Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (920)

Search Parameters:
Keywords = NADPH oxidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1477 KiB  
Review
Role of NADPH Oxidases in Stroke Recovery
by Dong-Hee Choi, In-Ae Choi and Jongmin Lee
Antioxidants 2024, 13(9), 1065; https://doi.org/10.3390/antiox13091065 - 30 Aug 2024
Viewed by 245
Abstract
Stroke is one of the most significant causes of death and long-term disability globally. Overproduction of reactive oxygen species by NADPH oxidase (NOX) plays an important role in exacerbating oxidative stress and causing neuronal damage after a stroke. There is growing evidence that [...] Read more.
Stroke is one of the most significant causes of death and long-term disability globally. Overproduction of reactive oxygen species by NADPH oxidase (NOX) plays an important role in exacerbating oxidative stress and causing neuronal damage after a stroke. There is growing evidence that NOX inhibition prevents ischemic injury and that the role of NOX in brain damage or recovery depends on specific post-stroke phases. In addition to studies on post-stroke neuroprotection by NOX inhibition, recent reports have also demonstrated the role of NOX in stroke recovery, a critical process for brain adaptation and functional reorganization after a stroke. Therefore, in this review, we investigated the role of NOX in stroke recovery with the aim of integrating preclinical findings into potential therapeutic strategies to improve stroke recovery. Full article
(This article belongs to the Special Issue NADPH Oxidases (NOXs))
Show Figures

Figure 1

18 pages, 2089 KiB  
Review
Untangling the Uncertain Role of Overactivation of the Renin–Angiotensin–Aldosterone System with the Aging Process Based on Sodium Wasting Human Models
by Chantelle Thimm and James Adjaye
Int. J. Mol. Sci. 2024, 25(17), 9332; https://doi.org/10.3390/ijms25179332 - 28 Aug 2024
Viewed by 320
Abstract
Every individual at some point encounters the progressive biological process of aging, which is considered one of the major risk factors for common diseases. The main drivers of aging are oxidative stress, senescence, and reactive oxygen species (ROS). The renin–angiotensin–aldosterone system (RAAS) includes [...] Read more.
Every individual at some point encounters the progressive biological process of aging, which is considered one of the major risk factors for common diseases. The main drivers of aging are oxidative stress, senescence, and reactive oxygen species (ROS). The renin–angiotensin–aldosterone system (RAAS) includes several systematic processes for the regulation of blood pressure, which is caused by an imbalance of electrolytes. During activation of the RAAS, binding of angiotensin II (ANG II) to angiotensin II type 1 receptor (AGTR1) activates intracellular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate superoxide anions and promote uncoupling of endothelial nitric oxide (NO) synthase, which in turn decreases NO availability and increases ROS production. Promoting oxidative stress and DNA damage mediated by ANG II is tightly regulated. Individuals with sodium deficiency-associated diseases such as Gitelman syndrome (GS) and Bartter syndrome (BS) show downregulation of inflammation-related processes and have reduced oxidative stress and ROS. Additionally, the histone deacetylase sirtuin-1 (SIRT1) has a significant impact on the aging process, with reduced activity with age. However, GS/BS patients generally sustain higher levels of sirtuin-1 (SIRT1) activity than age-matched healthy individuals. SIRT1 expression in GS/BS patients tends to be higher than in healthy age-matched individuals; therefore, it can be assumed that there will be a trend towards healthy aging in these patients. In this review, we highlight the importance of the hallmarks of aging, inflammation, and the RAAS system in GS/BS patients and how this might impact healthy aging. We further propose future research directions for studying the etiology of GS/BS at the molecular level using patient-derived renal stem cells and induced pluripotent stem cells. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

