Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Machupo virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1280 KiB  
Article
Glycoprotein-Specific Polyclonal Antibodies Targeting Machupo Virus Protect Guinea Pigs against Lethal Infection
by Joseph W. Golden, Steven A. Kwilas and Jay W. Hooper
Vaccines 2024, 12(6), 674; https://doi.org/10.3390/vaccines12060674 - 18 Jun 2024
Viewed by 1056
Abstract
Convalescent plasma has been shown to be effective at protecting humans against severe diseases caused by New World (NW) arenaviruses, including Junin virus (JUNV) and Machupo virus (MACV). This plasma contains antibodies against the full complement of structural proteins including the nucleocapsid and [...] Read more.
Convalescent plasma has been shown to be effective at protecting humans against severe diseases caused by New World (NW) arenaviruses, including Junin virus (JUNV) and Machupo virus (MACV). This plasma contains antibodies against the full complement of structural proteins including the nucleocapsid and envelope glycoproteins (GPcs) consisting of GP1 and GP2. To gain insights into the protective and cross-protective properties of anti-GPc-specific polyclonal antibodies, we evaluated the ability of a DNA vaccine-produced anti-GPc rabbit antisera targeting MACV strain Carvallo to provide heterologous protection against another MACV strain termed Chicava in the Hartley guinea pig model. The neutralizing activity of the rabbit antisera against the heterologous MACV strains Chicava and Mallale was found to be 54-fold and 23-fold lower, respectively, compared to the titer against the homologous MACV strain Carvallo in the PRNT50 assay. Despite lower neutralizing activity against the strain Chicava, the rabbit antisera protected 100% of the guinea pigs from this strain when administered up to four days post-infection, whereas all the control animals succumbed to the disease. Using vesicular stomatitis virus (VSV) particles pseudotyped with MACV GPc, we identified a single amino acid difference at position 122 between the strains Chicava and Carvallo GPc that significantly influenced the neutralization activity of the rabbit antisera. These findings indicate that polyclonal antibodies targeting the MACV glycoproteins can protect against lethal infection in a post-challenge setting. These data will help guide future antibody-based therapeutics development against NW arenaviruses. Full article
(This article belongs to the Special Issue Immunotherapy and Vaccine Development for Viral Diseases)
Show Figures

Figure 1

19 pages, 3158 KiB  
Article
Immunoinformatics Approach to Design Multi-Epitope-Based Vaccine against Machupo Virus Taking Viral Nucleocapsid as a Potential Candidate
by Muhammad Naveed, Syeda Izma Makhdoom, Urooj Ali, Khizra Jabeen, Tariq Aziz, Ayaz Ali Khan, Sumbal Jamil, Muhammad Shahzad, Metab Alharbi and Abdulrahman Alshammari
Vaccines 2022, 10(10), 1732; https://doi.org/10.3390/vaccines10101732 - 17 Oct 2022
Cited by 17 | Viewed by 2730
Abstract
The family members of Arenaviridae include members of the genus Machupo virus, which have bi-segmented negative sense RNA inside the envelope and can be transferred to humans through rodent carriers. Machupo virus, a member of the mammarenavirus genus, causes Bolivian hemorrhage fever, its [...] Read more.
The family members of Arenaviridae include members of the genus Machupo virus, which have bi-segmented negative sense RNA inside the envelope and can be transferred to humans through rodent carriers. Machupo virus, a member of the mammarenavirus genus, causes Bolivian hemorrhage fever, its viral nucleocapsid protein being a significant virulence factor. Currently, no treatment is available for Bolivian hemorrhage fever and work to develop a protective as well as post-diagnosis treatment is underway. Adding to these efforts, this study employed a reverse-vaccinology approach to design a vaccine with B and T-cell epitopes of the viral nucleocapsid protein of the Machupo virus. Five B-cell specific, eight MHC-I restricted, and 14 MHC-II restricted epitopes were finalized for the construct based on an antigenicity score of >0.5 and non-allergenicity as a key characteristic. The poly-histidine tag was used to construct an immunogenic and stable vaccine construct and 50S ribosomal 46 protein L7/L12 adjuvant with linkers (EAAAK, GPGPG, and AYY). It covers 99.99% of the world’s population, making it highly efficient. The physicochemical properties like the aliphatic index (118.31) and the GRAVY index (0.302) showed that the vaccine is easily soluble. The overall Ramachandran score of the construct was 90.7%, and the instability index was 35.13, endorsing a stable structure. The immune simulations demonstrated a long-lasting antibody response even after the excretion of the antigen from the body in the first 5 days of injection. The IgM + IgG titers were predicted to rise to 6000 10 days post-injection and were illustrated to be stable (around 3000) after a month, elucidating that the vaccine would be effective and provide enduring protection. Lastly, the molecular interaction between the construct and the IKBKE receptor was significant and a higher eigenfactor value in MD simulations confirmed the stable molecular interaction between the receptor and the vaccine, validating our construct. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

