populations and pathogen transmission. Full article
(This article belongs to the Collection Deciphering the Proteome in Cell Biology and Diseases)
Show Figures

Figure 1

17 pages, 2164 KiB  
Article
Influence of Serratia marcescens and Rhodococcus rhodnii on the Humoral Immunity of Rhodnius prolixus
by Kate K. S. Batista, Cecília S. Vieira, Marcela B. Figueiredo, Samara G. Costa-Latgé, Patrícia Azambuja, Fernando A. Genta and Daniele P. Castro
Int. J. Mol. Sci. 2021, 22(20), 10901; https://doi.org/10.3390/ijms222010901 - 9 Oct 2021
Cited by 12 | Viewed by 2621
Abstract
Chagas disease is a human infectious disease caused by Trypanosoma cruzi and can be transmitted by triatomine vectors, such as Rhodnius prolixus. One limiting factor for T. cruzi development is the composition of the bacterial gut microbiota in the triatomine. Herein, we [...] Read more.
Chagas disease is a human infectious disease caused by Trypanosoma cruzi and can be transmitted by triatomine vectors, such as Rhodnius prolixus. One limiting factor for T. cruzi development is the composition of the bacterial gut microbiota in the triatomine. Herein, we analyzed the humoral immune responses of R. prolixus nymphs treated with antibiotics and subsequently recolonized with either Serratia marcescens or Rhodococcus rhodnii. The treatment with antibiotics reduced the bacterial load in the digestive tract, and the recolonization with each bacterium was successfully detected seven days after treatment. The antibiotic-treated insects, recolonized with S. marcescens, presented reduced antibacterial activity against Staphylococcus aureus and phenoloxidase activity in hemolymph, and lower nitric oxide synthase (NOS) and higher defensin C gene (DefC) gene expression in the fat body. These insects also presented a higher expression of DefC, lower prolixicin (Prol), and lower NOS levels in the anterior midgut. However, the antibiotic-treated insects recolonized with R. rhodnii had increased antibacterial activity against Escherichia coli and lower activity against S. aureus, higher phenoloxidase activity in hemolymph, and lower NOS expression in the fat body. In the anterior midgut, these insects presented higher NOS, defensin A (DefA) and DefC expression, and lower Prol expression. The R. prolixus immune modulation by these two bacteria was observed not only in the midgut, but also systemically in the fat body, and may be crucial for the development and transmission of the parasites Trypanosoma cruzi and Trypanosoma rangeli. Full article
(This article belongs to the Special Issue Host-Microbe Interaction 3.0)
Show Figures

Figure 1

18 pages, 8353 KiB  
Article
Satellitome Analysis of Rhodnius prolixus, One of the Main Chagas Disease Vector Species
by Eugenia E. Montiel, Francisco Panzera, Teresa Palomeque, Pedro Lorite and Sebastián Pita
Int. J. Mol. Sci. 2021, 22(11), 6052; https://doi.org/10.3390/ijms22116052 - 3 Jun 2021
Cited by 22 | Viewed by 3060
Abstract
The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented [...] Read more.
The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG)n and (GATA)n repeats, also present in the T. infestans genome. Only three of them exceed 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes. Moreover, clustering analysis revealed that most abundant satDNA families configured several superclusters, indicating that R. prolixus satellitome is complex and that the four most abundant satDNA families are composed by different subfamilies. Additionally, transcription of satDNA families was analyzed in different tissues, showing that 33 out of 39 satDNA families are transcribed in four different patterns of expression across samples. Full article
(This article belongs to the Special Issue Repetitive DNA Sequences in Eukaryotic Genomes)
Show Figures