10 pages, 1606 KiB  
Article
Inhibitory Effects of Naringenin on LPS-Induced Skin Inflammation by NF-κB Regulation in Human Dermal Fibroblasts
by Yoon-Jung Choy, Gyu-Ri Kim and Hyung-ui Baik
Curr. Issues Mol. Biol. 2024, 46(9), 9245-9254; https://doi.org/10.3390/cimb46090546 - 23 Aug 2024
Viewed by 308
Abstract
Flavonoids are important natural compounds characterized by their extensive biological activities. Citrus flavonoids represent a significant segment of the broader flavonoid category. Naringenin, an integral part of this series, is recognized for its powerful anti-inflammatory and antioxidant properties. In addition, considering the lack [...] Read more.
Flavonoids are important natural compounds characterized by their extensive biological activities. Citrus flavonoids represent a significant segment of the broader flavonoid category. Naringenin, an integral part of this series, is recognized for its powerful anti-inflammatory and antioxidant properties. In addition, considering the lack of existing research on naringenin’s potential effectiveness and intracellular mechanisms of action in skin-related applications, especially as a cosmetic ingredient, this study aimed to explore naringenin’s role in reducing the fundamental generation of reactive oxygen species. This was achieved by examining its inhibitory effects on the expression levels of NADPH oxidase and iNOS, ultimately leading to a reduction in NO production. This research examined the anti-inflammatory and antioxidant capacities of naringenin by employing a cellular senescence model of LPS-induced HDFs. The evaluation of naringenin’s efficacy was validated through several investigative procedures, including the NF-κB luciferase assay, ELISA assay, and qRT-PCR. To verify the anti-inflammatory effectiveness of naringenin, we measured the responsive elements of NF-κB using a luciferase reporter assay. This assessment revealed that naringenin could decrease the concentration of genes activated by NF-κB. Moreover, we found that naringenin inhibited the transcriptional expression of known NF-κB-regulated inflammatory cytokines, including IL-1β, IL-6, and IL-8. In addition, results from the qRT-PCR analysis indicated that naringenin facilitated a reduction in iNOS expression. Based on the data gathered and analyzed in this study, it can be conclusively inferred that naringenin possesses promising potential as a cosmetic ingredient, offering both anti-inflammatory and antioxidant benefits. Full article
(This article belongs to the Special Issue The Role of Bioactives in Inflammation)
Show Figures

Figure 1

25 pages, 10825 KiB  
Article
Nuclear Localization of Human SOD1 in Motor Neurons in Mouse Model and Patient Amyotrophic Lateral Sclerosis: Possible Links to Cholinergic Phenotype, NADPH Oxidase, Oxidative Stress, and DNA Damage
by Lee J. Martin, Shannon J. Koh, Antionette Price, Dongseok Park and Byung Woo Kim
Int. J. Mol. Sci. 2024, 25(16), 9106; https://doi.org/10.3390/ijms25169106 - 22 Aug 2024
Viewed by 382
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that causes degeneration of motor neurons (MNs) and paralysis. ALS can be caused by mutations in the gene that encodes copper/zinc superoxide dismutase (SOD1). SOD1 is known mostly as a cytosolic antioxidant protein, but SOD1 [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a fatal disease that causes degeneration of motor neurons (MNs) and paralysis. ALS can be caused by mutations in the gene that encodes copper/zinc superoxide dismutase (SOD1). SOD1 is known mostly as a cytosolic antioxidant protein, but SOD1 is also in the nucleus of non-transgenic (tg) and human SOD1 (hSOD1) tg mouse MNs. SOD1’s nuclear presence in different cell types and subnuclear compartmentations are unknown, as are the nuclear functions of SOD1. We examined hSOD1 nuclear localization and DNA damage in tg mice expressing mutated and wildtype variants of hSOD1 (hSOD1-G93A and hSOD1-wildtype). We also studied ALS patient-derived induced pluripotent stem (iPS) cells to determine the nuclear presence of SOD1 in undifferentiated and differentiated MNs. In hSOD1-G93A and hSOD1-wildtype tg mice, choline acetyltransferase (ChAT)-positive MNs had nuclear hSOD1, but while hSOD1-wildtype mouse MNs also had nuclear ChAT, hSOD1-G93A mouse MNs showed symptom-related loss of nuclear ChAT. The interneurons had preserved parvalbumin nuclear positivity in hSOD1-G93A mice. hSOD1-G93A was seen less commonly in spinal cord astrocytes and, notably, oligodendrocytes, but as the disease emerged, the oligodendrocytes had increased mutant hSOD1 nuclear presence. Brain and spinal cord subcellular fractionation identified mutant hSOD1 in soluble nuclear extracts of the brain and spinal cord, but mutant hSOD1 was concentrated in the chromatin nuclear extract only in the spinal cord. Nuclear extracts from mutant hSOD1 tg mouse spinal cords had altered protein nitration, footprinting peroxynitrite presence, and the intact nuclear extracts had strongly increased superoxide production as well as the active NADPH oxidase marker, p47phox. The comet assay showed that MNs from hSOD1-G93A mice progressively (6–14 weeks of age) accumulated DNA single-strand breaks. Ablation of the NCF1 gene, encoding p47phox, and pharmacological inhibition of NADPH oxidase with systemic treatment of apocynin (10 mg/kg, ip) extended the mean lifespan of hSOD1-G93A mice by about 25% and mitigated genomic DNA damage progression. In human postmortem CNS, SOD1 was found in the nucleus of neurons and glia; nuclear SOD1 was increased in degenerating neurons in ALS cases and formed inclusions. Human iPS cells had nuclear SOD1 during directed differentiation to MNs, but mutant SOD1-expressing cells failed to establish wildtype MN nuclear SOD1 levels. We conclude that SOD1 has a prominent nuclear presence in the central nervous system, perhaps adopting aberrant contexts to participate in ALS pathobiology. Full article
Show Figures