11 pages, 1689 KiB  
Article
The Protein Kinase Receptor Modulates the Innate Immune Response against Tacaribe Virus
by Hector Moreno and Stefan Kunz
Viruses 2021, 13(7), 1313; https://doi.org/10.3390/v13071313 - 7 Jul 2021
Cited by 6 | Viewed by 2495
Abstract
The New World (NW) mammarenavirus group includes several zoonotic highly pathogenic viruses, such as Junin (JUNV) or Machupo (MACV). Contrary to the Old World mammarenavirus group, these viruses are not able to completely suppress the innate immune response and trigger a robust interferon [...] Read more.
The New World (NW) mammarenavirus group includes several zoonotic highly pathogenic viruses, such as Junin (JUNV) or Machupo (MACV). Contrary to the Old World mammarenavirus group, these viruses are not able to completely suppress the innate immune response and trigger a robust interferon (IFN)-I response via retinoic acid-inducible gene I (RIG-I). Nevertheless, pathogenic NW mammarenaviruses trigger a weaker IFN response than their nonpathogenic relatives do. RIG-I activation leads to upregulation of a plethora of IFN-stimulated genes (ISGs), which exert a characteristic antiviral effect either as lone effectors, or resulting from the combination with other ISGs or cellular factors. The dsRNA sensor protein kinase receptor (PKR) is an ISG that plays a pivotal role in the control of the mammarenavirus infection. In addition to its well-known protein synthesis inhibition, PKR further modulates the overall IFN-I response against different viruses, including mammarenaviruses. For this study, we employed Tacaribe virus (TCRV), the closest relative of the human pathogenic JUNV. Our findings indicate that PKR does not only increase IFN-I expression against TCRV infection, but also affects the kinetic expression and the extent of induction of Mx1 and ISG15 at both levels, mRNA and protein expression. Moreover, TCRV fails to suppress the effect of activated PKR, resulting in the inhibition of a viral titer. Here, we provide original evidence of the specific immunomodulatory role of PKR over selected ISGs, altering the dynamic of the innate immune response course against TCRV. The mechanisms for innate immune evasion are key for the emergence and adaptation of human pathogenic arenaviruses, and highly pathogenic mammarenaviruses, such as JUNV or MACV, trigger a weaker IFN response than nonpathogenic mammarenaviruses. Within the innate immune response context, PKR plays an important role in sensing and restricting the infection of TCRV virus. Although the mechanism of PKR for protein synthesis inhibition is well described, its immunomodulatory role is less understood. Our present findings further characterize the innate immune response in the absence of PKR, unveiling the role of PKR in defining the ISG profile after viral infection. Moreover, TCRV fails to suppress activated PKR, resulting in viral progeny production inhibition. Full article
(This article belongs to the Special Issue In Memory of Stefan Kunz)
Show Figures

Figure 1

6 pages, 439 KiB  
Review
Elucidating the Pivotal Role of Convalescent Plasma Therapy in Critically Ill COVID-19 Patients: A Review
by Seidu A. Richard, Sylvanus Kampo and Maite Esquijarosa Hechavarria
Hematol. Rep. 2020, 12(3), 8630; https://doi.org/10.4081/hr.2020.8630 - 2 Dec 2020
Cited by 3 | Viewed by 814
Abstract
World Health Organization (WHO) declared coronavirus disease (COVID-19) a pandemic in March 2020. Currently almost every country in the world has reported cases with moderate to high mortality rates. The European Union (EU), the United States of America (USA) and the United Kingdom [...] Read more.
World Health Organization (WHO) declared coronavirus disease (COVID-19) a pandemic in March 2020. Currently almost every country in the world has reported cases with moderate to high mortality rates. The European Union (EU), the United States of America (USA) and the United Kingdom (UK) are the severely affected countries. Nevertheless, the WHO is very much concern about countries with weak health systems. The clinical characteristics of COVID-19 varies extensively, ranging from asymptomatic infections to severe as well as critical pneumonia with high mortality rates in the elderly and patients with co-morbid medical illness. Convalescent Plasma Therapy (CPT) has been successfully used in treating various viral disease outbreaks such as 1918 influenza pneumonia pandemic, poliomyelitis, measles, mumps, Machupo virus, Junin virus, Lassa virus, Ebola etc. High-titer specific antibodies maybe capable of binding to Coronavirus-19 (CoV-19) and neutralize the viral particles, inhibit entry to uninfected cells, and trigger potent effector mechanisms such as complement activation as well as phagocytosis. Therefore, in most countries with very weak health systems with no Intensive Care Units (ICUs) or trained ICU physicians, early initiation of CPT for severely COVID-19 patients may be rewarding. Therefore, solidarity control trials on CPT for COVID- 19 patients involving large number of patients are urgently needed. Full article
16 pages, 857 KiB  
Review
Differential Immune Responses to Hemorrhagic Fever-Causing Arenaviruses
by Emily Mantlo, Slobodan Paessler and Cheng Huang
Vaccines 2019, 7(4), 138; https://doi.org/10.3390/vaccines7040138 - 2 Oct 2019
Cited by 16 | Viewed by 4460
Abstract
The family Arenaviridae contains several pathogens of major clinical importance. The Old World (OW) arenavirus Lassa virus is endemic in West Africa and is estimated to cause up to 300,000 infections each year. The New World (NW) arenaviruses Junín and Machupo periodically cause [...] Read more.
The family Arenaviridae contains several pathogens of major clinical importance. The Old World (OW) arenavirus Lassa virus is endemic in West Africa and is estimated to cause up to 300,000 infections each year. The New World (NW) arenaviruses Junín and Machupo periodically cause hemorrhagic fever outbreaks in South America. While these arenaviruses are highly pathogenic in humans, recent evidence indicates that pathogenic OW and NW arenaviruses interact with the host immune system differently, which may have differential impacts on viral pathogenesis. Severe Lassa fever cases are characterized by profound immunosuppression. In contrast, pathogenic NW arenavirus infections are accompanied by elevated levels of Type I interferon and pro-inflammatory cytokines. This review aims to summarize recent findings about interactions of these pathogenic arenaviruses with the innate immune machinery and the subsequent effects on adaptive immunity, which may inform the development of vaccines and therapeutics against arenavirus infections. Full article
Show Figures

Figure 1

657 KiB  
Review
Human Hemorrhagic Fever Causing Arenaviruses: Molecular Mechanisms Contributing to Virus Virulence and Disease Pathogenesis
by Junjie Shao, Yuying Liang and Hinh Ly
Pathogens 2015, 4(2), 283-306; https://doi.org/10.3390/pathogens4020283 - 21 May 2015
Cited by 48 | Viewed by 10094
Abstract
Arenaviruses include multiple human pathogens ranging from the low-risk lymphocytic choriomeningitis virus (LCMV) to highly virulent hemorrhagic fever (HF) causing viruses such as Lassa (LASV), Junin (JUNV), Machupo (MACV), Lujo (LUJV), Sabia (SABV), Guanarito (GTOV), and Chapare (CHPV), for which there are limited [...] Read more.
Arenaviruses include multiple human pathogens ranging from the low-risk lymphocytic choriomeningitis virus (LCMV) to highly virulent hemorrhagic fever (HF) causing viruses such as Lassa (LASV), Junin (JUNV), Machupo (MACV), Lujo (LUJV), Sabia (SABV), Guanarito (GTOV), and Chapare (CHPV), for which there are limited preventative and therapeutic measures. Why some arenaviruses can cause virulent human infections while others cannot, even though they are isolated from the same rodent hosts, is an enigma. Recent studies have revealed several potential pathogenic mechanisms of arenaviruses, including factors that increase viral replication capacity and suppress host innate immunity, which leads to high viremia and generalized immune suppression as the hallmarks of severe and lethal arenaviral HF diseases. This review summarizes current knowledge of the roles of each of the four viral proteins and some known cellular factors in the pathogenesis of arenaviral HF as well as of some human primary cell-culture and animal models that lend themselves to studying arenavirus-induced HF disease pathogenesis. Knowledge gained from these studies can be applied towards the development of novel therapeutics and vaccines against these deadly human pathogens. Full article
Show Figures

