Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = PLCZ1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2449 KiB  
Review
Molecular Mechanism of Oocyte Activation in Mammals: Past, Present, and Future Directions
by Hibiki Sugita, Shunsuke Takarabe, Atsuko Kageyama, Yui Kawata and Junya Ito
Biomolecules 2024, 14(3), 359; https://doi.org/10.3390/biom14030359 - 17 Mar 2024
Viewed by 1831
Abstract
During mammalian fertilization, repetitive intracellular Ca2+ increases known as Ca2+ oscillations occur. These oscillations are considered crucial for successful fertilization and subsequent embryonic development. Numerous researchers have endeavored to elucidate the factors responsible for inducing Ca2+ oscillations across various mammalian [...] Read more.
During mammalian fertilization, repetitive intracellular Ca2+ increases known as Ca2+ oscillations occur. These oscillations are considered crucial for successful fertilization and subsequent embryonic development. Numerous researchers have endeavored to elucidate the factors responsible for inducing Ca2+ oscillations across various mammalian species. Notably, sperm-specific phospholipase C zeta (PLCζ) emerged as a prominent candidate capable of initiating Ca2+ oscillations, particularly in mammals. Genetic mutation of PLCζ in humans results in the absence of Ca2+ oscillations in mouse oocytes. Recent studies further underscored PLCζ’s significance, revealing that sperm from PLCζ-deficient (Plcz1−/−) mice fail to induce Ca2+ oscillations upon intracytoplasmic sperm injection (ICSI). Despite these findings, observations from in vitro fertilization (IVF) experiments using Plcz1−/− sperm revealed some residual intracellular Ca2+ increases and successful oocyte activation, hinting at potential alternative mechanisms. In this review, we introduced the current hypothesis surrounding oocyte activation in mammals, informed by contemporary literature, and probed into the enigmatic mechanisms underlying mammalian fertilization-induced oocyte activation. Full article
(This article belongs to the Section Molecular Reproduction)
Show Figures

Figure 1

29 pages, 1205 KiB  
Review
Phospholipase C Zeta in Human Spermatozoa: A Systematic Review on Current Development and Clinical Application
by Alessandra Parrella, Llanos Medrano, Jon Aizpurua and María José Gómez-Torres
Int. J. Mol. Sci. 2024, 25(2), 1344; https://doi.org/10.3390/ijms25021344 - 22 Jan 2024
Cited by 1 | Viewed by 1505
Abstract
During fertilization, the fusion of the spermatozoa with the oocytes causes the release of calcium from the oocyte endoplasmatic reticulum. This, in turn, triggers a series of calcium ion (Ca2+) oscillations, a process known as oocyte activation. The sperm-specific factor responsible [...] Read more.
During fertilization, the fusion of the spermatozoa with the oocytes causes the release of calcium from the oocyte endoplasmatic reticulum. This, in turn, triggers a series of calcium ion (Ca2+) oscillations, a process known as oocyte activation. The sperm-specific factor responsible for oocyte activation is phospholipase C zeta (PLCζ). Men undergoing intracytoplasmic sperm injection (ICSI) with their spermatozoa lacking PLCζ are incapable of generating Ca2+ oscillation, leading to fertilization failure. The immunofluorescence assay is the most used technique to assess the expression and localization of PLCζ and to diagnose patients with reduced/absent ability to activate the oocytes. In these patients, the use of assisted oocyte activation (AOA) technique can help to yield successful ICSI results and shorten the time of pregnancy. However, the production of a stable PLCζ recombinant protein represents a new powerful therapeutic approach to treating individuals with this condition. We aim to conduct a systematic review focusing on the expression, level, and localization of PLCζ, discussing the novel genetic mutation associated with its impairment. In addition, we highlight the benefits of AOA, looking at new and less invasive methods to diagnose and treat cases with PLCζ dysfunction. Full article
(This article belongs to the Special Issue A Molecular Perspective on Reproductive Health)
Show Figures

