Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = PTR-MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2504 KiB  
Article
Characteristics and Source Profiles of Volatile Organic Compounds (VOCs) by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS)
by Kyoung-Chan Kim, Byeong-Hun Oh, Jeong-Deok Baek, Chun-Sang Lee, Yong-Jae Lim, Hung-Soo Joo and Jin-Seok Han
Atmosphere 2024, 15(10), 1156; https://doi.org/10.3390/atmos15101156 - 27 Sep 2024
Viewed by 574
Abstract
Volatile organic compounds (VOCs) are one of significant contributors to air pollution and have profound effects on human health and the environment. This study introduces a detailed analysis of VOC emissions from various industries within an industrial complex using a high-resolution measurement instrument. [...] Read more.
Volatile organic compounds (VOCs) are one of significant contributors to air pollution and have profound effects on human health and the environment. This study introduces a detailed analysis of VOC emissions from various industries within an industrial complex using a high-resolution measurement instrument. This study aimed to identify the VOC profiles and their concentrations across 12 industries. Sampling was conducted across 99 facilities in an industrial complex in South Korea, and VOC analysis was performed based on measurement data using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). The results indicated that the emission of oxygenated VOCs (OVOCs) was dominant in most industries. Aromatic hydrocarbons were also dominant in most industries, except in screen printing (SP), lubricating oil and grease manufacturing (LOG), and industrial laundry services (ILS) industries. Chlorinated VOCs (Cl-VOCs) showed a relatively higher level in the metal plating (MP) industry than those in other industries and nitrogen-containing VOCs (N-VOCs) showed high levels in general paints and similar product manufacturing (PNT), MP, and ILS industries, respectively. The gravure printing industry was identified as the highest emitter of VOCs, with the highest daily emissions reaching 5934 mg day−1, primarily consisting of ethyl acetate, toluene, butyl acetate, and propene. The findings suggest that the VOC emissions from the gravure printing and plastic synthetic leather industries should be primarily reduced, and it would be the most cost-effective approach to improving air quality. This study can provide the fundamental data for developing effective reduction technologies and policies of VOC, ultimately contributing to enhanced atmospheric models and regulatory measures. Full article
(This article belongs to the Special Issue Novel Insights into Air Pollution over East Asia (Second Edition))
Show Figures

Figure 1

17 pages, 879 KiB  
Article
Identification of Exhaled Metabolites Correlated with Respiratory Function and Clinical Features in Adult Patients with Cystic Fibrosis by Real-Time Proton Mass Spectrometry
by Malika Mustafina, Artemiy Silantyev, Stanislav Krasovskiy, Alexander Chernyak, Zhanna Naumenko, Aleksandr Suvorov, Daria Gognieva, Magomed Abdullaev, Olga Suvorova, Anna Schmidt, Aida Gadzhiakhmedova, Aleksandra Bykova, Sergey Avdeev, Vladimir Betelin, Abram Syrkin and Philipp Kopylov
Biomolecules 2024, 14(9), 1189; https://doi.org/10.3390/biom14091189 - 21 Sep 2024
Viewed by 444
Abstract
Cystic fibrosis (CF) is a hereditary disease characterized by the progression of respiratory disorders, especially in adult patients. The purpose of the study was to identify volatile organic compounds (VOCs) as predictors of respiratory dysfunction, chronic respiratory infections of Staphylococcus aureus, Pseudomonas [...] Read more.
Cystic fibrosis (CF) is a hereditary disease characterized by the progression of respiratory disorders, especially in adult patients. The purpose of the study was to identify volatile organic compounds (VOCs) as predictors of respiratory dysfunction, chronic respiratory infections of Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, and VOCs associated with severe genotype and highly effective modulator treatment (HEMT). Exhaled breath samples from 102 adults with CF were analyzed using PTR-TOF-MS, obtained during a forced expiratory maneuver and normal quiet breathing. Using cross-validation and building gradient boosting classifiers (XGBoost), the importance of VOCs for functional and clinical outcomes was determined. The presence of the previously identified VOCs indole, phenol, and dimethyl sulfide were metabolic outcomes associated with impaired respiratory function. New VOCs associated with respiratory disorders were methyl acetate, carbamic acid, 1,3-Pentadiene, and 2,3-dimethyl-2-butene; VOCs associated with the above mentioned respiratory pathogens were non-differentiable nitrogen-containing organic compounds m/z = 47.041 (CH5NO)+ and m/z = 44.044 (C2H5NH+), hydrocarbons (cyclopropane, propene) and methanethiol; and VOCs associated with severe CFTR genotype were non-differentiable VOC m/z = 281.053. No significant features associated with the use of HEMT were identified. Early non-invasive determination of VOCs as biomarkers of the severity of CF and specific pathogenic respiratory flora could make it possible to prescribe adequate therapy and assess the prognosis of the disease. However, further larger standardized studies are needed for clinical use. Full article
(This article belongs to the Special Issue Airway Diseases: Molecular Updates and Perspectives)
Show Figures

