Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = PI4KB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4798 KiB  
Article
Solanine Inhibits Proliferation and Angiogenesis and Induces Apoptosis through Modulation of EGFR Signaling in KB-ChR-8-5 Multidrug-Resistant Oral Cancer Cells
by Prathibha Prasad, Mohamed Jaber, Tahani Awad Alahmadi, Hesham S. Almoallim and Arun Kumar Ramu
J. Clin. Med. 2024, 13(15), 4493; https://doi.org/10.3390/jcm13154493 - 31 Jul 2024
Viewed by 665
Abstract
Background: The most important factors contributing to multi-drug resistance in oral cancer include overexpression of the EGFR protein and the downstream malignancy regulators that are associated with it. This study investigates the impact of solanine on inflammation, proliferation, and angiogenesis inhibition in multidrug-resistant [...] Read more.
Background: The most important factors contributing to multi-drug resistance in oral cancer include overexpression of the EGFR protein and the downstream malignancy regulators that are associated with it. This study investigates the impact of solanine on inflammation, proliferation, and angiogenesis inhibition in multidrug-resistant oral cancer KB-Chr-8-5 cells through inhibition of the EGFR/PI3K/Akt/NF-κB signaling pathway. Methods: Cell viability was assessed using an MTT assay to evaluate cytotoxic effects. Production of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨM), and AO/EtBr staining were analyzed to assess apoptosis and mitochondrial dysfunction. Western blotting was employed to examine protein expression related to angiogenesis, apoptosis, and signaling pathways. Experiments were conducted in triplicate. Results: Solanine treatment at concentrations of 10, 20, and 30 μM significantly increased ROS production, which is indicative of its antioxidant properties. This increase was associated with decreased mitochondrial membrane potential (ΔΨM) with p < 0.05, suggesting mitochondrial dysfunction. Inhibition of EGFR led to reduced activity of PI3K, Akt, and NF-κB, resulting in decreased expression of iNOS, IL-6, Cyclin D1, PCNA, VEGF, Mcl-1, and HIF-1α and increased levels of the apoptotic proteins Bax, caspase-9, and caspase-3. These changes collectively inhibited the growth of multidrug-resistant (MDR) cancer cells. Conclusions: Solanine acts as a potent disruptor of cellular processes by inhibiting the EGFR-mediated PI3K/Akt/NF-κB signaling pathway. These results suggest that solanine holds promise as a potential preventive or therapeutic agent against multidrug-resistant cancers. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

18 pages, 3974 KiB  
Review
The Two Levels of Podocyte Dysfunctions Induced by Apolipoprotein L1 Risk Variants
by Etienne Pays
Kidney Dial. 2024, 4(2), 126-143; https://doi.org/10.3390/kidneydial4020010 - 7 Jun 2024
Viewed by 1051
Abstract
Apolipoprotein L1 (APOL1) nephropathy results from several podocyte dysfunctions involving morphological and motility changes, mitochondrial perturbations, inflammatory stress, and alterations in cation channel activity. I propose that this phenotype results from increased hydrophobicity of the APOL1 risk variants, which induces two distinct types [...] Read more.
Apolipoprotein L1 (APOL1) nephropathy results from several podocyte dysfunctions involving morphological and motility changes, mitochondrial perturbations, inflammatory stress, and alterations in cation channel activity. I propose that this phenotype results from increased hydrophobicity of the APOL1 risk variants, which induces two distinct types of podocyte dysfunctions. On one hand, increased hydrophobic interactions with APOL3 cause intracellular variant isoforms to impair both APOL3 control of Golgi PI(4)P kinase-B (PI4KB) activity and APOL3 control of mitochondrial membrane fusion, triggering actomyosin reorganisation together with mitophagy and apoptosis inhibition (hit 1). On the other hand, increased hydrophobic interactions with the podocyte plasma membrane may cause the extracellular variant isoforms to activate toxic Ca2+ influx and K+ efflux by the TRPC6 and BK channels, respectively (hit 2), presumably due to APOL1-mediated cholesterol clustering in microdomains. I propose that hit 2 depends on low HDL-C/high extracellular APOL1 ratio, such as occurs in cell culture in vitro, or during type I-interferon (IFN-I)-mediated inflammation. Full article
Show Figures