Figure 1

18 pages, 6171 KiB  
Article
Matrine Suppresses Arsenic-Induced Malignant Transformation of SV-HUC-1 Cells via NOX2
by Lanfei Wang, Nianfeng Qiu, Suyuan Tong, Yan Yu, Shuhua Xi and Fei Wang
Int. J. Mol. Sci. 2024, 25(16), 8878; https://doi.org/10.3390/ijms25168878 - 15 Aug 2024
Viewed by 344
Abstract
Arsenic (As) has been classified as a carcinogen for humans. There is abundant evidence indicating that arsenic increases the risk of bladder cancer among human populations. However, the underlying mechanisms have yet to be fully understood and elucidated. NADPH oxidases (NOXs) are the [...] Read more.
Arsenic (As) has been classified as a carcinogen for humans. There is abundant evidence indicating that arsenic increases the risk of bladder cancer among human populations. However, the underlying mechanisms have yet to be fully understood and elucidated. NADPH oxidases (NOXs) are the main enzymes for ROS production in the body. NADPH Oxidase 2 (NOX2), which is the most distinctive and ubiquitously expressed subunit of NOXs, can promote the formation and development of tumors. The utilization of NOX2 as a therapeutic target has been proposed to modulate diseases resulting from the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3). Matrine has been reported to exhibit various pharmacological effects, including anti-inflammatory, antifibrotic, antitumor, and analgesic properties. However, it has not been reported whether matrine can inhibit malignant transformation induced by arsenic in uroepithelial cells through NOX2. We have conducted a series of experiments using both a sub-chronic NaAsO2 exposure rat model and a long-term NaAsO2 exposure cell model. Our findings indicate that arsenic significantly increases cell proliferation, migration, and angiogenesis in vivo and in vitro. Arsenic exposure resulted in an upregulation of reactive oxygen species (ROS), NOX2, and NLRP3 inflammasome expression. Remarkably, both in vivo and in vitro, the administration of matrine demonstrated a significant improvement in the detrimental impact of arsenic on bladder epithelial cells. This was evidenced by the downregulation of proliferation, migration, and angiogenesis, as well as the expression of the NOX2 and NLRP3 inflammasomes. Collectively, these findings indicate that matrine possesses the ability to reduce NOX2 levels and inhibit the transformation of bladder epithelial cells. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