Figure 1

26 pages, 1694 KiB  
Review
Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses
by Raul A. Gonzalez-Castro and Elaine M. Carnevale
Vet. Sci. 2023, 10(12), 698; https://doi.org/10.3390/vetsci10120698 - 11 Dec 2023
Cited by 2 | Viewed by 2740
Abstract
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of [...] Read more.
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses. Full article
(This article belongs to the Special Issue Sperm Biotechnology in Animals Reproduction)
Show Figures

Figure 1

13 pages, 2714 KiB  
Article
Successful Production of Offspring Derived from Phospholipase C Zeta-Deficient Sperm by Additional Artificial Activation
by Naoki Hirose, Yasuyuki Kikuchi, Atsuko Kageyama, Hibiki Sugita, Miu Sakurai, Yui Kawata, Jumpei Terakawa, Teruhiko Wakayama, Junya Ito and Naomi Kashiwazaki
Life 2023, 13(4), 980; https://doi.org/10.3390/life13040980 - 10 Apr 2023
Cited by 3 | Viewed by 2175
Abstract
During mammalian fertilization, repetitive rises of intracellular calcium called calcium oscillations are required for full activation of oocytes. Therefore, oocytes such as round spermatid injected or somatic cell nuclear transferred require additional artificial activation which mimics the calcium oscillations. It is well recognized [...] Read more.
During mammalian fertilization, repetitive rises of intracellular calcium called calcium oscillations are required for full activation of oocytes. Therefore, oocytes such as round spermatid injected or somatic cell nuclear transferred require additional artificial activation which mimics the calcium oscillations. It is well recognized that sperm specific phospholipase C (PLCζ) is a strong candidate as the sperm factor which can induce calcium oscillations and, at least in mammals, the genetic mutation of PLCζ in human causes male infertility due to the lack of calcium oscillations in the oocytes. Recent studies showed that the sperm lacking PLCζ (Plcz1−/−) still could induce rise(s) of intracellular calcium in the oocytes after IVF but not intracytoplasmic sperm injection (ICSI). In the ICSI oocytes, no pronuclear formation or development to the two-cell stage was observed. However, it is still unclear whether additional activation treatment can rescue the low developmental ability of Plcz1−/−-sperm-derived oocytes after ICSI. In this study, we examined whether oocytes injected with a Plcz1−/− sperm can develop to term by additional artificial activation. In oocytes injected a Plcz1−/− sperm and Plcz1−/− and eCS (another candidate of the sperm factor) double knockout sperm (Plcz1−/−eCS−/−), the rates of pronuclear formation were very low (2.0 ± 2.3% and 6.1 ± 3.7%, respectively) compared to control (92.1 ± 2.6%). However, these rates were dramatically improved by additional procedures of PLCζ-mRNA injection or SrCl2 treatment (Plcz1−/− sperm + PLCζ mRNA, Plcz1−/− sperm + SrCl2 and Plcz1−/−eCS−/− sperm + PLCζ mRNA; 64.2 ± 10.8%, 89.2 ± 2.4% and 72.6 ± 5.4%, respectively). Most of the oocytes were developed to the two-cell stage. After embryo transfer, healthy pups were obtained in all these groups (Plcz1−/− sperm + PLCζ mRNA:10.0 ± 2.8%, Plcz1−/− sperm + SrCl2:4.0 ± 4.3% and Plcz1−/−eCS−/− sperm + PLCζ mRNA: 10.0 ± 5.7%). The rate in Plcz1−/− sperm + SrCl2 group was significantly lower than that in control (26.0 ± 2.4%). Taken together, our present results show that additional activation treatment such as SrCl2 and PLCζ mRNA can fully support to develop to term even in oocyte injected Plcz1−/− sperm. In addition, PLCζ-induced oocyte activation is more suitable for successful development to term compared to that such as phenomenon induced by SrCl2. These findings will contribute to improvement for male-dependent human infertility and reproductive technologies in other mammalian species. Full article
(This article belongs to the Collection Male Infertility: Current Knowledge and Future Perspectives)
Show Figures