Figure 1

14 pages, 1305 KiB  
Article
Emergence of High-Level Gentamicin Resistance in Streptococcus agalactiae Hypervirulent Serotype IV ST1010 (CC452) Strains by Acquisition of a Novel Integrative and Conjugative Element
by Roberta Creti, Monica Imperi, Uzma Basit Khan, Alberto Berardi, Simona Recchia, Giovanna Alfarone and Giovanni Gherardi
Antibiotics 2024, 13(6), 491; https://doi.org/10.3390/antibiotics13060491 - 26 May 2024
Viewed by 1093
Abstract
Streptococcus agalactiae (group B streptococci, GBS) is responsible for severe infections in both neonates and adults. Currently, empiric antimicrobial therapy for sepsis and meningitis is the combined use of penicillin and gentamicin due to the enhanced bactericidal activity. However, high-level gentamicin resistance (HLGR) [...] Read more.
Streptococcus agalactiae (group B streptococci, GBS) is responsible for severe infections in both neonates and adults. Currently, empiric antimicrobial therapy for sepsis and meningitis is the combined use of penicillin and gentamicin due to the enhanced bactericidal activity. However, high-level gentamicin resistance (HLGR) abrogates the synergism. The rate of HLGR was investigated within a dataset of 433 GBS strains collected from cases of invasive disease in both adults and neonates as well as from pregnant carriers. GBS isolates (n = 20, 4.6%) presented with HLGR (gentamicin MIC breakpoint >1024 mg/L) that was differently diffused between strains from adults or neonates (5.2% vs. 2.8%). Notably, 70% of HLGR GBS strains (14 isolates) were serotype IV. Serotype IV HLGR-GBS isolates were susceptible to all antibiotics tested, exhibited the alpha-C/HvgA/PI-2b virulence string, and belonged to sequence type 1010 (clonal complex (CC) 452). The mobile element that harbored the HLGR aac(6′)-aph(2)″ gene is a novel integrative and conjugative element (ICE) about 45 kb long, derived from GBS 515 ICE tRNALys. The clonal expansion of this HLGR hypervirulent serotype IV GBS CC452 sublineage may pose a threat to the management of infections caused by this strain type. Full article
(This article belongs to the Special Issue Sepsis Management and Antibiotic Therapy)
Show Figures

Figure 1

21 pages, 23175 KiB  
Article
Isolation and Characterization of Erianthus arundinaceus Phosphate Transporter 1 (PHT1) Gene Promoter and 5′ Deletion Analysis of Transcriptional Regulation Regions under Phosphate Stress in Transgenic Tobacco
by Murugan Naveenarani, Huskur Kumaraswamy Mahadeva Swamy, Sakthivel Surya Krishna, Channappa Mahadevaiah, Ramanathan Valarmathi, Markandan Manickavasagam, Muthukrishnan Arun, Govindakurup Hemaprabha and Chinnaswamy Appunu
Plants 2023, 12(21), 3760; https://doi.org/10.3390/plants12213760 - 3 Nov 2023
Cited by 3 | Viewed by 1326
Abstract
Phosphorus deficiency highly interferes with plant growth and development. Plants respond to persistent P deficiency by coordinating the expression of genes involved in the alleviation of stress. Promoters of phosphate transporter genes are a great choice for the development of genetically modified plants [...] Read more.
Phosphorus deficiency highly interferes with plant growth and development. Plants respond to persistent P deficiency by coordinating the expression of genes involved in the alleviation of stress. Promoters of phosphate transporter genes are a great choice for the development of genetically modified plants with enhanced phosphate uptake abilities, which improve crop yields in phosphate-deficient soils. In our previous study, the sugarcane phosphate transporter PHT1;2 gene showed a significantly high expression under salinity stress. In this study, the Erianthus arundinaceus EaPHT1;2 gene was isolated and characterized using various in silico tools. The deduced 542 amino acid residues have 10 transmembrane domains, with a molecular weight and isoelectric point of 58.9 kDa and 9.80, respectively. They displayed 71–96% similarity with Arabidopsis thaliana, Zea mays, and the Saccharum hybrid. To elucidate the function of the 5′ regulatory region, the 1.1 kb promoter was isolated and validated in tobacco transgenics under Pi stress. The EaPHT1;2 promoter activity was detected using a β-glucuronidase (GUS) assay. The EaPHT1;2 promoter showed 3- to 4.2-fold higher expression than the most widely used CaMV35S promoter. The 5′ deletion analysis with and without 5′ UTRs revealed a small-sized 374 bp fragment with the highest promoter activity among 5′ truncated fragments, which was 2.7 and 4.2 times higher than the well-used CaMV35S promoter under normal and Pi deprivation conditions, respectively. The strong and short promoter of EaPHT1;2 with 374 bp showed significant expression in low-Pi-stress conditions and it could be a valuable source for the development of stress-tolerant transgenic crops. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

13 pages, 2641 KiB  
Article
Australasian Pigeon Circoviruses Demonstrate Natural Spillover Infection
by Babu Kanti Nath, Tridip Das, Andrew Peters, Suman Das Gupta, Subir Sarker, Jade K. Forwood, Shane R. Raidal and Shubhagata Das
Viruses 2023, 15(10), 2025; https://doi.org/10.3390/v15102025 - 29 Sep 2023
Cited by 1 | Viewed by 1621
Abstract
Pigeon circovirus (PiCV) is considered to be genetically diverse, with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Australasia is known to be the origin of diverse species [...] Read more.
Pigeon circovirus (PiCV) is considered to be genetically diverse, with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Australasia is known to be the origin of diverse species of the Order Columbiformes, but limited data on the PiCV genome sequence has hindered phylogeographic studies in this species. To fill this gap, this study was conducted to investigate PiCV in 118 characteristic samples from different birds across Australia using PCR and sequencing. Eighteen partial PiCV Rep sequences and one complete PiCV genome sequence were recovered from reservoir and aberrant hosts. Phylogenetic analyses revealed that PiCV circulating in Australia was scattered across three different subclades. Importantly, one subclade dominated within the PiCV sequenced from Australia and Poland, whereas other PiCV sequenced in this study were more closely related to the PiCV sequenced from China, USA and Japan. In addition, PiCV Rep sequences obtained from clinically affected plumed whistling duck, blue billed duck and Australian magpie demonstrated natural spillover of PiCV unveiled host generalist characteristics of the pigeon circovirus. These findings indicate that PiCV genomes circulating in Australia lack host adapted population structure but demonstrate natural spillover infection. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 3290 KiB  
Article
Investigations Using Albumin Binders to Modify the Tissue Distribution Profile of Radiopharmaceuticals Exemplified with Folate Radioconjugates
by Sarah D. Busslinger, Anna E. Becker, Christian Vaccarin, Luisa M. Deberle, Marie-Luise Renz, Viola Groehn, Roger Schibli and Cristina Müller
Cancers 2023, 15(17), 4259; https://doi.org/10.3390/cancers15174259 - 25 Aug 2023
Cited by 6 | Viewed by 1613
Abstract
Introducing an albumin-binding entity into otherwise short-lived radiopharmaceuticals can be an effective means to improve their pharmacokinetic properties due to enhanced blood residence time. In the current study, DOTA-derivatized albumin binders based on 4-(p-iodophenyl)butanoate (DOTA-ALB-1 and DOTA-ALB-3) and 5-(p-iodophenyl)pentanoate [...] Read more.
Introducing an albumin-binding entity into otherwise short-lived radiopharmaceuticals can be an effective means to improve their pharmacokinetic properties due to enhanced blood residence time. In the current study, DOTA-derivatized albumin binders based on 4-(p-iodophenyl)butanoate (DOTA-ALB-1 and DOTA-ALB-3) and 5-(p-iodophenyl)pentanoate entities (DOTA-ALB-24 and DOTA-ALB-25) without and with a hydrophobic 4-(aminomethyl)benzoic acid (AMBA) linker unit, respectively, were synthesized and labeled with lutetium-177 for in vitro and in vivo comparison. Overall, [177Lu]Lu-DOTA-ALB-1 demonstrated ~3-fold stronger in vitro albumin-binding affinity and a longer blood residence time (T50%IA ~8 h) than [177Lu]Lu-DOTA-ALB-24 (T50%IA ~0.8 h). Introducing an AMBA linker enhanced the albumin-binding affinity, resulting in a T50%IA of ~24 h for [177Lu]Lu-DOTA-ALB-3 and ~2 h for [177Lu]Lu-DOTA-ALB-25. The same albumin binders without or with the AMBA linker were incorporated into 6R- and 6S-5-methyltetrahydrofolate-based DOTA-conjugates (177Lu-RedFols). Biodistribution studies in mice performed with both diastereoisomers of [177Lu]Lu-RedFol-1 and [177Lu]Lu-RedFol-3, which comprised the 4-(p-iodophenyl)butanoate moiety, demonstrated a slower accumulation in KB tumors than those of [177Lu]Lu-RedFol-24 and [177Lu]Lu-RedFol-25 with the 5-(p-iodophenyl)pentanoate entity. In all cases, the tumor uptake was high (30–45% IA/g) 24 h after injection. Both diastereoisomers of [177Lu]Lu-RedFol-1 and [177Lu]Lu-RedFol-3 demonstrated high blood retention (3.8–8.7% IA/g, 24 h p.i.) and a 2- to 4-fold lower kidney uptake than the corresponding diastereoisomers of [177Lu]Lu-RedFol-24 and [177Lu]Lu-RedFol-25, which were more rapidly cleared from the blood (<0.2% IA/g, 24 h after injection). Kidney retention of the 6S-diastereoisomers of all 177Lu-RedFols was consistently higher than that of the respective 6R-diastereoisomers, irrespective of the albumin binder and linker unit used. It was demonstrated that the blood clearance data obtained with 177Lu-DOTA-ALBs had predictive value for the blood retention times of the respective folate radioconjugates. The use of these albumin-binding entities without or with an AMBA linker may serve for fine-tuning the blood retention of folate radioconjugates and also other radiopharmaceuticals and, hence, optimize their tissue distribution profiles. Dosimetry estimations based on patient data obtained with one of the most promising folate radioconjugates will be crucial to identify the dose-limiting organ, which will allow for selecting the most suitable folate radioconjugate for therapeutic purposes. Full article
Show Figures

Graphical abstract

14 pages, 2057 KiB  
Article
Characterization of Anti-Poliovirus Compounds Isolated from Edible Plants
by Minetaro Arita and Hiroyuki Fuchino
Viruses 2023, 15(4), 903; https://doi.org/10.3390/v15040903 - 31 Mar 2023
Cited by 2 | Viewed by 1911
Abstract
Poliovirus (PV) is the causative agent of poliomyelitis and is a target of the global eradication programs of the World Health Organization (WHO). After eradication of type 2 and 3 wild-type PVs, vaccine-derived PV remains a substantial threat against the eradication as well [...] Read more.
Poliovirus (PV) is the causative agent of poliomyelitis and is a target of the global eradication programs of the World Health Organization (WHO). After eradication of type 2 and 3 wild-type PVs, vaccine-derived PV remains a substantial threat against the eradication as well as type 1 wild-type PV. Antivirals could serve as an effective means to suppress the outbreak; however, no anti-PV drugs have been approved at present. Here, we screened for effective anti-PV compounds in a library of edible plant extracts (a total of 6032 extracts). We found anti-PV activity in the extracts of seven different plant species. We isolated chrysophanol and vanicoside B (VCB) as the identities of the anti-PV activities of the extracts of Rheum rhaponticum and Fallopia sachalinensis, respectively. VCB targeted the host PI4KB/OSBP pathway for its anti-PV activity (EC50 = 9.2 μM) with an inhibitory effect on in vitro PI4KB activity (IC50 = 5.0 μM). This work offers new insights into the anti-PV activity in edible plants that may serve as potent antivirals for PV infection. Full article
Show Figures

Figure 1

25 pages, 4848 KiB  
Article
ACW-02 an Acridine Triazolidine Derivative Presents Antileishmanial Activity Mediated by DNA Interaction and Immunomodulation
by Sonaly Lima Albino, Willian Charles da Silva Moura, Malu Maria Lucas dos Reis, Gleyton Leonel Silva Sousa, Pablo Rayff da Silva, Mayara Gabriele Carvalho de Oliveira, Tatiana Karla dos Santos Borges, Lucas Fraga Friaça Albuquerque, Sinara Mônica Vitalino de Almeida, Maria do Carmo Alves de Lima, Selma Aparecida Souza Kuckelhaus, Igor José dos Santos Nascimento, Francisco Jaime Bezerra Mendonca Junior, Teresinha Gonçalves da Silva and Ricardo Olímpio de Moura
Pharmaceuticals 2023, 16(2), 204; https://doi.org/10.3390/ph16020204 - 29 Jan 2023
Cited by 5 | Viewed by 2213
Abstract
The present study proposed the synthesis of a novel acridine derivative not yet described in the literature, chemical characterization by NMR, MS, and IR, followed by investigations of its antileishmanial potential. In vitro assays were performed to assess its antileishmanial activity against L. [...] Read more.
The present study proposed the synthesis of a novel acridine derivative not yet described in the literature, chemical characterization by NMR, MS, and IR, followed by investigations of its antileishmanial potential. In vitro assays were performed to assess its antileishmanial activity against L. amazonensis strains and cytotoxicity against macrophages through MTT assay and annexin V-FITC/PI, and the ability to perform an immunomodulatory action using CBA. To investigate possible molecular targets, its interaction with DNA in vitro and in silico targets were evaluated. As results, the compound showed good antileishmanial activity, with IC50 of 6.57 (amastigotes) and 94.97 (promastigotes) µg mL−1, associated with non-cytotoxicity to macrophages (CC50 > 256.00 µg mL−1). When assessed by flow cytometry, 99.8% of macrophages remained viable. The compound induced an antileishmanial effect in infected macrophages and altered TNF-α, IL-10 and IL-6 expression, suggesting a slight immunomodulatory activity. DNA assay showed an interaction with the minor grooves due to the hyperchromic effect of 47.53% and Kb 1.17 × 106 M−1, and was sustained by docking studies. Molecular dynamics simulations and MM-PBSA calculations propose cysteine protease B as a possible target. Therefore, this study demonstrates that the new compound is a promising molecule and contributes as a model for future works. Full article
(This article belongs to the Special Issue Drug Discovery of Antiprotozoal Agents)
Show Figures

Figure 1

14 pages, 1956 KiB  
Article
CircRNA-PI4KB Induces Hepatic Lipid Deposition in Non-Alcoholic Fatty Liver Disease by Transporting miRNA-122 to Extra-Hepatocytes
by Chang-Hai Liu, Wei Jiang, Qingmin Zeng, Dongbo Wu, Hong Li, Lingyun Zhou, Lang Bai and Hong Tang
Int. J. Mol. Sci. 2023, 24(2), 1297; https://doi.org/10.3390/ijms24021297 - 9 Jan 2023
Cited by 4 | Viewed by 1920
Abstract
Ectopic fat deposition in the liver, known as non-alcoholic fatty liver disease (NAFLD), affects up to 30% of the worldwide population. miRNA-122, the most abundant liver-specific miRNA, protects hepatic steatosis and inhibits cholesterol and fatty acid synthesis in NAFLD. Previously, we have shown [...] Read more.
Ectopic fat deposition in the liver, known as non-alcoholic fatty liver disease (NAFLD), affects up to 30% of the worldwide population. miRNA-122, the most abundant liver-specific miRNA, protects hepatic steatosis and inhibits cholesterol and fatty acid synthesis in NAFLD. Previously, we have shown that compared with its expression in healthy controls, miRNA-122 decreased in the liver tissue but gradually increased in the serum of patients with non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, suggesting that miRNA-122 could have been transported to the serum. Here, we aimed to confirm and unravel the mechanism of transportation of miRNA-122 to extra-hepatocytes. Our findings showed a decrease in the intra-hepatocyte miRNA-122 and an increase in the extra-hepatocyte (medium level) miRNA-122, suggesting the miRNA-122 “escaped” from the intra-hepatocyte due to an increased extra-hepatocyte excretion. Using bioinformatics tools, we showed that miRNA-122 binds to circPI4KB, which was further validated by an RNA pull-down and luciferase reporter assay. The levels of circPI4KB in intra- and extra-hepatocytes corresponded to that of miRNA-122, and the overexpression of circPI4KB increased the miRNA-122 in extra-hepatocytes, consequently accomplishing a decreased protective role of miRNA-122 in inhibiting the lipid deposition. The present study provides a new explanation for the pathogenesis of the hepatic lipid deposition in NAFLD. Full article
(This article belongs to the Special Issue Lipids Metabolism and Cardiometabolic Diseases)
Show Figures

Figure 1

18 pages, 1907 KiB  
Article
Distributed Deep Neural-Network-Based Middleware for Cyber-Attacks Detection in Smart IoT Ecosystem: A Novel Framework and Performance Evaluation Approach
by Guru Bhandari, Andreas Lyth, Andrii Shalaginov and Tor-Morten Grønli
Electronics 2023, 12(2), 298; https://doi.org/10.3390/electronics12020298 - 6 Jan 2023
Cited by 16 | Viewed by 4043
Abstract
Cyberattacks always remain the major threats and challenging issues in the modern digital world. With the increase in the number of internet of things (IoT) devices, security challenges in these devices, such as lack of encryption, malware, ransomware, and IoT botnets, leave the [...] Read more.
Cyberattacks always remain the major threats and challenging issues in the modern digital world. With the increase in the number of internet of things (IoT) devices, security challenges in these devices, such as lack of encryption, malware, ransomware, and IoT botnets, leave the devices vulnerable to attackers that can access and manipulate the important data, threaten the system, and demand ransom. The lessons from the earlier experiences of cyberattacks demand the development of the best-practices benchmark of cybersecurity, especially in modern Smart Environments. In this study, we propose an approach with a framework to discover malware attacks by using artificial intelligence (AI) methods to cover diverse and distributed scenarios. The new method facilitates proactively tracking network traffic data to detect malware and attacks in the IoT ecosystem. Moreover, the novel approach makes Smart Environments more secure and aware of possible future threats. The performance and concurrency testing of the deep neural network (DNN) model deployed in IoT devices are computed to validate the possibility of in-production implementation. By deploying the DNN model on two selected IoT gateways, we observed very promising results, with less than 30 kb/s increase in network bandwidth on average, and just a 2% increase in CPU consumption. Similarly, we noticed minimal physical memory and power consumption, with 0.42 GB and 0.2 GB memory usage for NVIDIA Jetson and Raspberry Pi devices, respectively, and an average 13.5% increase in power consumption per device with the deployed model. The ML models were able to demonstrate nearly 93% of detection accuracy and 92% f1-score on both utilized datasets. The result of the models shows that our framework detects malware and attacks in Smart Environments accurately and efficiently. Full article
(This article belongs to the Special Issue Circuits and Systems of Security Applications)
Show Figures

Figure 1

18 pages, 1522 KiB  
Article
Rare CNVs and Known Genes Linked to Macrocephaly: Review of Genomic Loci and Promising Candidate Genes
by Giovanna Civitate Bastos, Giovanna Cantini Tolezano and Ana Cristina Victorino Krepischi
Genes 2022, 13(12), 2285; https://doi.org/10.3390/genes13122285 - 4 Dec 2022
Cited by 3 | Viewed by 2228
Abstract
Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of [...] Read more.
Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene–TRAPPC9, and three genes based on their functional roles–RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype. Full article
(This article belongs to the Special Issue Head and Neck Genetics)
Show Figures

Figure 1

11 pages, 1528 KiB  
Communication
Essential Domains of Oxysterol-Binding Protein Required for Poliovirus Replication
by Minetaro Arita
Viruses 2022, 14(12), 2672; https://doi.org/10.3390/v14122672 - 29 Nov 2022
Cited by 3 | Viewed by 1869
Abstract
Oxysterol-binding protein (OSBP) is a host factor required for enterovirus (EV) replication. OSBP locates at membrane contact site and acts as a lipid exchanger of cholesterol and phosphatidylinositol 4-phosphate (PI4P) between cellular organelles; however, the essential domains required for the viral replication remain [...] Read more.
Oxysterol-binding protein (OSBP) is a host factor required for enterovirus (EV) replication. OSBP locates at membrane contact site and acts as a lipid exchanger of cholesterol and phosphatidylinositol 4-phosphate (PI4P) between cellular organelles; however, the essential domains required for the viral replication remain unknown. In this study, we define essential domains of OSBP for poliovirus (PV) replication by a functional dominance assay with a series of deletion variants of OSBP. We show that the pleckstrin homology domain (PHD) and the ligand-binding domain, but not the N-terminal intrinsically disordered domain, coiled-coil region, or the FFAT motif, are essential for PV replication. The PHD serves as the primary determinant of OSBP targeting to the replication organelle in the infected cells. These results suggest that not all the domains that support important biological functions of OSBP are essential for the viral replication. Full article
(This article belongs to the Special Issue Viral-Host Cell Interactions of Animal Viruses)
Show Figures

Figure 1

21 pages, 3164 KiB  
Article
Structured Framework and Genome Analysis of Magnaporthe grisea Inciting Pearl Millet Blast Disease Reveals Versatile Metabolic Pathways, Protein Families, and Virulence Factors
by Bhaskar Reddy, Sahil Mehta, Ganesan Prakash, Neelam Sheoran and Aundy Kumar
J. Fungi 2022, 8(6), 614; https://doi.org/10.3390/jof8060614 - 9 Jun 2022
Cited by 6 | Viewed by 3755
Abstract
Magnaporthe grisea (T.T. Herbert) M.E. Barr is a major fungal phytopathogen that causes blast disease in cereals, resulting in economic losses worldwide. An in-depth understanding of the basis of virulence and ecological adaptation of M. grisea is vital for devising effective disease management [...] Read more.
Magnaporthe grisea (T.T. Herbert) M.E. Barr is a major fungal phytopathogen that causes blast disease in cereals, resulting in economic losses worldwide. An in-depth understanding of the basis of virulence and ecological adaptation of M. grisea is vital for devising effective disease management strategies. Here, we aimed to determine the genomic basis of the pathogenicity and underlying biochemical pathways in Magnaporthe using the genome sequence of a pearl millet-infecting M. grisea PMg_Dl generated by dual NGS techniques, Illumina NextSeq 500 and PacBio RS II. The short and long nucleotide reads could be draft assembled in 341 contigs and showed a genome size of 47.89 Mb with the N50 value of 765.4 Kb. Magnaporthe grisea PMg_Dl showed an average nucleotide identity (ANI) of 86% and 98% with M. oryzae and Pyricularia pennisetigena, respectively. The gene-calling method revealed a total of 10,218 genes and 10,184 protein-coding sequences in the genome of PMg_Dl. InterProScan of predicted protein showed a distinct 3637 protein families and 695 superfamilies in the PMg_Dl genome. In silico virulence analysis revealed the presence of 51VFs and 539 CAZymes in the genome. The genomic regions for the biosynthesis of cellulolytic endo-glucanase and beta-glucosidase, as well as pectinolytic endo-polygalacturonase, pectin-esterase, and pectate-lyases (pectinolytic) were detected. Signaling pathways modulated by MAPK, PI3K-Akt, AMPK, and mTOR were also deciphered. Multicopy sequences suggestive of transposable elements such as Type LTR, LTR/Copia, LTR/Gypsy, DNA/TcMar-Fot1, and Type LINE were recorded. The genomic resource presented here will be of use in the development of molecular marker and diagnosis, population genetics, disease management, and molecular taxonomy, and also provide a genomic reference for ascomycetous genome investigations in the future. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Graphical abstract