28 pages, 2008 KiB  
Review
Oxidative Stress and Erectile Dysfunction: Pathophysiology, Impacts, and Potential Treatments
by Aris Kaltsas, Athanasios Zikopoulos, Fotios Dimitriadis, Danja Sheshi, Magdalena Politis, Efthalia Moustakli, Evangelos N. Symeonidis, Michael Chrisofos, Nikolaos Sofikitis and Athanasios Zachariou
Curr. Issues Mol. Biol. 2024, 46(8), 8807-8834; https://doi.org/10.3390/cimb46080521 - 14 Aug 2024
Viewed by 1173
Abstract
Erectile dysfunction (ED) is a prevalent condition affecting men’s sexual health, with oxidative stress (OS) having recently been identified as a significant contributing causative factor. This narrative review aims to elucidate the role of OS in the pathophysiology of ED, focusing on impact, [...] Read more.
Erectile dysfunction (ED) is a prevalent condition affecting men’s sexual health, with oxidative stress (OS) having recently been identified as a significant contributing causative factor. This narrative review aims to elucidate the role of OS in the pathophysiology of ED, focusing on impact, mechanisms, and potential therapeutic interventions. Key findings indicate that OS disrupts endothelial function and nitric oxide (NO) signaling, crucial for erectile function. Various sources of reactive oxygen species (ROS) and their detrimental effects on penile tissue are discussed, including aging, diabetes mellitus, hypertension, hyperlipidemia, smoking, obesity, alcohol consumption, psychological stress, hyperhomocysteinemia, chronic kidney disease, and sickle cell disease. Major sources of ROS, such as NADPH oxidase, xanthine oxidase, uncoupled endothelial NO synthase (eNOS), and mitochondrial electron transport, are identified. NO is scavenged by these ROS, leading to endothelial dysfunction characterized by reduced NO availability, impaired vasodilation, increased vascular tone, and inflammation. This ultimately results in ED due to decreased blood flow to penile tissue and the inability to achieve or maintain an erection. Furthermore, ROS impact the transmission of nitrergic neurotransmitters by causing the death of nitrergic neurons and reducing the signaling of neuronal NO synthase (nNOS), exacerbating ED. Therapeutic approaches targeting OS, including antioxidants and lifestyle modifications, show promise in ameliorating ED symptoms. The review underscores the need for further research to develop effective treatments, emphasizing the interplay between OS and vascular health in ED. Integrating pharmacological and non-pharmacological strategies could enhance clinical outcomes for ED patients, advocating for OS management in ED treatment protocols to improve patient quality of life. Full article
(This article belongs to the Special Issue Molecular Research on Free Radicals and Oxidative Stress)
Show Figures

Figure 1

15 pages, 1363 KiB  
Article
Perioperative Changes in Plasma Nitrite and IL-6 Levels Predict Postoperative Atrial Fibrillation (POAF) and Acute Kidney Injury (AKI) after Cardiac Surgery
by Matthew A. Fischer, Kimberly Howard-Quijano, Nobel Chenggong Zong, Ji Youn Youn, Norika Mengchia Liu, Jennifer Scovotti, Tristan Grogan, Aman Mahajan and Hua Cai
Antioxidants 2024, 13(8), 971; https://doi.org/10.3390/antiox13080971 - 9 Aug 2024
Viewed by 492
Abstract
Background: Postoperative atrial fibrillation (POAF) and acute kidney injury (AKI) are common yet significant complications after cardiac surgery, with incidences of up to 40% for each. Here, we assessed plasma nitrite and serum interleukin-6 (IL-6) levels before and after cardiac surgery to quantify [...] Read more.
Background: Postoperative atrial fibrillation (POAF) and acute kidney injury (AKI) are common yet significant complications after cardiac surgery, with incidences of up to 40% for each. Here, we assessed plasma nitrite and serum interleukin-6 (IL-6) levels before and after cardiac surgery to quantify the extent to which oxidative stress and inflammation contribute to POAF and AKI occurrence. Methods: We prospectively enrolled 206 cardiac surgical patients. Plasma nitrite and serum IL-6 levels were determined preoperatively and at 24 h, 48 h and 72 h postoperatively. The patients had continuous EKG monitoring for occurrence of POAF, while daily serum creatinine was measured for determination of stage 1 + AKI. Results: Postoperatively, 78 (38%) patients experienced AF, and 47 (23%) patients experienced stage 1 + AKI. POAF analysis: Age, ACE-inhibitor use, valve surgery and percent change in baseline plasma nitrite at 24 h postoperatively were associated with POAF in multiple logistic regression analysis. The inclusion of this new biomarker significantly improved the POAF prediction model (AUC 0.77 for clinical risk factors alone, to AUC 0.81). AKI analysis: A history of diabetes mellitus was associated with AKI in multiple logistic regression analysis, and the addition of preoperative IL-6 levels improved the prediction model for AKI occurrence (AUC 0.69 to AUC 0.74). Conclusions: We previously observed selective upregulation of NADPH oxidase isoform 4 (NOX4) in patients with AF, a critical causal role of NOX4 for AF in zebrafish and a robust inhibitory effect of nitric oxide (NO) on NOX4. Our data innovatively demonstrate that a reduction in circulating nitrite levels, likely implicative of elevated NOX4-mediated oxidative stress, independently associates with POAF and improves POAF prediction, whereas the inclusion of circulating IL-6 levels improves the prediction model for AKI. Therefore, therapeutic strategies to mitigate these pathophysiological sequalae of surgical stress may reduce the incidence of severe postoperative complications of POAF and AKI. Full article
(This article belongs to the Special Issue NO and ROS in Redox Signalling)
Show Figures