Figure 1

16 pages, 3315 KiB  
Article
Plcz1 Deficiency Decreased Fertility in Male Mice Which Is Associated with Sperm Quality Decline and Abnormal Cytoskeleton in Epididymis
by Tao Wang, Binbin Cao, Yao Cai, Si Chen, Baozhu Wang, Yan Yuan and Quan Zhang
Int. J. Mol. Sci. 2023, 24(1), 314; https://doi.org/10.3390/ijms24010314 - 24 Dec 2022
Cited by 4 | Viewed by 1961
Abstract
Phospholipase C zeta1 (Plcz1) was known to be a physiological factor in sperm that activates oocytes to complete meiosis by triggering Ca2+ oscillations after fertilisation. However, the role of male Plcz1 in spermatogenesis and early embryo development in progeny has been controversial. [...] Read more.
Phospholipase C zeta1 (Plcz1) was known to be a physiological factor in sperm that activates oocytes to complete meiosis by triggering Ca2+ oscillations after fertilisation. However, the role of male Plcz1 in spermatogenesis and early embryo development in progeny has been controversial. Plcz1 knockout (Plcz1−/−) mouse model (Plcz1m3 and Plcz1m5) was generated by using the CRISPR-Cas9 system. The fertility of Plcz1−/− mice was evaluated by analysing the number of offsprings, sperm quality, pathological changes in the testis and epididymis. RNA-seq and RT-PCR were performed to screen differentially expressed genes and signalling pathways related to fertility in Plcz1−/− mice. Further mechanism was explored by using Plcz1−/− cells. Plcz1 knockout led to hypofertility in male mice. In particular, a significant time delay in development and polyspermy was found in eggs fertilized by both Plcz1m3 and Plcz1m5 sperm. Interestingly, a decline in sperm quality combined with pathological changes in epididymis was found in Plcz1m3 mice but not in Plcz1m5 mice. Notably, abnormal cytoskeleton appears in epididymis of Plcz1m3 mice and Plcz1−/− cells. Cytoskeleton damage of epididymis is involved in fertility decline of males upon Plcz1 deficiency in this model. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

21 pages, 1289 KiB  
Review
Omics and Male Infertility: Highlighting the Application of Transcriptomic Data
by Temidayo S. Omolaoye, Victor A. Omolaoye, Richard K. Kandasamy, Mahmood Yaseen Hachim and Stefan S. Du Plessis
Life 2022, 12(2), 280; https://doi.org/10.3390/life12020280 - 14 Feb 2022
Cited by 21 | Viewed by 4660
Abstract
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because [...] Read more.
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the “omics” perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases. Full article
(This article belongs to the Collection Male Infertility: Current Knowledge and Future Perspectives)
Show Figures