Figure 1

27 pages, 4346 KiB  
Article
An Innovation Management Approach for Electric Vertical Take-Off and Landing
by Tingyou Li, Xia Xu and Luyi Shen
Sustainability 2024, 16(16), 7135; https://doi.org/10.3390/su16167135 - 20 Aug 2024
Viewed by 635
Abstract
With more companies entering the realm of electric vertical take-off and landing (eVTOL) and governments enacting policies to support the development of low-altitude economies, the commercial potential of eVTOL is being recognized by the public. However, true commercialization is still a long way [...] Read more.
With more companies entering the realm of electric vertical take-off and landing (eVTOL) and governments enacting policies to support the development of low-altitude economies, the commercial potential of eVTOL is being recognized by the public. However, true commercialization is still a long way off. This article analyzes the technologies, product features, potential markets, and government policies related to eVTOL and constructs a four-stage, four-layer Policy–Technology Roadmap (P-TRM) model to guide the R&D process of eVTOL. Then, it is transformed into a system structural model, and the Decision-Making Trial and Evaluation Laboratory (DEMATEL) method is used to identify several key nodes in the R&D process. Utilizing the Technology Adoption Life Cycle (TALC) theory for interpretation and analysis, the article concludes by proposing strategies in product, technology, and policy support for how eVTOL can successfully cross the chasm. This preliminary analysis of the development path, key nodes, and necessary measures for crossing the chasm provides insights for the R&D and commercialization of eVTOL. Full article
Show Figures

Figure 1

14 pages, 886 KiB  
Review
Volatile Organic Compounds as a Diagnostic Tool for Detecting Microbial Contamination in Fresh Agricultural Products: Mechanism of Action and Analytical Techniques
by Rosa Isela Ventura-Aguilar, Jesús Armando Lucas-Bautista, Ma. de Lourdes Arévalo-Galarza and Elsa Bosquez-Molina
Processes 2024, 12(8), 1555; https://doi.org/10.3390/pr12081555 - 25 Jul 2024
Cited by 1 | Viewed by 807
Abstract
Volatile organic compounds (VOCs) are secondary metabolites emitted by all living carbon-based organisms. These VOCs are of great importance in the agricultural sector due to their use as biofungicides and biopesticides. In addition, they can also be used as indicators of microbial contamination. [...] Read more.
Volatile organic compounds (VOCs) are secondary metabolites emitted by all living carbon-based organisms. These VOCs are of great importance in the agricultural sector due to their use as biofungicides and biopesticides. In addition, they can also be used as indicators of microbial contamination. The latter has rarely been studied; however, such a role is very relevant because it allows the timely application of corrective treatments that avoid food waste, the development of toxins dangerous to humans, and the design of biosensors. Gas chromatography–mass spectrometry (GC-MS), electronic nose (e-nose), and proton transfer reaction mass spectrometry (PTR-MS) are some of the techniques used to detect VOCs in fruits and vegetables contaminated by microorganisms. Therefore, the objective of this work is to deepen our knowledge of VOCs emitted by microorganisms in terms of their use as an indicator of microbial contamination of fresh agricultural products, as well as the analytical techniques used for their detection. Full article
(This article belongs to the Special Issue Monitoring, Detection and Control of Food Contaminants)
Show Figures