Figure 1

15 pages, 3539 KiB  
Article
Elevated Pediatric Chagas Disease Burden Complicated by Concomitant Intestinal Parasites and Malnutrition in El Salvador
by Melissa S. Nolan, Kristy O. Murray, Rojelio Mejia, Peter J. Hotez, Maria Jose Villar Mondragon, Stanley Rodriguez, Jose Ricardo Palacios, William Ernesto Murcia Contreras, M. Katie Lynn, Myriam E. Torres and Maria Carlota Monroy Escobar
Trop. Med. Infect. Dis. 2021, 6(2), 72; https://doi.org/10.3390/tropicalmed6020072 - 7 May 2021
Cited by 9 | Viewed by 7195
Abstract
The eradication of the vector Rhodnius prolixus from Central America was heralded as a victory for controlling transmission of Trypanosoma cruzi, the parasite that causes Chagas disease. While public health officials believed this milestone achievement would effectively eliminate Chagas disease, case reports [...] Read more.
The eradication of the vector Rhodnius prolixus from Central America was heralded as a victory for controlling transmission of Trypanosoma cruzi, the parasite that causes Chagas disease. While public health officials believed this milestone achievement would effectively eliminate Chagas disease, case reports of acute vector transmission began amassing within a few years. This investigation employed a cross-sectional serosurvey of children either presenting with fever for clinical care or children living in homes with known triatomine presence in the state of Sonsonate, El Salvador. Over the 2018 calendar year, a 2.3% Chagas disease seroprevalence among children with hotspot clustering in Nahuizalco was identified. Positive serology was significantly associated with dogs in the home, older participant age, and a higher number of children in the home by multivariate regression. Concomitant intestinal parasitic infection was noted in a subset of studied children; 60% having at least one intestinal parasite and 15% having two or more concomitant infections. Concomitant parasitic infection was statistically associated with an overall higher parasitic load detected in stool by qPCR. Lastly, a four-fold higher burden of stunting was identified in the cohort compared to the national average, with four-fifths of mothers reporting severe food insecurity. This study highlights that polyparasitism is common, and a systems-based approach is warranted when treating Chagas disease seropositive children. Full article
Show Figures

Figure 1

19 pages, 2196 KiB  
Article
Early Post-Prandial Regulation of Protein Expression in the Midgut of Chagas Disease Vector Rhodnius prolixus Highlights New Potential Targets for Vector Control Strategy
by Radouane Ouali, Larissa Rezende Vieira, Didier Salmon and Sabrina Bousbata
Microorganisms 2021, 9(4), 804; https://doi.org/10.3390/microorganisms9040804 - 11 Apr 2021
Cited by 9 | Viewed by 2709
Abstract
Chagas disease is a vector-borne parasitic disease caused by the flagellated protozoan Trypanosoma cruzi and transmitted to humans by a large group of bloodsucking triatomine bugs. Triatomine insects, such as Rhodnius prolixus, ingest a huge amount of blood in a single meal. [...] Read more.
Chagas disease is a vector-borne parasitic disease caused by the flagellated protozoan Trypanosoma cruzi and transmitted to humans by a large group of bloodsucking triatomine bugs. Triatomine insects, such as Rhodnius prolixus, ingest a huge amount of blood in a single meal. Their midgut represents an important interface for triatomine–trypanosome interactions. Furthermore, the development of parasites and their vectorial transmission are closely linked to the blood feeding and digestion; thus, an understanding of their physiology is essential for the development of new strategies to control triatomines. In this study, we used label-free quantitative proteomics to identify and analyze the early effect of blood feeding on protein expression in the midgut of Rhodnius prolixus. We both identified and quantified 124 proteins in the anterior midgut (AM) and 40 in the posterior midgut (PM), which vary significantly 6 h after feeding. The detailed analysis of these proteins revealed their predominant involvement in the primary function of hematophagy, including proteases, proteases inhibitors, amino acids metabolism, primary metabolites processing, and protein folding. Interestingly, our proteomics data show a potential role of the AM in protein digestion. Moreover, proteins related to detoxification processes and innate immunity, which are largely accepted to be triggered by blood ingestion, were mildly modulated. Surprisingly, one third of blood-regulated proteins in the AM have unknown function. This work contributes to the improvement of knowledge on the digestive physiology of triatomines in the early hours post-feeding. It provides key information for selecting new putative targets for the development of triatomine control tools and their potential role in the vector competence, which could be applied to other vector species. Full article
(This article belongs to the Special Issue Chagas Disease (American Trypanosomiasis))
Show Figures