Figure 1

33 pages, 3523 KiB  
Systematic Review
Oxidative Stress and Mitochondria Are Involved in Anaphylaxis and Mast Cell Degranulation: A Systematic Review
by Anays Piotin, Walid Oulehri, Anne-Laure Charles, Charles Tacquard, Olivier Collange, Paul-Michel Mertes and Bernard Geny
Antioxidants 2024, 13(8), 920; https://doi.org/10.3390/antiox13080920 - 29 Jul 2024
Viewed by 957
Abstract
Anaphylaxis, an allergic reaction caused by the massive release of active mediators, can lead to anaphylactic shock (AS), the most severe and potentially life-threatening form of anaphylactic reaction. Nevertheless, understanding of its pathophysiology to support new therapies still needs to be improved. We [...] Read more.
Anaphylaxis, an allergic reaction caused by the massive release of active mediators, can lead to anaphylactic shock (AS), the most severe and potentially life-threatening form of anaphylactic reaction. Nevertheless, understanding of its pathophysiology to support new therapies still needs to be improved. We performed a systematic review, assessing the role and the complex cellular interplay of mitochondria and oxidative stress during anaphylaxis, mast cell metabolism and degranulation. After presenting the main characteristics of anaphylaxis, the oxidant/antioxidant balance and mitochondrial functions, we focused this review on the involvement of mitochondria and oxidative stress in anaphylaxis. Then, we discussed the role of oxidative stress and mitochondria following mast cell stimulation by allergens, leading to degranulation, in order to further elucidate mechanistic pathways. Finally, we considered potential therapeutic interventions implementing these findings for the treatment of anaphylaxis. Experimental studies evaluated mainly cardiomyocyte metabolism during AS. Cardiac dysfunction was associated with left ventricle mitochondrial impairment and lipid peroxidation. Studies evaluating in vitro mast cell degranulation, following Immunoglobulin E (IgE) or non-IgE stimulation, revealed that mitochondrial respiratory complex integrity and membrane potential are crucial for mast cell degranulation. Antigen stimulation raises reactive oxygen species (ROS) production from nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria, leading to mast cell degranulation. Moreover, mast cell activation involved mitochondrial morphological changes and mitochondrial translocation to the cell surface near exocytosis sites. Interestingly, antioxidant administration reduced degranulation by lowering ROS levels. Altogether, these results highlight the crucial role of oxidative stress and mitochondria during anaphylaxis and mast cell degranulation. New therapeutics against anaphylaxis should probably target oxidative stress and mitochondria, in order to decrease anaphylaxis-induced systemic and major organ deleterious effects. Full article
(This article belongs to the Special Issue Oxidative-Stress in Human Diseases—3rd Edition)
Show Figures

Figure 1

25 pages, 1856 KiB  
Review
Diagnosis of Chronic Granulomatous Disease: Strengths and Challenges in the Genomic Era
by Conor J. O’Donovan, Lay Teng Tan, Mohd A. Z. Abidin, Marion R. Roderick, Alexandros Grammatikos and Jolanta Bernatoniene
J. Clin. Med. 2024, 13(15), 4435; https://doi.org/10.3390/jcm13154435 - 29 Jul 2024
Viewed by 745
Abstract
Chronic granulomatous disease (CGD) is a group of rare primary inborn errors of immunity characterised by a defect in the phagocyte respiratory burst, which leads to severe and life-threatening infective and inflammatory complications. Despite recent advances in our understanding of the genetic and [...] Read more.
Chronic granulomatous disease (CGD) is a group of rare primary inborn errors of immunity characterised by a defect in the phagocyte respiratory burst, which leads to severe and life-threatening infective and inflammatory complications. Despite recent advances in our understanding of the genetic and molecular pathophysiology of X-linked and autosomal recessive CGD, and growth in the availability of functional and genetic testing, there remain significant barriers to early and accurate diagnosis. In the current review, we provide an up-to-date summary of CGD pathophysiology, underpinning current methods of diagnostic testing for CGD and closely related disorders. We present an overview of the benefits of early diagnosis and when to suspect and test for CGD. We discuss current and historical methods for functional testing of NADPH oxidase activity, as well as assays for measuring protein expression of NADPH oxidase subunits. Lastly, we focus on genetic and genomic methods employed to diagnose CGD, including gene-targeted panels, comprehensive genomic testing and ancillary methods. Throughout, we highlight general limitations of testing, and caveats specific to interpretation of results in the context of CGD and related disorders, and provide an outlook for newborn screening and the future. Full article
(This article belongs to the Special Issue Inborn Errors of Immunity: Advances in Diagnosis and Treatment)
Show Figures

Figure 1

15 pages, 3522 KiB  
Article
Syringaresinol Attenuates α-Melanocyte-Stimulating Hormone-Induced Reactive Oxygen Species Generation and Melanogenesis
by Kyuri Kim, Jihyun Yoon and Kyung-Min Lim
Antioxidants 2024, 13(7), 876; https://doi.org/10.3390/antiox13070876 - 21 Jul 2024
Viewed by 664
Abstract
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on [...] Read more.
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on the skin, but its potential impact on skin pigmentation has not been fully explored. Here, the antioxidant and anti-pigmentary activity of (+)-SYR were evaluated in B16F10 murine melanoma cells and in an artificial human pigmented skin model, Melanoderm™. A real-time PCR, Western blotting, immunofluorescence staining, and histochemistry staining were conducted to confirm the effects of (+)-SYR on pigmentation. (+)-SYR reduced melanogenesis and dendrite elongation in α-melanocyte-stimulating hormone (α-MSH)-primed B16F10 cells with low cytotoxicity. (+)-SYR suppressed the expression of melanogenic genes, namely tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). Notably, (+)-SYR attenuated α-MSH-induced cytosolic and mitochondrial reactive oxygen species (ROS) generation, which was attributable at least in part to the suppression of NADPH oxidase-4 (NOX 4) expression. Finally, the brightening activities of (+)-SYR were verified using Melanoderm™, underscoring the potential of ginseng berry and (+)-SYR as functional ingredients in skin-brightening cosmetics. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

30 pages, 5219 KiB  
Article
Apocynin Prevents Cigarette Smoke-Induced Anxiety-Like Behavior and Preserves Microglial Profiles in Male Mice
by Rana Alateeq, Alina Akhtar, Simone N. De Luca, Stanley M. H. Chan and Ross Vlahos
Antioxidants 2024, 13(7), 855; https://doi.org/10.3390/antiox13070855 - 16 Jul 2024
Cited by 1 | Viewed by 796
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may “spill-over” [...] Read more.
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may “spill-over” into the systemic circulation, driving the onset of these comorbidities. We investigated whether a prophylactic treatment with the NADPH Oxidase 2 (NOX2) inhibitor, apocynin, could prevent CS-induced neurocognitive impairments. Adult male BALB/c mice were exposed to CS (9 cigarettes/day, 5 days/week) or room air (sham) for 8 weeks with co-administration of apocynin (5 mg/kg, intraperitoneal injection once daily) or vehicle (0.01% DMSO in saline). Following 7 weeks of CS exposure, mice underwent behavioral testing to assess recognition and spatial memory (novel object recognition and Y maze, respectively) and anxiety-like behaviors (open field and elevated plus maze). Mice were then euthanized, and blood, lungs, and brains were collected. Apocynin partially improved CS-induced lung neutrophilia and reversed systemic inflammation (C-reactive protein) and oxidative stress (malondialdehyde). Apocynin exerted an anxiolytic effect in CS-exposed mice, which was associated with restored microglial profiles within the amygdala and hippocampus. Thus, targeting oxidative stress using apocynin can alleviate anxiety-like behaviors and could represent a novel strategy for managing COPD-related anxiety disorders. Full article
(This article belongs to the Special Issue Novel Antioxidant Mechanisms for Health and Diseases)
Show Figures

Figure 1

22 pages, 4559 KiB  
Article
Genetic Characterization and Chemical Identification of Moroccan Cannabis sativa (L.) Seeds: Extraction, and In Vitro and In Silico Biological Evaluation
by Amira Metouekel, Fadwa Badrana, Rabie Kachkoul, Mohamed Chebaibi, Mohamed Akhazzane, Abdelfattah El Moussaoui, Nadia Touil, Hamid El Amri, Elmostafa El Fahime, Saïd El Kazzouli and Nabil El Brahmi
Plants 2024, 13(14), 1938; https://doi.org/10.3390/plants13141938 - 15 Jul 2024
Cited by 1 | Viewed by 1009
Abstract
This study investigated the molecular, phytochemical, and biological aspects of ten local Moroccan traditional landrace Cannabis seeds. Genetic polymorphisms were analyzed using DNA barcode determination, revealing two distinct molecular profiles: “Cannabis, species sativa, subspecies indica” and “Cannabis, species [...] Read more.
This study investigated the molecular, phytochemical, and biological aspects of ten local Moroccan traditional landrace Cannabis seeds. Genetic polymorphisms were analyzed using DNA barcode determination, revealing two distinct molecular profiles: “Cannabis, species sativa, subspecies indica” and “Cannabis, species sativa, subspecies sativa”. Furthermore, a new sequence was identified by sequencing of the THCA synthase coding gene. Chemical profiling via HPLC-ESI-FULL-MS and GC-MS-MS of AMSD1 maceration extracts revealed 13 non-volatile chemicals, including 3 inactive cannabinoids and 3 polyphenols, and 24 intriguing volatile compounds, including 7 previously unreported in Cannabis seed extracts. Moreover, the in vitro/in silico analysis provision of biological activities through their antioxidant power, antimicrobial effect, and cytotoxicity potency, as well as antiviral activity, were realized. These results contribute to a thorough comprehension of Moroccan Cannabis seeds, illuminating their molecular, phytochemical, and biological features. Furthermore, they highlight the seeds as a potential source of nutritious components with antioxidant properties, offering valuable insights for future research. Full article
(This article belongs to the Special Issue Antibacterial and Antioxidant Activities of Medicinal Plant Extracts)
Show Figures