Figure 1

19 pages, 1670 KiB  
Article
Influence of Cheese Composition on Aroma Content, Release, and Perception
by Isabelle Andriot, Chantal Septier, Caroline Peltier, Elodie Noirot, Pascal Barbet, Romain Palme, Céline Arnould, Solange Buchin and Christian Salles
Molecules 2024, 29(14), 3412; https://doi.org/10.3390/molecules29143412 - 20 Jul 2024
Viewed by 3198
Abstract
The quality of a cheese is determined by the balance of aroma compounds primarily produced by microorganisms during the transformation of milk into ripened cheese. The microorganisms, along with the technological parameters used in cheese production, influence aroma formation. The perception of these [...] Read more.
The quality of a cheese is determined by the balance of aroma compounds primarily produced by microorganisms during the transformation of milk into ripened cheese. The microorganisms, along with the technological parameters used in cheese production, influence aroma formation. The perception of these compounds is further influenced by the composition and structure of the cheese. This study aimed to characterize how cheese composition affects aroma compound production, release, and perception. Sixteen cheeses were produced under controlled conditions, followed by a quantitative descriptive analysis post ripening. Aroma composition was analyzed using HS-SPME–GC–MS, and a dynamic sensory evaluation (TCATA) was combined with nosespace analysis using PTR-ToF-MS. Image analysis was also conducted to characterize cheese structure. Cheese fat and whey lactose contents were identified as key factors in the variability of sensory attributes. GC–MS analyses identified 27 compounds correlated with sensory attributes. In terms of aroma compound release, 23 ions were monitored, with fat, salt, and lactose levels significantly affecting the release of most compounds. Therefore, cheese fat, salt, and whey lactose levels, as well as the types of microbial strains, play a role in influencing the composition, structure, release of aroma compounds, and sensory perception. Full article
Show Figures

Figure 1

20 pages, 2676 KiB  
Article
Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS)
by Sarathadevi Rajendran, Iuliia Khomenko, Patrick Silcock, Emanuela Betta, Franco Biasioli and Phil Bremer
Molecules 2024, 29(14), 3275; https://doi.org/10.3390/molecules29143275 - 11 Jul 2024
Viewed by 1046
Abstract
Bacterial fermentation is considered to be a cost-effective means of generating desired flavour compounds from plant-based substrates. However, the wide range of substrates present in plants makes it challenging to understand how individual components impact on flavour volatile organic compound (VOC) production. To [...] Read more.
Bacterial fermentation is considered to be a cost-effective means of generating desired flavour compounds from plant-based substrates. However, the wide range of substrates present in plants makes it challenging to understand how individual components impact on flavour volatile organic compound (VOC) production. To simplify this, a defined medium can be used to better understand VOCs production with regard to individual compounds. In the current study, the VOCs produced by the lactic acid bacterium, Levilactobacillus brevis WLP672, growing in a defined medium containing different carbon sources (either glucose (DM), fructose (DMFr) or citrate (DMCi)) under a range of fermentation conditions (time: 0, 7, and 14 days; and temperature: 25 and 35 °C) were assessed using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). Among the detected mass peaks (m/z), after 7 days of fermentation, the concentrations of m/z 45.033 (t.i. acetaldehyde), m/z 49.011 (t.i. methanethiol), and m/z 89.060 (t.i. ethyl acetate) were significantly (p < 0.05) higher in DM at 35 °C than all other treatments at either temperature. The knowledge obtained will help to produce desirable LAB fermentation flavour VOCs or VOC mixtures that could be used in developing plant-based analogues with acceptable sensory properties. Full article
Show Figures

Figure 1

13 pages, 3158 KiB  
Article
Evaluation of Terpene Decomposition in Kaffir Lime Juice during Storage Using Gas Chromatography–Mass Spectrometry and Proton Transfer Reaction–Mass Spectrometry
by Martyna Lubinska-Szczygeł, Żaneta Polkowska, Blanka Tobolkova, Tomasz Majchrzak, Martin Polovka, Parichart Promchote and Shela Gorinstein
Molecules 2024, 29(13), 3241; https://doi.org/10.3390/molecules29133241 - 8 Jul 2024
Viewed by 963
Abstract
Kaffir lime juice, often treated as production waste, can be a good source of terpenes. These compounds undergo various decomposition processes under the influence of external factors, especially during transportation and storage. In this paper, it was possible to monitor changes in the [...] Read more.
Kaffir lime juice, often treated as production waste, can be a good source of terpenes. These compounds undergo various decomposition processes under the influence of external factors, especially during transportation and storage. In this paper, it was possible to monitor changes in the terpene profile of kaffir lime juice under different storage conditions, namely, 4 °C, 20 °C, and 35 °C. The identification of key decomposition products was achieved using gas chromatography–mass spectrometry (GC–MS) and a data mining protocol. It was followed by tracing those products in different storage conditions using a high-throughput proton transfer reaction mass spectrometry (PTR–MS) approach. Based on our findings, degradation pathways were presented, showing that the main products resulting from storage are p-cymene, p-cymenene, terpinene-4-ol, and α-terpineol. It was shown that conversion to p-cymenene occurs after 5 days of storage. Terpinene-4-ol and α-terpineol were found to be the final products of the conversion at all temperatures. Changes in the composition of terpenes are important from the point of view of their bioactive properties. Full article
Show Figures