Figure 1

416 KiB  
Review
Serological Assays Based on Recombinant Viral Proteins for the Diagnosis of Arenavirus Hemorrhagic Fevers
by Shuetsu Fukushi, Hideki Tani, Tomoki Yoshikawa, Masayuki Saijo and Shigeru Morikawa
Viruses 2012, 4(10), 2097-2114; https://doi.org/10.3390/v4102097 - 12 Oct 2012
Cited by 23 | Viewed by 9279
Abstract
The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW) and New World (NW) complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause [...] Read more.
The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW) and New World (NW) complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause viral hemorrhagic fever (VHF) in humans, leading to serious public health concerns. These viruses are also considered potential bioterrorism agents. Therefore, it is of great importance to detect these pathogens rapidly and specifically in order to minimize the risk and scale of arenavirus outbreaks. However, these arenaviruses are classified as BSL-4 pathogens, thus making it difficult to develop diagnostic techniques for these virus infections in institutes without BSL-4 facilities. To overcome these difficulties, antibody detection systems in the form of an enzyme-linked immunosorbent assay (ELISA) and an indirect immunofluorescence assay were developed using recombinant nucleoproteins (rNPs) derived from these viruses. Furthermore, several antigen-detection assays were developed. For example, novel monoclonal antibodies (mAbs) to the rNPs of Lassa and Junin viruses were generated. Sandwich antigen-capture (Ag-capture) ELISAs using these mAbs as capture antibodies were developed and confirmed to be sensitive and specific for detecting the respective arenavirus NPs. These rNP-based assays were proposed to be useful not only for an etiological diagnosis of VHFs, but also for seroepidemiological studies on VHFs. We recently developed arenavirus neutralization assays using vesicular stomatitis virus (VSV)-based pseudotypes bearing arenavirus recombinant glycoproteins. The goal of this article is to review the recent advances in developing laboratory diagnostic assays based on recombinant viral proteins for the diagnosis of VHFs and epidemiological studies on the VHFs caused by arenaviruses. Full article
(This article belongs to the Special Issue Arenaviruses)
Show Figures

Figure 1

698 KiB  
Review
The Curious Case of Arenavirus Entry, and Its Inhibition
by Jack H. Nunberg and Joanne York
Viruses 2012, 4(1), 83-101; https://doi.org/10.3390/v4010083 - 13 Jan 2012
Cited by 106 | Viewed by 11834
Abstract
Arenaviruses comprise a diverse family of enveloped negative-strand RNA viruses that are endemic to specific rodent hosts worldwide. Several arenaviruses cause severe hemorrhagic fevers in humans, including Junín and Machupo viruses in South America and Lassa fever virus in western Africa. Arenavirus entry [...] Read more.
Arenaviruses comprise a diverse family of enveloped negative-strand RNA viruses that are endemic to specific rodent hosts worldwide. Several arenaviruses cause severe hemorrhagic fevers in humans, including Junín and Machupo viruses in South America and Lassa fever virus in western Africa. Arenavirus entry into the host cell is mediated by the envelope glycoprotein complex, GPC. The virion is endocytosed on binding to a cell-surface receptor, and membrane fusion is initiated in response to physiological acidification of the endosome. As with other class I virus fusion proteins, GPC-mediated membrane fusion is promoted through a regulated sequence of conformational changes leading to formation of the classical postfusion trimer-of-hairpins structure. GPC is, however, unique among the class I fusion proteins in that the mature complex retains a stable signal peptide (SSP) as a third subunit, in addition to the canonical receptor-binding and fusion proteins. We will review the curious properties of the tripartite GPC complex and describe evidence that SSP interacts with the fusion subunit to modulate pH-induced activation of membrane fusion. This unusual solution to maintaining the metastable prefusion state of GPC on the virion and activating the class I fusion cascade at acidic pH provides novel targets for antiviral intervention. Full article
(This article belongs to the Special Issue Virus-Induced Membrane Fusion)
Show Figures

Graphical abstract

Back to TopTop