Figure 1

13 pages, 1349 KiB  
Article
High-Throughput Identification of the Rhodnius prolixus Midgut Proteome Unravels a Sophisticated Hematophagic Machinery
by Radouane Ouali, Karen Caroline Valentim de Brito, Didier Salmon and Sabrina Bousbata
Proteomes 2020, 8(3), 16; https://doi.org/10.3390/proteomes8030016 - 24 Jul 2020
Cited by 13 | Viewed by 3569
Abstract
Chagas disease is one of the most common parasitic infections in Latin America, which is transmitted by hematophagous triatomine bugs, of which Rhodnius prolixus is the vector prototype for the study of this disease. The protozoan parasite Trypanosoma cruzi, the etiologic agent [...] Read more.
Chagas disease is one of the most common parasitic infections in Latin America, which is transmitted by hematophagous triatomine bugs, of which Rhodnius prolixus is the vector prototype for the study of this disease. The protozoan parasite Trypanosoma cruzi, the etiologic agent of this disease, is transmitted by the vector to humans through the bite wound or mucosa. The passage of the parasite through the digestive tract of its vector constitutes a key step in its developmental cycle. Herewith, by a using high-throughput proteomic tool in order to characterize the midgut proteome of R. prolixus, we describe a set of functional groups of proteins, as well as the biological processes in which they are involved. This is the first proteomic analysis showing an elaborated hematophagy machinery involved in the digestion of blood, among which, several families of proteases have been characterized. The evaluation of the activity of cathepsin D proteases in the anterior part of the digestive tract of the insect suggested the existence of a proteolytic activity within this compartment, suggesting that digestion occurs early in this compartment. Moreover, several heat shock proteins, blood clotting inhibitors, and a powerful antioxidant enzyme machinery against reactive oxygen species (ROS) and cell detoxification have been identified. Highlighting the complexity and importance of the digestive physiology of insects could be a starting point for the selection of new targets for innovative control strategies of Chagas disease. Full article
Show Figures

Figure 1

14 pages, 3160 KiB  
Article
Homology-Free Detection of Transposable Elements Unveils Their Dynamics in Three Ecologically Distinct Rhodnius Species
by Marcelo R. J. Castro, Clément Goubert, Fernando A. Monteiro, Cristina Vieira and Claudia M. A. Carareto
Cited by 14 | Viewed by 4181
Abstract
Transposable elements (TEs) are widely distributed repetitive sequences in the genomes across the tree of life, and represent an important source of genetic variability. Their distribution among genomes is specific to each lineage. A phenomenon associated with this feature is the sudden expansion [...] Read more.
Transposable elements (TEs) are widely distributed repetitive sequences in the genomes across the tree of life, and represent an important source of genetic variability. Their distribution among genomes is specific to each lineage. A phenomenon associated with this feature is the sudden expansion of one or several TE families, called bursts of transposition. We previously proposed that bursts of the Mariner family (DNA transposons) contributed to the speciation of Rhodnius prolixus Stål, 1859. This hypothesis motivated us to study two additional species of the R. prolixus complex: Rhodnius montenegrensis da Rosa et al., 2012 and Rhodnius marabaensis Souza et al., 2016, together with a new, de novo annotation of the R. prolixus repeatome using unassembled short reads. Our analysis reveals that the total amount of TEs present in Rhodnius genomes (19% to 23.5%) is three to four times higher than that expected based on the original quantifications performed for the original genome description of R. prolixus. We confirm here that the repeatome of the three species is dominated by Class II elements of the superfamily Tc1-Mariner, as well as members of the LINE order (Class I). In addition to R. prolixus, we also identified a recent burst of transposition of the Mariner family in R. montenegrensis and R. marabaensis, suggesting that this phenomenon may not be exclusive to R. prolixus. Rather, we hypothesize that whilst the expansion of Mariner elements may have contributed to the diversification of the R. prolixus-R. robustus species complex, the distinct ecological characteristics of these new species did not drive the general evolutionary trajectories of these TEs. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop