Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = PDX (patient-derived xenograft) mouse model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4495 KiB  
Article
Maintenance Therapy for Pancreatic Cancer, a New Approach Based on the Synergy between the Novel Agent GP-2250 (Misetionamide) and Gemcitabine
by Marie Buchholz, Britta Majchrzak-Stiller, Ilka Peters, Stephan Hahn, Lea Skrzypczyk, Lena Beule, Waldemar Uhl, Chris Braumann, Johanna Strotmann and Philipp Höhn
Cancers 2024, 16(14), 2612; https://doi.org/10.3390/cancers16142612 - 22 Jul 2024
Viewed by 600
Abstract
The novel Oxathiazinane derivative GP-2250 (Misetionamide) displays antineoplastic activity in vitro and in vivo, as previously shown in pancreatic cancer cells and in patient-derived mouse xenografts (PDX). Currently, GP 2250 is under phase I clinical trial in pancreatic ductal adenocarcinoma (PDAC). GP-2250 in [...] Read more.
The novel Oxathiazinane derivative GP-2250 (Misetionamide) displays antineoplastic activity in vitro and in vivo, as previously shown in pancreatic cancer cells and in patient-derived mouse xenografts (PDX). Currently, GP 2250 is under phase I clinical trial in pancreatic ductal adenocarcinoma (PDAC). GP-2250 in combination with Gemcitabine displays a high synergistic capacity in various primary and established pancreatic cancer cell lines. Additionally, in the eight PDX models tested, the drug combination was superior in reducing tumor volume with an aggregate tumor regression (ATR) of 74% compared to Gemcitabine alone (ATR: 10%). Similarly, in a PDX maintenance setting following two weeks of treatment with nab-Paclitaxel plus Gemcitabine, the combination of GP-2250 plus Gemcitabine resulted in outstanding tumor control (ATR: 79%) compared to treatment with Gemcitabine alone (ATR: 60%). Furthermore, GP-2250 reduced the ratio of tumor-initiating CD133+ markers on the surface of PDAC cells in spheroid cultures, indicating a possible mechanism for the synergistic effect of both substances. Considering the high tolerability of GP 2250, these results may open up a new approach to maintenance therapy with GP-2250/Gemcitabine combination following nab-Paclitaxel plus Gemcitabine as first-line treatment. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

21 pages, 10277 KiB  
Article
Reprogramming Glioblastoma Cells into Non-Cancerous Neuronal Cells as a Novel Anti-Cancer Strategy
by Michael Q. Jiang, Shan Ping Yu, Takira Estaba, Emily Choi, Ken Berglund, Xiaohuan Gu and Ling Wei
Cells 2024, 13(11), 897; https://doi.org/10.3390/cells13110897 - 23 May 2024
Viewed by 1312
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell’s fate as a [...] Read more.
Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell’s fate as a potential therapy for neurological diseases. NeuroD1 (ND1) is a master transcriptional factor for neurogenesis and it promotes neuronal differentiation. In the present study, we tested the hypothesis that the expression of ND1 in GBM cells can force them to differentiate toward post-mitotic neurons and halt GBM tumor progression. In cultured human GBM cell lines, including LN229, U87, and U373 as temozolomide (TMZ)-sensitive and T98G as TMZ-resistant cells, the neuronal lineage conversion was induced by an adeno-associated virus (AAV) package carrying ND1. Twenty-one days after AAV-ND1 transduction, ND1-expressing cells displayed neuronal markers MAP2, TUJ1, and NeuN. The ND1-induced transdifferentiation was regulated by Wnt signaling and markedly enhanced under a hypoxic condition (2% O2 vs. 21% O2). ND1-expressing GBM cultures had fewer BrdU-positive proliferating cells compared to vector control cultures. Increased cell death was visualized by TUNEL staining, and reduced migrative activity was demonstrated in the wound-healing test after ND1 reprogramming in both TMZ-sensitive and -resistant GBM cells. In a striking contrast to cancer cells, converted cells expressed the anti-tumor gene p53. In an orthotopical GBM mouse model, AAV-ND1-reprogrammed U373 cells were transplanted into the fornix of the cyclosporine-immunocompromised C57BL/6 mouse brain. Compared to control GBM cell-formed tumors, cells from ND1-reprogrammed cultures formed smaller tumors and expressed neuronal markers such as TUJ1 in the brain. Thus, reprogramming using a single-factor ND1 overcame drug resistance, converting malignant cells of heterogeneous GBM cells to normal neuron-like cells in vitro and in vivo. These novel observations warrant further research using patient-derived GBM cells and patient-derived xenograft (PDX) models as a potentially effective treatment for a deadly brain cancer and likely other astrocytoma tumors. Full article
(This article belongs to the Special Issue Glioblastoma: What Do We Know?)
Show Figures

Figure 1

13 pages, 1132 KiB  
Article
Zebrafish Avatars: Toward Functional Precision Medicine in Low-Grade Serous Ovarian Cancer
by Charlotte Fieuws, Jan Willem Bek, Bram Parton, Elyne De Neef, Olivier De Wever, Milena Hoorne, Marta F. Estrada, Jo Van Dorpe, Hannelore Denys, Koen Van de Vijver and Kathleen B. M. Claes
Cancers 2024, 16(10), 1812; https://doi.org/10.3390/cancers16101812 - 9 May 2024
Viewed by 1136
Abstract
Ovarian cancer (OC) is an umbrella term for cancerous malignancies affecting the ovaries, yet treatment options for all subtypes are predominantly derived from high-grade serous ovarian cancer, the largest subgroup. The concept of "functional precision medicine" involves gaining personalized insights on therapy choice, [...] Read more.
Ovarian cancer (OC) is an umbrella term for cancerous malignancies affecting the ovaries, yet treatment options for all subtypes are predominantly derived from high-grade serous ovarian cancer, the largest subgroup. The concept of "functional precision medicine" involves gaining personalized insights on therapy choice, based on direct exposure of patient tissues to drugs. This especially holds promise for rare subtypes like low-grade serous ovarian cancer (LGSOC). This study aims to establish an in vivo model for LGSOC using zebrafish embryos, comparing treatment responses previously observed in mouse PDX models, cell lines and 3D tumor models. To address this goal, a well-characterized patient-derived LGSOC cell line with the KRAS mutation c.35 G>T (p.(Gly12Val)) was used. Fluorescently labeled tumor cells were injected into the perivitelline space of 2 days’ post-fertilization zebrafish embryos. At 1 day post-injection, xenografts were assessed for tumor size, followed by random allocation into treatment groups with trametinib, luminespib and trametinib + luminespib. Subsequently, xenografts were euthanized and analyzed for apoptosis and proliferation by confocal microscopy. Tumor cells formed compact tumor masses (n = 84) in vivo, with clear Ki67 staining, indicating proliferation. Zebrafish xenografts exhibited sensitivity to trametinib and luminespib, individually or combined, within a two-week period, establishing them as a rapid and complementary tool to existing in vitro and in vivo models for evaluating targeted therapies in LGSOC. Full article
(This article belongs to the Special Issue Advances in Ovarian Cancer Research and Treatment)
Show Figures

Graphical abstract

17 pages, 3877 KiB  
Article
Novel Brain-Penetrant, Small-Molecule Tubulin Destabilizers for the Treatment of Glioblastoma
by Lilian A. Patrón, Helen Yeoman, Sydney Wilson, Nanyun Tang, Michael E. Berens, Vijay Gokhale and Teri C. Suzuki
Biomedicines 2024, 12(2), 406; https://doi.org/10.3390/biomedicines12020406 - 9 Feb 2024
Viewed by 1505
Abstract
Glioblastoma (GB) is the most lethal brain cancer in adults, with a 5-year survival rate of 5%. The standard of care for GB includes maximally safe surgical resection, radiation, and temozolomide (TMZ) therapy, but tumor recurrence is inevitable in most GB patients. Here, [...] Read more.
Glioblastoma (GB) is the most lethal brain cancer in adults, with a 5-year survival rate of 5%. The standard of care for GB includes maximally safe surgical resection, radiation, and temozolomide (TMZ) therapy, but tumor recurrence is inevitable in most GB patients. Here, we describe the development of a blood–brain barrier (BBB)-penetrant tubulin destabilizer, RGN3067, for the treatment of GB. RGN3067 shows good oral bioavailability and achieves high concentrations in rodent brains after oral dosing (Cmax of 7807 ng/mL (20 μM), Tmax at 2 h). RGN3067 binds the colchicine binding site of tubulin and inhibits tubulin polymerization. The compound also suppresses the proliferation of the GB cell lines U87 and LN-18, with IC50s of 117 and 560 nM, respectively. In four patient-derived GB cell lines, the IC50 values for RGN3067 range from 148 to 616 nM. Finally, in a patient-derived xenograft (PDX) mouse model, RGN3067 reduces the rate of tumor growth compared to the control. Collectively, we show that RGN3067 is a BBB-penetrant small molecule that shows in vitro and in vivo efficacy and that its design addresses many of the physicochemical properties that prevent the use of microtubule destabilizers as treatments for GB and other brain cancers. Full article
(This article belongs to the Special Issue Glioblastoma: Current Status and Future Prospects)
Show Figures

Figure 1

15 pages, 3405 KiB  
Article
Addressing a Pre-Clinical Pipeline Gap: Development of the Pediatric Acute Myeloid Leukemia Patient-Derived Xenograft Program at Texas Children’s Hospital at Baylor College of Medicine
by Alexandra M. Stevens, Maci Terrell, Raushan Rashid, Kevin E. Fisher, Andrea N. Marcogliese, Amos Gaikwad, Pulivarthi Rao, Chelsea Vrana, Michael Krueger, Michael Loken, Andrew J. Menssen, Jacqueline A. Cook, Noah Keogh, Michelle Alozie, Hailey Oviedo, Alan K. Gonzalez, Tamilini Ilangovan, Julia Kim, Sohani Sandhu and Michele S. Redell
Biomedicines 2024, 12(2), 394; https://doi.org/10.3390/biomedicines12020394 - 8 Feb 2024
Viewed by 1455
Abstract
The survival rate of pediatric acute myeloid leukemia (pAML) is currently around 60%. While survival has slowly increased over the past few decades, the development of novel agents likely to further improve survival for this heterogeneous patient population has been limited by gaps [...] Read more.
The survival rate of pediatric acute myeloid leukemia (pAML) is currently around 60%. While survival has slowly increased over the past few decades, the development of novel agents likely to further improve survival for this heterogeneous patient population has been limited by gaps in the pAML pre-clinical pipeline. One of the major hurdles in evaluating new agents for pAML is the lack of pAML patient-derived xenograft (PDX) models. Unlike solid tumors and other types of leukemias, AML is notoriously hard to establish in mouse models, likely due in part to the need for specific human microenvironment elements. Our laboratory at TCH/BCM addressed this gap by establishing a systematic PDX workflow, leveraging advanced immunodeficient hosts and capitalizing on our high volume of pAML patients and close coordination between labs and clinical sections. Patients treated at TCH are offered the chance to participate in specimen banking protocols that allow blood and bone marrow collection as well as the collection of relevant clinical data. All patients who consent and have samples available are trialed for PDX development. In addition, samples from the Children’s Oncology Group (COG) are also trialed for PDX generation. Serially transplanting PDX models are validated using short tandem repeat (STR) and characterized using both targeted DNA/RNA next generation sequencing and RNAseq. As of March 2023, this systematic approach has resulted in 26 serially transplanting models. Models have been shared with requesting labs to facilitate external pAML pre-clinical studies. Available PDX models can be located through the BCM PDX Portal. We expect our growing PDX resource to make a significant contribution to expediting the testing of promising novel therapeutics for pAML. Full article
(This article belongs to the Special Issue Pathogenesis and Novel Therapies of Acute Leukemias)
Show Figures

Figure 1

19 pages, 2610 KiB  
Article
MACC1 Regulates LGR5 to Promote Cancer Stem Cell Properties in Colorectal Cancer
by Müge Erdem, Kyung Hwan Lee, Markus Hardt, Joseph L. Regan, Dennis Kobelt, Wolfgang Walther, Margarita Mokrizkij, Christian Regenbrecht and Ulrike Stein
Cancers 2024, 16(3), 604; https://doi.org/10.3390/cancers16030604 - 31 Jan 2024
Cited by 2 | Viewed by 1824
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. The high mortality is directly associated with metastatic disease, which is thought to be initiated by colon cancer stem cells, according to the cancer stem cell (CSC) model. Consequently, early [...] Read more.
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. The high mortality is directly associated with metastatic disease, which is thought to be initiated by colon cancer stem cells, according to the cancer stem cell (CSC) model. Consequently, early identification of those patients who are at high risk for metastasis is crucial for improved treatment and patient outcomes. Metastasis-associated in colon cancer 1 (MACC1) is a novel prognostic biomarker for tumor progression and metastasis formation independent of tumor stage. We previously showed an involvement of MACC1 in cancer stemness in the mouse intestine of our MACC1 transgenic mouse models. However, the expression of MACC1 in human CSCs and possible implications remain elusive. Here, we explored the molecular mechanisms by which MACC1 regulates stemness and the CSC-associated invasive phenotype based on patient-derived tumor organoids (PDOs), patient-derived xenografts (PDXs) and human CRC cell lines. We showed that CD44-enriched CSCs from PDO models express significantly higher levels of MACC1 and LGR5 and display higher tumorigenicity in immunocompromised mice. Similarly, RNA sequencing performed on PDO and PDX models demonstrated significantly increased MACC1 expression in ALDH1(+) CSCs, highlighting its involvement in cancer stemness. We further showed the correlation of MACC1 with the CSC markers CD44, NANOG and LGR5 in PDO models as well as established cell lines. Additionally, MACC1 increased stem cell gene expression, clonogenicity and sphere formation. Strikingly, we showed that MACC1 binds as a transcription factor to the LGR5 gene promoter, uncovering the long-known CSC marker LGR5 as a novel essential signaling mediator employed by MACC1 to induce CSC-like properties in human CRC patients. Our in vitro findings were further substantiated by a significant positive correlation of MACC1 with LGR5 in CRC cell lines as well as CRC patient tumors. Taken together, this study indicates that the metastasis inducer MACC1 acts as a cancer stem cell-associated marker. Interventional approaches targeting MACC1 would potentially improve further targeted therapies for colorectal cancer patients to eradicate CSCs and prevent cancer recurrence and distant metastasis formation. Full article
Show Figures

Figure 1

17 pages, 3779 KiB  
Article
Nanoparticle-Encapsulated Epirubicin Efficacy in the Inhibition of Growth of Orthotopic Ovarian Patient-Derived Xenograft in Immunocompromised Mice
by Wioletta Kośnik, Hanna Sikorska, Adam Kiciak and Tomasz Ciach
Int. J. Mol. Sci. 2024, 25(1), 645; https://doi.org/10.3390/ijms25010645 - 4 Jan 2024
Cited by 1 | Viewed by 1257
Abstract
Epirubicin hydrochloride (EPI) is an anticancer drug widely used in the treatment of many solid tumors, including ovarian cancer. Because of its anatomical location, ovarian cancer shows symptoms when it is already in an advanced stage and is thus more difficult to treat. [...] Read more.
Epirubicin hydrochloride (EPI) is an anticancer drug widely used in the treatment of many solid tumors, including ovarian cancer. Because of its anatomical location, ovarian cancer shows symptoms when it is already in an advanced stage and is thus more difficult to treat. Epirubicin hydrochloride kills cancer cells effectively, but its dose escalation is limited by its severe toxicity. By encapsulating epirubicin in dextran-based nanoparticles (POLEPI), we expected to deliver higher and thus clinically more effective doses directly to tumors, where epirubicin would be released and retained longer in the tumor. The antitumor activity of POLEPI compared to EPI was first tested ex vivo in a series of ovarian cancer patient-derived tumor xenografts (PDX). The most promising PDX was then implanted orthotopically into immunocompromised mice, and tumor growth was monitored via magnetic resonance imaging (MRI). Although we succeeded in suppressing the growth of ovarian cancer derived from a patient, in a mouse model by 70% compared to 40% via EPI in 5 days after only one injection, we could not eliminate serious side effects, and the study was terminated prematurely for humane reasons. Full article
Show Figures

Figure 1

15 pages, 3778 KiB  
Article
The β-Secretase 1 Enzyme as a Novel Therapeutic Target for Prostate Cancer
by Hilal A. Rather, Sameh Almousa, Ashish Kumar, Mitu Sharma, Isabel Pennington, Susy Kim, Yixin Su, Yangen He, Abdollah R. Ghara, Kiran Kumar Solingapuram Sai, Nora M. Navone, Donald J. Vander Griend and Gagan Deep
Cancers 2024, 16(1), 10; https://doi.org/10.3390/cancers16010010 - 19 Dec 2023
Viewed by 1326
Abstract
Recent studies have demonstrated the association of APP and Aβ with cancer, suggesting that BACE1 may play an important role in carcinogenesis. In the present study, we assessed BACE1’s usefulness as a therapeutic target in prostate cancer (PCa). BACE1 expression was observed in [...] Read more.
Recent studies have demonstrated the association of APP and Aβ with cancer, suggesting that BACE1 may play an important role in carcinogenesis. In the present study, we assessed BACE1’s usefulness as a therapeutic target in prostate cancer (PCa). BACE1 expression was observed in human PCa tissue samples, patient-derived xenografts (PDX), human PCa xenograft tissue in nude mice, and transgenic adenocarcinoma of the mouse prostate (TRAMP) tissues by immunohistochemistry (IHC) analysis. Additionally, the downstream product of BACE1 activity, i.e., Aβ1-42 expression, was also observed in these PCa tissues by IHC as well as by PET imaging in TRAMP mice. Furthermore, BACE1 gene expression and activity was confirmed in several established PCa cell lines (LNCaP, C4-2B-enzalutamide sensitive [S], C4-2B-enzalutamide resistant [R], 22Rv1-S, 22Rv1-R, PC3, DU145, and TRAMP-C1) by real-time PCR and fluorometric assay, respectively. Treatment with a pharmacological inhibitor of BACE1 (MK-8931) strongly reduced the proliferation of PCa cells in in vitro and in vivo models, analyzed by multiple assays (MTT, clonogenic, and trypan blue exclusion assays and IHC). Cell cycle analyses revealed an increase in the sub-G1 population and a significant modulation in other cell cycle stages (G1/S/G2/M) following MK-8931 treatment. Most importantly, in vivo administration of MK-8931 intraperitoneal (30 mg/kg) strongly inhibited TRAMP-C1 allograft growth in immunocompetent C57BL/6 mice (approximately 81% decrease, p = 0.019). Furthermore, analysis of tumor tissue using the prostate cancer-specific pathway array revealed the alteration of several genes involved in PCa growth and progression including Forkhead O1 (FOXO1). All together, these findings suggest BACE1 as a novel therapeutic target in advanced PCa. Full article
(This article belongs to the Special Issue The Biological Mechanism of Cancer Proliferation and Metastasis)
Show Figures

Figure 1

12 pages, 4177 KiB  
Article
Comparative RNA-Seq Analysis Revealed Tissue-Specific Splicing Variations during the Generation of the PDX Model
by Eun Ji Lee, Seung-Jae Noh, Huiseon Choi, Min Woo Kim, Su Jin Kim, Yeon Ah Seo, Ji Eun Jeong, Inkyung Shin, Jong-Seok Kim, Jong-Kwon Choi, Dae-Yeon Cho and Suhwan Chang
Int. J. Mol. Sci. 2023, 24(23), 17001; https://doi.org/10.3390/ijms242317001 - 30 Nov 2023
Viewed by 1178
Abstract
Tissue-specific gene expression generates fundamental differences in the function of each tissue and affects the characteristics of the tumors that are created as a result. However, it is unclear how much the tissue specificity is conserved during grafting of the primary tumor into [...] Read more.
Tissue-specific gene expression generates fundamental differences in the function of each tissue and affects the characteristics of the tumors that are created as a result. However, it is unclear how much the tissue specificity is conserved during grafting of the primary tumor into an immune-compromised mouse model. Here, we performed a comparative RNA-seq analysis of four different primary-patient derived xenograft (PDX) tumors. The analysis revealed a conserved RNA biotype distribution of primary−PDX pairs, as revealed by previous works. Interestingly, we detected significant changes in the splicing pattern of PDX, which was mainly comprised of skipped exons. This was confirmed by splicing variant-specific RT-PCR analysis. On the other hand, the correlation analysis for the tissue-specific genes indicated overall strong positive correlations between the primary and PDX tumor pairs, with the exception of gastric cancer cases, which showed an inverse correlation. These data propose a tissue-specific change in splicing events during PDX formation as a variable factor that affects primary−PDX integrity. Full article
(This article belongs to the Special Issue RNA in Human Diseases: Challenges and Opportunities)
Show Figures

Figure 1

23 pages, 7419 KiB  
Article
Exploring the In Vitro and In Vivo Therapeutic Potential of BRAF and MEK Inhibitor Combination in NRAS-Mutated Melanoma
by Heike Niessner, Anna Hüsch, Corinna Kosnopfel, Matthias Meinhardt, Dana Westphal, Friedegund Meier, Bastian Schilling and Tobias Sinnberg
Cancers 2023, 15(23), 5521; https://doi.org/10.3390/cancers15235521 - 22 Nov 2023
Viewed by 1796
Abstract
Introduction: Patients with NRAS-mutant metastatic melanoma often have an aggressive disease requiring a fast-acting, effective therapy. The MEK inhibitor binimetinib shows an overall response rate of 15% in patients with NRAS-mutant melanoma, providing a backbone for combination strategies. Our previous studies demonstrated that [...] Read more.
Introduction: Patients with NRAS-mutant metastatic melanoma often have an aggressive disease requiring a fast-acting, effective therapy. The MEK inhibitor binimetinib shows an overall response rate of 15% in patients with NRAS-mutant melanoma, providing a backbone for combination strategies. Our previous studies demonstrated that in NRAS-mutant melanoma, the antitumor activity of the MEK inhibitor binimetinib was significantly potentiated by the BRAFV600E/K inhibitor encorafenib through the induction of ER stress, leading to melanoma cell death by apoptotic mechanisms. Encorafenib combined with binimetinib was well tolerated in a phase III trial showing potent antitumor activity in BRAF-mutant melanoma, making a rapid evaluation in NRAS-mutant melanoma imminently feasible. These data provide a mechanistic rationale for the evaluation of binimetinib combined with encorafenib in preclinical and clinical studies on NRAS-mutant metastatic melanoma. Methods: The combination of BRAFi plus MEKi was tested in a monolayer culture of patient-derived cell lines and in corresponding patient-derived tissue slice cultures of NRAS-mutant melanoma. To investigate the treatment in vivo, NSG (NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice were subcutaneously injected with three different BRAF wild-type melanoma models harboring oncogenic NRAS mutations and treated orally with encorafenib (6 mg/kg body weight, daily) with or without binimetinib (8 mg/kg body weight, twice daily). In parallel, an individual healing attempt was carried out by treating one patient with an NRAS-mutated tumor. Results: Encorafenib was able to enhance the inhibitory effect on cell growth of binimetinib only in the cell line SKMel147 in vitro. It failed to enhance the apoptotic effect found in two other NRAS-mutated cell lines. Encorafenib led to a hyperactivation of ERK which could be reduced with the combinational treatment. In two of the three patient-derived tissue slice culture models of NRAS-mutant melanomas, a slight tendency of a combinatorial effect was seen which was not significant. Encorafenib showed a slight induction of the ER stress genes ATF4, CHOP, and NUPR1. The combinational treatment was able to enhance this effect, but not significantly. In the mouse model, the combination therapy of encorafenib with binimetinib resulted in reduced tumor growth compared to the control and encorafenib groups; however, the best effect in terms of tumor growth inhibition was measured in the binimetinib therapy group. The therapy showed no effect in an individual healing attempt for a patient suffering from metastatic, therapy-refractory NRAS-mutated melanoma. Conclusion: In in vitro and ex vivo settings, the combination therapy was observed to elicit a response; however, it did not amplify the efficacy observed with binimetinib alone, whereas in a patient, the combinational treatment remained ineffective. The preclinical in vivo data showed no increased combinatorial effect. However, the in vivo effect of binimetinib as monotherapy was unexpectedly high in the tested regimen. Nevertheless, binimetinib proved to be advantageous in the treatment of melanoma in vivo and led to high rates of apoptosis in vitro; hence, it still seems to be a good base for combination with other substances in the treatment of patients with NRAS-mutant melanoma. Full article
Show Figures

Figure 1

20 pages, 3315 KiB  
Article
Anticancer Effects of Fucoxanthin in a PDX Model of Advanced Stage Pancreatic Cancer with Alteration of Several Multifunctional Molecules
by Masaru Terasaki, Sally Suzuki, Takuji Tanaka, Hayato Maeda, Masaki Shibata, Kazuo Miyashita, Yasuhiro Kuramitsu, Junichi Hamada, Tohru Ohta, Shigehiro Yagishita, Akinobu Hamada, Yasunari Sakamoto, Susumu Hijioka, Chigusa Morizane and Mami Takahashi
Onco 2023, 3(4), 217-236; https://doi.org/10.3390/onco3040016 - 24 Sep 2023
Viewed by 1789
Abstract
Pancreatic cancer (PC) is one of the most fatal cancers, and there is an urgent need to develop new anticancer agents with fewer side effects for the treatment of this condition. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissue from patients [...] Read more.
Pancreatic cancer (PC) is one of the most fatal cancers, and there is an urgent need to develop new anticancer agents with fewer side effects for the treatment of this condition. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissue from patients is widely accepted as the best preclinical model for evaluating the anticancer potential of drug candidates. Fucoxanthin (Fx) is a highly polar carotenoid contained in edible marine brown algae and possesses anticancer activity. However, there is a lack of data on the effects of Fx in PDX models. We investigated the anticancer effects of Fx in PDX mice transplanted with cancer tissues derived from a patient with PC (PC-PDX) using comprehensive protein expression assay. Fx administration (0.3%Fx diet) ad libitum for 27 days significantly abrogated tumor development (0.4-fold) and induced tumor differentiation in PC-PDX mice, as compared to those in the control mice. Fx significantly upregulated the expression of non-glycanated DCN (2.4-fold), tended to increase the expressions of p-p38(Thr180/Tyr182) (1.6-fold) and pJNK(Thr183/Tyr185) (1.8-fold), significantly downregulated IGFBP2 (0.6-fold) and EpCAM (0.7-fold), and tended to decrease LCN2 (0.6-fold) levels in the tumors of the PC-PDX mice, as compared to those in the control mice. Some of the protein expression patterns were consistent with the in vitro experiments. That is, treatment of fucoxanthinol (FxOH), a prime metabolite derived from dietary Fx, enhanced non-glycanated DCN, p-p38(Thr180/Tyr182), and pJNK(Thr183/Tyr185) levels in human PC PANC-1 and BxPC-3 cells.These results suggested that Fx exerts anticancer and differentiation effects in a PC-PDX mice through alterations of some multifunctional molecules. Full article
Show Figures

Figure 1

20 pages, 4127 KiB  
Article
Discovery of VIP236, an αvβ3-Targeted Small-Molecule–Drug Conjugate with Neutrophil Elastase-Mediated Activation of 7-Ethyl Camptothecin Payload for Treatment of Solid Tumors
by Hans-Georg Lerchen, Beatrix Stelte-Ludwig, Melanie Heroult, Dmitry Zubov, Kersten Matthias Gericke, Harvey Wong, Melanie M. Frigault, Amy J. Johnson, Raquel Izumi and Ahmed Hamdy
Cancers 2023, 15(17), 4381; https://doi.org/10.3390/cancers15174381 - 1 Sep 2023
Cited by 4 | Viewed by 2749
Abstract
The emerging field of small-molecule–drug conjugates (SMDCs) using small-molecule biomarker-targeted compounds for tumor homing may provide new perspectives for targeted delivery. Here, for the first time, we disclose the structure and the synthesis of VIP236, an SMDC designed for the treatment of metastatic [...] Read more.
The emerging field of small-molecule–drug conjugates (SMDCs) using small-molecule biomarker-targeted compounds for tumor homing may provide new perspectives for targeted delivery. Here, for the first time, we disclose the structure and the synthesis of VIP236, an SMDC designed for the treatment of metastatic solid tumors by targeting αvβ3 integrins and extracellular cleavage of the 7-ethyl camptothecin payload by neutrophil elastase in the tumor microenvironment. Imaging studies in the Lewis lung mouse model using an elastase cleavable quenched substrate showed pronounced elastase activity in the tumor. Pharmacokinetics studies of VIP236 in tumor-bearing mice demonstrated high stability of the SMDC in plasma and high tumor accumulation of the cleaved payload. Studies in bile-duct-cannulated rats showed that biliary excretion of the unmodified conjugate is the primary route of elimination. Treatment- and time-dependent phosphorylation of H2AX, a marker of DNA damage downstream of topoisomerase 1 inhibition, verified the on-target activity of the payload cleaved from VIP236 in vivo. Treatment with VIP236 resulted in long-lasting tumor regression in subcutaneous patient-derived xenograft (PDX) models from patients with non-small-cell lung, colon, and renal cancer as well as in two orthotopic metastatic triple-negative breast cancer PDX models. In these models, a significant reduction of brain and lung metastases also was observed. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 3400 KiB  
Review
Challenges and Prospects of Patient-Derived Xenografts for Cancer Research
by Jiankang Jin, Katsuhiro Yoshimura, Matheus Sewastjanow-Silva, Shumei Song and Jaffer A. Ajani
Cancers 2023, 15(17), 4352; https://doi.org/10.3390/cancers15174352 - 31 Aug 2023
Cited by 15 | Viewed by 2012
Abstract
We discuss the importance of the in vivo models in elucidating cancer biology, focusing on the patient-derived xenograft (PDX) models, which are classic and standard functional in vivo platforms for preclinical evaluation. We provide an overview of the most representative models, including cell-derived [...] Read more.
We discuss the importance of the in vivo models in elucidating cancer biology, focusing on the patient-derived xenograft (PDX) models, which are classic and standard functional in vivo platforms for preclinical evaluation. We provide an overview of the most representative models, including cell-derived xenografts (CDX), tumor and metastatic cell-derived xenografts, and PDX models utilizing humanized mice (HM). The orthotopic models, which could reproduce the cancer environment and its progression, similar to human tumors, are particularly common. The standard procedures and rationales of gastric adenocarcinoma (GAC) orthotopic models are addressed. Despite the significant advantages of the PDX models, such as recapitulating key features of human tumors and enabling drug testing in the in vivo context, some challenges must be acknowledged, including loss of heterogeneity, selection bias, clonal evolution, stroma replacement, tumor micro-environment (TME) changes, host cell carryover and contaminations, human-to-host cell oncogenic transformation, human and host viral infections, as well as limitations for immunologic research. To compensate for these limitations, other mouse models, such as syngeneic and humanized mouse models, are currently utilized. Overall, the PDX models represent a powerful tool in cancer research, providing critical insights into tumor biology and potential therapeutic targets, but their limitations and challenges must be carefully considered for their effective use. Lastly, we present an intronic quantitative PCR (qPCR) method to authenticate, detect, and quantify human/murine cells in cell lines and PDX samples. Full article
Show Figures

Figure 1

29 pages, 3404 KiB  
Review
Recent Advancement in Breast Cancer Research: Insights from Model Organisms—Mouse Models to Zebrafish
by Sharad S. Singhal, Rachana Garg, Atish Mohanty, Pankaj Garg, Sravani Keerthi Ramisetty, Tamara Mirzapoiazova, Raffaella Soldi, Sunil Sharma, Prakash Kulkarni and Ravi Salgia
Cancers 2023, 15(11), 2961; https://doi.org/10.3390/cancers15112961 - 29 May 2023
Cited by 11 | Viewed by 5102
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the [...] Read more.
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary ‘Team Medicine’ approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies. Full article
(This article belongs to the Topic Animal Model in Biomedical Research, 2nd Volume)
Show Figures

Figure 1

15 pages, 1430 KiB  
Article
Co-Clinical Imaging Metadata Information (CIMI) for Cancer Research to Promote Open Science, Standardization, and Reproducibility in Preclinical Imaging
by Stephen M. Moore, James D. Quirk, Andrew W. Lassiter, Richard Laforest, Gregory D. Ayers, Cristian T. Badea, Andriy Y. Fedorov, Paul E. Kinahan, Matthew Holbrook, Peder E. Z. Larson, Renuka Sriram, Thomas L. Chenevert, Dariya Malyarenko, John Kurhanewicz, A. McGarry Houghton, Brian D. Ross, Stephen Pickup, James C. Gee, Rong Zhou, Seth T. Gammon, Henry Charles Manning, Raheleh Roudi, Heike E. Daldrup-Link, Michael T. Lewis, Daniel L. Rubin, Thomas E. Yankeelov and Kooresh I. Shoghiadd Show full author list remove Hide full author list
Tomography 2023, 9(3), 995-1009; https://doi.org/10.3390/tomography9030081 - 11 May 2023
Cited by 2 | Viewed by 3253
Abstract
Preclinical imaging is a critical component in translational research with significant complexities in workflow and site differences in deployment. Importantly, the National Cancer Institute’s (NCI) precision medicine initiative emphasizes the use of translational co-clinical oncology models to address the biological and molecular bases [...] Read more.
Preclinical imaging is a critical component in translational research with significant complexities in workflow and site differences in deployment. Importantly, the National Cancer Institute’s (NCI) precision medicine initiative emphasizes the use of translational co-clinical oncology models to address the biological and molecular bases of cancer prevention and treatment. The use of oncology models, such as patient-derived tumor xenografts (PDX) and genetically engineered mouse models (GEMMs), has ushered in an era of co-clinical trials by which preclinical studies can inform clinical trials and protocols, thus bridging the translational divide in cancer research. Similarly, preclinical imaging fills a translational gap as an enabling technology for translational imaging research. Unlike clinical imaging, where equipment manufacturers strive to meet standards in practice at clinical sites, standards are neither fully developed nor implemented in preclinical imaging. This fundamentally limits the collection and reporting of metadata to qualify preclinical imaging studies, thereby hindering open science and impacting the reproducibility of co-clinical imaging research. To begin to address these issues, the NCI co-clinical imaging research program (CIRP) conducted a survey to identify metadata requirements for reproducible quantitative co-clinical imaging. The enclosed consensus-based report summarizes co-clinical imaging metadata information (CIMI) to support quantitative co-clinical imaging research with broad implications for capturing co-clinical data, enabling interoperability and data sharing, as well as potentially leading to updates to the preclinical Digital Imaging and Communications in Medicine (DICOM) standard. Full article
Show Figures

Figure 1

Back to TopTop