Figure 1

17 pages, 2548 KiB  
Review
MicroRNAs as Regulators of Radiation-Induced Oxidative Stress
by Branislav Kura, Patricia Pavelkova, Barbora Kalocayova, Margita Pobijakova and Jan Slezak
Curr. Issues Mol. Biol. 2024, 46(7), 7097-7113; https://doi.org/10.3390/cimb46070423 - 6 Jul 2024
Viewed by 920
Abstract
microRNAs (miRNAs) represent small RNA molecules involved in the regulation of gene expression. They are implicated in the regulation of diverse cellular processes ranging from cellular homeostasis to stress responses. Unintended irradiation of the cells and tissues, e.g., during medical uses, induces various [...] Read more.
microRNAs (miRNAs) represent small RNA molecules involved in the regulation of gene expression. They are implicated in the regulation of diverse cellular processes ranging from cellular homeostasis to stress responses. Unintended irradiation of the cells and tissues, e.g., during medical uses, induces various pathological conditions, including oxidative stress. miRNAs may regulate the expression of transcription factors (e.g., nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor suppressor protein p53) and other redox-sensitive genes (e.g., mitogen-activated protein kinase (MAPKs), sirtuins (SIRTs)), which trigger and modulate cellular redox signaling. During irradiation, miRNAs mainly act with reactive oxygen species (ROS) to regulate the cell fate. Depending on the pathway involved and the extent of oxidative stress, this may lead to cell survival or cell death. In the context of radiation-induced oxidative stress, miRNA-21 and miRNA-34a are among the best-studied miRNAs. miRNA-21 has been shown to directly target superoxide dismutase (SOD), or NF-κB, whereas miRNA-34a is a direct regulator of NADPH oxidase (NOX), SIRT1, or p53. Understanding the mechanisms underlying radiation-induced injury including the involvement of redox-responsive miRNAs may help to develop novel approaches for modulating the cellular response to radiation exposure. Full article
(This article belongs to the Special Issue Molecular Research on Free Radicals and Oxidative Stress)
Show Figures

Figure 1

28 pages, 6705 KiB  
Article
Unravelling the Phytochemical Composition and Antioxidant Potential of Different Parts of Rumex vesicarius L.: A RP-HPLC-MS-MS/MS, Chemometrics, and Molecular Docking-Based Comparative Study
by Sherouk Hussein Sweilam, Mohamed S. Abd El Hafeez, Mahmoud A. Mansour and Reham Hassan Mekky
Plants 2024, 13(13), 1815; https://doi.org/10.3390/plants13131815 - 1 Jul 2024
Viewed by 804
Abstract
Rumex vesicarius L. Polygonaceae is a wildly grown plant in Egypt, North Africa, and Asia with wide traditional uses. Several studies reported its biological activities and richness in phytochemicals. This research addresses a comprehensive metabolic profiling of the flowers, leaves, stems, and roots [...] Read more.
Rumex vesicarius L. Polygonaceae is a wildly grown plant in Egypt, North Africa, and Asia with wide traditional uses. Several studies reported its biological activities and richness in phytochemicals. This research addresses a comprehensive metabolic profiling of the flowers, leaves, stems, and roots via RP-HPLC-QTOF-MS and MS/MS with chemometrics. A total of 60 metabolites were observed and grouped into phenolic acids, flavonoids, phenols, terpenes, amino acids, fatty acids, organic acids, and sugars. Principal component analysis and hierarchal cluster analysis showed the segregation of different parts. Moreover, the antioxidant capacity was determined via several methods and agreed with the previous results. Additionally, an in silico approach of molecular docking of the predominant bioactive metabolites was employed against two antioxidant targets, NADPH oxidase and human peroxiredoxin 5 enzyme (PDB ID: 2CDU and 1HD2) receptors, alongside ADME predictions. The molecular modelling revealed that most of the approached molecules were specifically binding with the tested enzymes, achieving high binding affinities. The results confirmed that R. vesicarius stems and roots are rich sources of bioactive antioxidant components. To our knowledge, this is the first comprehensive metabolic profiling of R. vesicarius giving a prospect of its relevance in the development of new naturally based antioxidants. Full article
Show Figures

Figure 1

17 pages, 7284 KiB  
Article
Ultrasound-Mediated Lysozyme Microbubbles Targeting NOX4 Knockdown Alleviate Cisplatin-Exposed Cochlear Hair Cell Ototoxicity
by Yuan-Yung Lin, Ai-Ho Liao, Hsiang-Tzu Li, Peng-Yi Jiang, Yi-Chun Lin, Ho-Chiao Chuang, Kuo-Hsing Ma, Hang-Kang Chen, Yi-Tsen Liu, Cheng-Ping Shih and Chih-Hung Wang
Int. J. Mol. Sci. 2024, 25(13), 7096; https://doi.org/10.3390/ijms25137096 - 28 Jun 2024
Viewed by 890
Abstract
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in [...] Read more.
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications. Full article
Show Figures

Figure 1

Back to TopTop