Figure 1

12 pages, 1108 KiB  
Article
Epigenetic Biomarkers of Transition from Metabolically Healthy Obesity to Metabolically Unhealthy Obesity Phenotype: A Prospective Study
by Carolina Gutiérrez-Repiso, Teresa María Linares-Pineda, Andres Gonzalez-Jimenez, Francisca Aguilar-Lineros, Sergio Valdés, Federico Soriguer, Gemma Rojo-Martínez, Francisco J. Tinahones and Sonsoles Morcillo
Int. J. Mol. Sci. 2021, 22(19), 10417; https://doi.org/10.3390/ijms221910417 - 27 Sep 2021
Cited by 11 | Viewed by 3298
Abstract
Background: Identifying those parameters that could potentially predict the deterioration of metabolically healthy phenotype is a matter of debate. In this field, epigenetics, in particular DNA methylation deserves special attention. Results: The aim of the present study was to analyze the long-term evolution [...] Read more.
Background: Identifying those parameters that could potentially predict the deterioration of metabolically healthy phenotype is a matter of debate. In this field, epigenetics, in particular DNA methylation deserves special attention. Results: The aim of the present study was to analyze the long-term evolution of methylation patterns in a subset of metabolically healthy subjects in order to search for epigenetic markers that could predict the progression to an unhealthy state. Twenty-six CpG sites were significantly differentially methylated, both at baseline and 11-year follow-up. These sites were related to 19 genes or pseudogenes; a more in-depth analysis of the methylation sites of these genes showed that CYP2E1 had 50% of the collected CpG sites differently methylated between stable metabolically healthy obesity (MHO) and unstable MHO, followed by HLA-DRB1 (33%), ZBTB45 (16%), HOOK3 (14%), PLCZ1 (14%), SLC1A1 (12%), MUC2 (12%), ZFPM2 (12.5%) and HLA-DQB2 (8%). Pathway analysis of the selected 26 CpG sites showed enrichment in pathways linked to th1 and th2 activation, antigen presentation, allograft rejection signals and metabolic processes. Higher methylation levels in the cg20707527 (ZFPM2) could have a protective effect against the progression to unstable MHO (OR: 0.21, 95%CI (0.067–0.667), p < 0.0001), whilst higher methylation levels in cg11445109 (CYP2E1) would increase the progression to MUO; OR: 2.72, 95%CI (1.094–6.796), p < 0.0014; respectively). Conclusions: DNA methylation status is associated with the stability/worsening of MHO phenotype. Two potential biomarkers of the transition to an unhealthy state were identified and deserve further investigation (cg20707527 and cg11445109). Moreover, the described differences in methylation could alter immune system-related pathways, highlighting these pathways as therapeutic targets to prevent metabolic deterioration in MHO patients. Full article
(This article belongs to the Special Issue Transcriptional Regulation and Its Misregulation in Human Diseases)
Show Figures

Figure 1

31 pages, 2072 KiB  
Review
Diagnosis and Treatment of Male Infertility-Related Fertilization Failure
by Arantxa Cardona Barberán, Annekatrien Boel, Frauke Vanden Meerschaut, Dominic Stoop and Björn Heindryckx
J. Clin. Med. 2020, 9(12), 3899; https://doi.org/10.3390/jcm9123899 - 1 Dec 2020
Cited by 39 | Viewed by 7290
Abstract
Infertility affects approximately 15% of reproductive-aged couples worldwide, of which up to 30% of the cases are caused by male factors alone. The origin of male infertility is mostly attributed to sperm abnormalities, of which many are caused by genetic defects. The development [...] Read more.
Infertility affects approximately 15% of reproductive-aged couples worldwide, of which up to 30% of the cases are caused by male factors alone. The origin of male infertility is mostly attributed to sperm abnormalities, of which many are caused by genetic defects. The development of intracytoplasmic sperm injection (ICSI) has helped to circumvent most male infertility conditions. However, there is still a challenging group of infertile males whose sperm, although having normal sperm parameters, are unable to activate the oocyte, even after ICSI treatment. While ICSI generally allows fertilization rates of 70 to 80%, total fertilization failure (FF) still occurs in 1 to 3% of ICSI cycles. Phospholipase C zeta (PLCζ) has been demonstrated to be a critical sperm oocyte activating factor (SOAF) and the absence, reduced, or altered forms of PLCζ have been shown to cause male infertility-related FF. The purpose of this review is to (i) summarize the current knowledge on PLCζ as the critical sperm factor for successful fertilization, as well as to discuss the existence of alternative sperm-induced oocyte activation mechanisms, (ii) describe the diagnostic tests available to determine the cause of FF, and (iii) summarize the beneficial effect of assisted oocyte activation (AOA) to overcome FF. Full article
(This article belongs to the Special Issue Updates in Male Infertility)
Show Figures

Figure 1

Back to TopTop