Graphical abstract

12 pages, 1614 KiB  
Article
Study of Volatile Organic Compounds in Emission from Bottom Sediments of Three Lakes with Impact of Anthropopression Using the Proton Transfer Reaction Mass Spectrometry
by Józef Antonowicz and Tomasz Wróblewski
Limnol. Rev. 2024, 24(3), 205-216; https://doi.org/10.3390/limnolrev24030012 - 6 Jul 2024
Viewed by 534
Abstract
Studies of volatile organic compounds (VOCs) emitted from the bottom sediments of three Pomeranian lakes in Poland: Łazienkowskie, Rychnowskie, and Jeleń were conducted. All three lakes are subject to anthropogenic pressure but to varying degrees. In 2021, bottom sediment samples were taken from [...] Read more.
Studies of volatile organic compounds (VOCs) emitted from the bottom sediments of three Pomeranian lakes in Poland: Łazienkowskie, Rychnowskie, and Jeleń were conducted. All three lakes are subject to anthropogenic pressure but to varying degrees. In 2021, bottom sediment samples were taken from the lakes studied and an analysis of the emission of 20 volatile organic compounds was carried out using a proton transfer reaction mass spectrometer (PTR-MS). Concentrations in emissions from the bottom sediments of VOCs with the following mass–charge ratio (m/z) were analyzed: 57, 61, 63, 69, 75, 81, 83, 85, 87, 95, 97, 99, 101, 109, 111, 127, 129, 137, 149, and 157. The obtained data were analyzed by performing statistical tests and multivariate cluster and PCA analysis. The analysis shows that the lowest concentrations of VOCs were observed from bottom sediments in Lake Jeleń, which is subject to the lowest anthropopressure among the studied lakes. The analysis shows that the lowest concentrations of VOCs were observed from bottom sediments in Lake Jeleń, which is subject to lower anthropopressure among the studied lakes. With the help of cluster analysis, it was possible to collect data on the VOC concentrations into clusters, which resulted in demonstrating similarities between Łazienkowskie and Rychnowskie lakes—lakes connected by an isthmus, and the different characteristics of Lake Jeleń. PCA analysis leads to similar observations. The tested m/z VOCs can be identified using additional analytical methods. Full article
Show Figures

Figure 1

18 pages, 8740 KiB  
Article
The Effect of Different Medium Compositions and LAB Strains on Fermentation Volatile Organic Compounds (VOCs) Analysed by Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS)
by Sarathadevi Rajendran, Iuliia Khomenko, Patrick Silcock, Emanuela Betta, Michele Pedrotti, Franco Biasioli and Phil Bremer
Fermentation 2024, 10(6), 317; https://doi.org/10.3390/fermentation10060317 - 15 Jun 2024
Viewed by 1339
Abstract
Lactic acid bacteria (LAB) fermentation is a viable approach for producing plant-based flavour compounds; however, little is understood about the impact of different LAB strains and medium compositions on the production of volatile organic compounds (VOCs). This study investigated the impact of the [...] Read more.
Lactic acid bacteria (LAB) fermentation is a viable approach for producing plant-based flavour compounds; however, little is understood about the impact of different LAB strains and medium compositions on the production of volatile organic compounds (VOCs). This study investigated the impact of the addition of individual amino acids (AAs) (L-leucine, L-isoleucine, L-phenylalanine, L-glutamic acid, L-aspartic acid, L-threonine, or L-methionine) to a defined medium (DM) on the generation of VOCs (after 0, 7, and 14 days) by one of three LAB strains (Levilactobacillus brevis WLP672 (LB672), Lactiplantibacillus plantarum LP100 (LP100), and Pediococcus pentosaceus PP100 (PP100)), using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). The concentration of m/z 45.031 (t.i. acetaldehyde) was significantly (p < 0.05) higher after 7 days of fermentation by LP100 in the DM supplemented with threonine compared to all other media fermented by all three strains. The concentrations of m/z 49.012 (t.i. methanethiol) and m/z 95.000 (t.i. dimethyl disulfide) were significantly (p < 0.05) higher after 7 days of fermentation by either LP100, PP100, or LB672 in the DM supplemented with methionine compared to all other media. Information on the role of individual AAs on VOCs generation by different LAB strains will help to guide flavour development from the fermentation of plant-based substrates. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

16 pages, 2156 KiB  
Article
Influence of the Drying Process on the Volatile Profile of Different Capsicum Species
by Cosimo Taiti, Diego Comparini, Lavinia Moscovini, Simona Violino, Corrado Costa and Stefano Mancuso
Plants 2024, 13(8), 1131; https://doi.org/10.3390/plants13081131 - 18 Apr 2024
Cited by 1 | Viewed by 1122
Abstract
Chili is a globally significant spice used fresh or dried for culinary, condiment, and medicinal purposes. Growing concerns about food safety have increased the demand for high-quality products and non-invasive tools for quality control like origin tracing and safety assurance. Volatile analysis offers [...] Read more.
Chili is a globally significant spice used fresh or dried for culinary, condiment, and medicinal purposes. Growing concerns about food safety have increased the demand for high-quality products and non-invasive tools for quality control like origin tracing and safety assurance. Volatile analysis offers a rapid, comprehensive, and safe method for characterizing various food products. Thus, this study aims to assess the impact of the drying process on the aromatic composition of various Capsicum species and to identify key compounds driving the aromatic complexity of each genetic makeup. To accomplish these objectives, the aroma was examined in fruits collected from 19 different pepper accessions (Capsicum sp.) belonging to four species: one ancestral (C. chacoense) and three domesticated pepper species (C. annuum, C. baccatum and C. chinense). Fresh and dried samples were analyzed using a headspace PTR-TOF-MS platform. Our findings reveal significant changes in the composition and concentration of volatile organic compounds (VOCs) from fresh to dried Capsicum. Notably, chili peppers of the species C. chinense consistently exhibited higher emission intensity and a more complex aroma compared to other species (both fresh and dried). Overall, the data clearly demonstrate that the drying process generally leads to a reduction in the intensity and complexity of the aromatic compounds emitted. Specifically, fresh peppers showed higher volatile organic compounds content compared to dried ones, except for the two sweet peppers studied, which exhibited the opposite behavior. Our analysis underscores the variability in the effect of drying on volatile compound composition among different pepper species and even among different cultivars, highlighting key compounds that could facilitate species classification in dried powder. This research serves as a preliminary guide for promoting the utilization of various pepper species and cultivars as powder, enhancing product valorization. Full article
Show Figures

Figure 1

19 pages, 8487 KiB  
Article
A Study on the Formation Reactions and Conversion Mechanisms of HONO and HNO3 in the Atmosphere of Daejeon, Korea
by Kyoungchan Kim, Chunsang Lee, Dayeong Choi, Sangwoo Han, Jiwon Eom and Jinseok Han
Atmosphere 2024, 15(3), 267; https://doi.org/10.3390/atmos15030267 - 23 Feb 2024
Cited by 1 | Viewed by 1447
Abstract
Nitrogen oxides (NOX) in the atmosphere cause oxidation reactions with photochemical radicals and volatile organic compounds, leading to the accumulation of ozone (O3). NOX constitutes a significant portion of the NOy composition, with nitrous acid (HONO) and [...] Read more.
Nitrogen oxides (NOX) in the atmosphere cause oxidation reactions with photochemical radicals and volatile organic compounds, leading to the accumulation of ozone (O3). NOX constitutes a significant portion of the NOy composition, with nitrous acid (HONO) and nitric acid (HNO3) following. HONO plays a crucial role in the reaction cycle of NOX and hydrogen oxides. The majority of HNO3 reduction mechanisms result from aerosolization through heterogeneous reactions, having adverse effects on humans and plants by increasing secondary aerosol concentrations in the atmosphere. The investigation of the formation and conversion mechanisms of HONO and HNO3 is important; however, research in this area is currently lacking. In this study, we observed HONO, HNO3, and their precursor gases were observed in the atmosphere using parallel-plate diffusion scrubber-ion chromatography. A 0-D box model simulated the compositional distribution of NOy in the atmosphere. The formation reactions and conversion mechanisms of HONO and HNO3 were quantified using reaction equations and reaction coefficients. Among the various mechanisms, dominant mechanisms were identified, suggesting their importance. According to the calculation results, the produce of HONO was predominantly attributed to heterogeneous reactions, excluding an unknown source. The sink processes were mainly governed by photolysis during daytime and reactions with OH radicals during nighttime. HNO3 showed dominance in its production from N2O5, and in its conversion mechanisms primarily involving aerosolization and deposition. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

12 pages, 2148 KiB  
Article
Rapid Determination of Different Ripening Stages of Occidental Pears (Pyrus communis L.) by Volatile Organic Compounds Using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)
by Yuanmo Wang, Qingzhen Zhu, Songzhong Liu, Leizi Jiao and Daming Dong
Foods 2024, 13(4), 620; https://doi.org/10.3390/foods13040620 - 19 Feb 2024
Viewed by 1258
Abstract
Determination of Occidental pear (Pyrus communis) ripening is difficult because the appearance of Occidental pears does not change significantly during the ripening process. Occidental pears at different ripening stages release different volatile organic compounds (VOCs), which can be used to determine [...] Read more.
Determination of Occidental pear (Pyrus communis) ripening is difficult because the appearance of Occidental pears does not change significantly during the ripening process. Occidental pears at different ripening stages release different volatile organic compounds (VOCs), which can be used to determine fruit ripeness non-destructively and rapidly. In this study, VOCs were detected using proton-transfer-reaction mass spectrometry (PTR-MS). Notably, data were acquired within 1 min. Occidental pears harvested at five separate times were divided into three ripening stages: unripe, ripe, and overripe. The results showed that the composition of VOCs differed depending on the ripening stage. In particular, the concentrations of esters and terpenes significantly increased during the overripe stage. Three ripening stages were clearly discriminated by heatmap clustering and principal component analysis (PCA). This study provided a rapid and non-destructive method to evaluate the ripening stages of Occidental pears. The result can help fruit farmers to decide the optimum harvest time and hence reduce their economic losses. Full article
Show Figures

Figure 1

22 pages, 4347 KiB  
Article
Identification of Volatile Molecules and Bioactivity of Gruyt Craft Beer Enriched with Citrus aurantium var. dulcis L. Essential Oil
by Cosimo Taiti, Antonella Di Sotto, Giovanni Stefano, Ester Percaccio, Matteo Iannone, Andrea Marianelli and Stefania Garzoli
Int. J. Mol. Sci. 2024, 25(1), 350; https://doi.org/10.3390/ijms25010350 - 26 Dec 2023
Viewed by 1595
Abstract
In this work, for the first time, a gruyt beer and the same one after the addition of Citrus aurantium essential oil (AEO), were investigated to determine the composition of the volatile fraction. The applied analytical techniques, such as Head Space/Solid Phase Microextraction-Gas [...] Read more.
In this work, for the first time, a gruyt beer and the same one after the addition of Citrus aurantium essential oil (AEO), were investigated to determine the composition of the volatile fraction. The applied analytical techniques, such as Head Space/Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS/SPME-GC-MS) and Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS), allowed us to identify the content of volatile organic compounds (VOCs). From the comparison between the two beer samples, it showed that the one after the addition of AEO was particularly richened in limonene and a series of minor terpene compounds. AEO was also characterized by GC/MS analysis and the results showed that limonene reached 95%. Confocal microscopy was used to look at riboflavin autofluorescence in yeast cells. It was found that beer with AEO had twice as much fluorescence intensity as the control. A spectrophotometric analysis of total polyphenols, tannins, and flavonoids, and a bioactivity screening, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azinobis-(3-Ethylbenzthiazolin-6-Sulfonic Acid) (ABTS) radical scavenger, chelating, reducing, antiglycative ones, were also carried out. Moreover, the tolerability of the tested samples in human H69 cholangiocytes and the cytoprotection towards the tert-butyl hydroperoxide (tBOOH)-induced oxidative damage were evaluated. Under our experimental conditions, the beers were found to be able to scavenge DPPH and ABTS radicals and chelate iron ions, despite weak antiglycative and reducing properties. The tested samples did not affect the viability of H69 cholangiocytes up to the highest concentrations; moreover, no signs of cytoprotection against the damage induced by tBOOH were highlighted. Adding AEO to beer resulted in a moderate enhancement of its DPPH scavenging and chelating abilities, without improvements in the other assays. Conversely, AEO and its major compound limonene were ineffective when assessed at the concentrations added to beer. This evidence suggests that the addition of AEO may enhance the organoleptic features of the beer and slightly potentiate some of its bioactivities. Full article
(This article belongs to the Special Issue Investigation of Natural Products as Sources of Bioactive Molecules)
Show Figures