12 pages, 269 KiB  
Review
Current Controversies and Challenges on BRAF V600K-Mutant Cutaneous Melanoma
by Alessandro Nepote, Gianluca Avallone, Simone Ribero, Francesco Cavallo, Gabriele Roccuzzo, Luca Mastorino, Claudio Conforti, Luca Paruzzo, Stefano Poletto, Fabrizio Carnevale Schianca, Pietro Quaglino and Massimo Aglietta
J. Clin. Med. 2022, 11(3), 828; https://doi.org/10.3390/jcm11030828 - 4 Feb 2022
Cited by 12 | Viewed by 2457
Abstract
About 50% of melanomas harbour a BRAF mutation. Of these 50%, 10% have a V600K mutation. Although it is the second most common driver mutation after V600E, no specific studies have been conducted to identify a clinical and therapeutic gold standard for this [...] Read more.
About 50% of melanomas harbour a BRAF mutation. Of these 50%, 10% have a V600K mutation. Although it is the second most common driver mutation after V600E, no specific studies have been conducted to identify a clinical and therapeutic gold standard for this patient subgroup. We analysed articles, including registrative clinical trials, to identify common clinical and biological traits of the V600K melanoma population, including different adopted therapeutic strategies. Melanoma V600K seems to be more frequent in Caucasian, male and elderly populations with a history of chronic sun damage and exposure. Prognosis is poor and no specific prognostic factor has been identified. Recent findings have underlined how melanoma V600K seems to be less dependent on the ERK/MAPK pathway, with a higher expression of PI3KB and a strong inhibition of multiple antiapoptotic pathways. Both target therapy with BRAF inhibitors + MEK inhibitors and immunotherapy with anti-checkpoint blockades are effective in melanoma V600K, although no sufficient evidence can currently support a formal recommendation for first line treatment choice in IIIC unresectable/IV stage patients. Still, melanoma V600K represents an unmet medical need and a marker of poor prognosis for cutaneous melanoma. Full article
(This article belongs to the Section Dermatology)
0 pages, 17506 KiB  
Article
Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Plasma Micro-RNA Expression
by Yohann Dabi, Stéphane Suisse, Ludmila Jornea, Delphine Bouteiller, Cyril Touboul, Anne Puchar, Emile Daraï and Sofiane Bendifallah
Diagnostics 2022, 12(1), 175; https://doi.org/10.3390/diagnostics12010175 - 12 Jan 2022
Cited by 11 | Viewed by 4221 | Correction
Abstract
The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective “ENDO-miRNA” study were analyzed [...] Read more.
The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective “ENDO-miRNA” study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/β–catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/β–catenin, PI3K/Akt, and NF–KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology. Full article
(This article belongs to the Special Issue Advances in the Diagnostics of Endometriosis)
Show Figures

Figure 1

Back to TopTop