Figure 1

16 pages, 2124 KiB  
Article
Detection of Secondary Metabolites, Proximate Composition and Bioactivity of Organic Dried Spirulina (Arthrospira platensis)
by Cosimo Taiti, Maura Di Vito, Mattia Di Mercurio, Lara Costantini, Nicolò Merendino, Maurizio Sanguinetti, Francesca Bugli and Stefania Garzoli
Appl. Sci. 2024, 14(1), 67; https://doi.org/10.3390/app14010067 - 20 Dec 2023
Cited by 6 | Viewed by 1453
Abstract
In this work, Arthrospira platensis grown in Tuscany, Italy, was investigated using different analytical approaches to characterize its volatile and non-volatile chemical composition. The results showed the presence of a high number of volatile organic compounds (VOCs) such as hydrocarbons, furans, sulfides, alkanes, [...] Read more.
In this work, Arthrospira platensis grown in Tuscany, Italy, was investigated using different analytical approaches to characterize its volatile and non-volatile chemical composition. The results showed the presence of a high number of volatile organic compounds (VOCs) such as hydrocarbons, furans, sulfides, alkanes, aldehydes, alcohols, ketones, esters and compounds belonging to other chemical classes such as fatty acids, alcohols and sugars. Furthermore, a proximal composition analysis was also performed to determine the protein, fat, carbohydrate and ash content. Total antioxidant capacity (TAC) determined by FRAP and ABTS•+ methods (5.96 mmol TE/g DW; 5.28 mmol Fe2+E/g DW, respectively), showed good reducing power and comparable free radical scavenging activity. The antibacterial power of spirulina-based alcoholic macerate (AM) was also evaluated against Staphylococcus aureus (ATCC 29213), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 060127853), Enterococcus faecalis (ATCC 29211), Klebsiella pneumoniae (ATCC 700603) and Candida albicans (ATCC 24433) and the obtained data have shown that it had no effect against pathogenic bacterial strains. On the contrary, at low concentrations, AM exerted a prebiotic effect on some probiotic strains such as L. casei if treated with AM concentrations ranging from 1.56% v/v and 3.12% v/v and L. rhamnosus if treated with AM concentrations lower than 0.78% v/v. In conclusion, this study highlighted how spirulina, based on the rich composition and its antioxidant and prebiotic effect, can represent a source of beneficial substances for human health. Full article
Show Figures

Figure 1

13 pages, 1824 KiB  
Article
Comparative Analysis of Volatile Organic Compound Purification Techniques in Complex Cooking Emissions: Adsorption, Photocatalysis and Combined Systems
by Daniele Zatta, Mattia Segata, Franco Biasioli, Ottaviano Allegretti, Giovanna Bochicchio, Roberto Verucchi, Francesco Chiavarini and Luca Cappellin
Molecules 2023, 28(22), 7658; https://doi.org/10.3390/molecules28227658 - 18 Nov 2023
Cited by 3 | Viewed by 1430
Abstract
Volatile organic compounds (VOCs) are molecules present in our everyday life, and they can be positive, such as in the formation of odour and food flavour, or harmful to the environment and humans, and research is focusing on limiting their emissions. Various methods [...] Read more.
Volatile organic compounds (VOCs) are molecules present in our everyday life, and they can be positive, such as in the formation of odour and food flavour, or harmful to the environment and humans, and research is focusing on limiting their emissions. Various methods have been used to achieve this purpose. Firstly, we review three main degradation methods: activated carbon, photocatalysis and a synergetic system. We provide a general overview of the operative conditions and report the possibility of VOC abatement during cooking. Within the literature, none of these systems has ever been tested in the presence of complex matrices, such as during cooking processes. The aim of this study is to compare the three methods in order to understand the behaviour of filter systems in the case of realistically complex gas mixtures. Proton transfer reaction–mass spectrometry (PTR-MS) has been used in the real-time monitoring of volatilome. Due to the fact that VOC emissions are highly dependent on the composition of the food cooked, we evaluated the degradation capacity of the three systems for different burger types (meat, greens, and fish). We demonstrate the pros and cons of photocatalysis and adsorption and how a combined approach can mitigate the drawbacks of photocatalysis. Full article
Show Figures

Graphical abstract

Back to TopTop