Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (416)

Search Parameters:
Keywords = MEFs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 808 KiB  
Review
Direct Cardiac Reprogramming in the Age of Computational Biology
by Rachelle Ambroise, Paige Takasugi, Jiandong Liu and Li Qian
J. Cardiovasc. Dev. Dis. 2024, 11(9), 273; https://doi.org/10.3390/jcdd11090273 - 4 Sep 2024
Viewed by 172
Abstract
Heart disease continues to be one of the most fatal conditions worldwide. This is in part due to the maladaptive remodeling process by which ischemic cardiac tissue is replaced with a fibrotic scar. Direct cardiac reprogramming presents a unique solution for restoring injured [...] Read more.
Heart disease continues to be one of the most fatal conditions worldwide. This is in part due to the maladaptive remodeling process by which ischemic cardiac tissue is replaced with a fibrotic scar. Direct cardiac reprogramming presents a unique solution for restoring injured cardiac tissue through the direct conversion of fibroblasts into induced cardiomyocytes, bypassing the transition through a pluripotent state. Since its inception in 2010, direct cardiac reprogramming using the transcription factors Gata4, Mef2c, and Tbx5 has revolutionized the field of cardiac regenerative medicine. Just over a decade later, the field has rapidly evolved through the expansion of identified molecular and genetic factors that can be used to optimize reprogramming efficiency. The integration of computational tools into the study of direct cardiac reprogramming has been critical to this progress. Advancements in transcriptomics, epigenetics, proteomics, genome editing, and machine learning have not only enhanced our understanding of the underlying mechanisms driving this cell fate transition, but have also driven innovations that push direct cardiac reprogramming closer to clinical application. This review article explores how these computational advancements have impacted and continue to shape the field of direct cardiac reprogramming. Full article
Show Figures

Figure 1

15 pages, 4417 KiB  
Article
Aerobic Exercise Protects against Cardiotoxin-Induced Skeletal Muscle Injury in a DDAH1-Dependent Manner
by Fei Feng, Kai Luo, Xinyi Yuan, Ting Lan, Siyu Wang, Xin Xu and Zhongbing Lu
Antioxidants 2024, 13(9), 1069; https://doi.org/10.3390/antiox13091069 - 1 Sep 2024
Viewed by 369
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme that regulates nitric oxide (NO) signaling through the degradation of asymmetric dimethylarginine (ADMA). Previous studies have revealed a link between the beneficial effects of aerobic exercise and the upregulation of DDAH1 in bones and hearts. [...] Read more.
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme that regulates nitric oxide (NO) signaling through the degradation of asymmetric dimethylarginine (ADMA). Previous studies have revealed a link between the beneficial effects of aerobic exercise and the upregulation of DDAH1 in bones and hearts. We previously reported that skeletal muscle DDAH1 plays a protective role in cardiotoxin (CTX)-induced skeletal muscle injury and regeneration. To determine the effects of aerobic exercise on CTX-induced skeletal muscle injury and the role of DDAH1 in this process, wild-type (WT) mice and skeletal muscle-specific Ddah1-knockout (Ddah1MKO) mice were subjected to swimming training for 8 weeks and then injected with CTX. In WT mice, swimming training for 8 weeks significantly promoted skeletal muscle regeneration and attenuated inflammation, oxidative stress, and apoptosis in the gastrocnemius (GA) muscle after CTX injection. These phenomena were associated with increases in the protein expression of PAX7, myogenin, MEF2A, eNOS, SOD2, and peroxiredoxin 5 and decreases in iNOS expression in GA muscles. Swimming training also decreased serum ADMA levels and increased serum nitrate/nitrite (NOx) levels and skeletal muscle DDAH1 expression. Interestingly, swimming training in Ddah1MKO mice had no obvious effect on CTX-induced skeletal muscle injury or regeneration and did not repress the CTX-induced inflammatory response, superoxide generation, or apoptosis. In summary, our data suggest that DDAH1 is important for the protective effect of aerobic exercise on skeletal muscle injury and regeneration. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

25 pages, 5696 KiB  
Article
Whole-Genome Omics Elucidates the Role of CCM1 and Progesterone in Cerebral Cavernous Malformations within CmPn Networks
by Jacob Croft, Brian Grajeda, Liyuan Gao, Johnathan Abou-Fadel, Ahmed Badr, Victor Sheng and Jun Zhang
Diagnostics 2024, 14(17), 1895; https://doi.org/10.3390/diagnostics14171895 - 28 Aug 2024
Viewed by 285
Abstract
Cerebral cavernous malformations (CCMs) are abnormal expansions of brain capillaries that increase the risk of hemorrhagic strokes, with CCM1 mutations responsible for about 50% of familial cases. The disorder can cause irreversible brain damage by compromising the blood–brain barrier (BBB), leading to fatal [...] Read more.
Cerebral cavernous malformations (CCMs) are abnormal expansions of brain capillaries that increase the risk of hemorrhagic strokes, with CCM1 mutations responsible for about 50% of familial cases. The disorder can cause irreversible brain damage by compromising the blood–brain barrier (BBB), leading to fatal brain hemorrhages. Studies show that progesterone and its derivatives significantly impact BBB integrity. The three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC), linking classic and non-classic progesterone signaling within the CmPn network, which is crucial for maintaining BBB integrity. This study aimed to explore the relationship between CCM1 and key pathways of the CmPn signaling network using three mouse embryonic fibroblast lines (MEFs) with distinct CCM1 expressions. Omics and systems biology analysis investigated CCM1-mediated signaling within the CmPn network. Our findings reveal that CCM1 is essential for regulating cellular processes within progesterone-mediated CmPn/CmP signaling, playing a crucial role in maintaining microvessel integrity. This regulation occurs partly through gene transcription control. The critical role of CCM1 in these processes suggests it could be a promising therapeutic target for CCMs. Full article
(This article belongs to the Special Issue Vascular Malformations: Diagnosis and Management)
Show Figures

Figure 1

18 pages, 6192 KiB  
Article
Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells
by Nora Montero-Martin, María D. Girón, José D. Vílchez and Rafael Salto
Int. J. Mol. Sci. 2024, 25(17), 9150; https://doi.org/10.3390/ijms25179150 - 23 Aug 2024
Viewed by 446
Abstract
Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse [...] Read more.
Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na2WO4 promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na2WO4 increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na2WO4 increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na2WO4 on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na2WO4 were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na2WO4. These findings support the role of Na2WO4 in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound. Full article
(This article belongs to the Special Issue Neuropharmacology and Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

19 pages, 4350 KiB  
Article
Characterization of Stealth Liposome-Based Nanoparticles Encapsulating the ACAT1/SOAT1 Inhibitor F26: Efficacy and Toxicity Studies In Vitro and in Wild-Type Mice
by Junghoon Lee, Adrianna L. De La Torre, Felix L. Rawlinson, Dylan B. Ness, Lionel D. Lewis, William F. Hickey, Catherine C. Y. Chang and Ta Yuan Chang
Int. J. Mol. Sci. 2024, 25(17), 9151; https://doi.org/10.3390/ijms25179151 - 23 Aug 2024
Viewed by 341
Abstract
Cholesterol homeostasis is pivotal for cellular function. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), also abbreviated as SOAT1, is an enzyme responsible for catalyzing the storage of excess cholesterol to cholesteryl esters. ACAT1 is an emerging target to treat diverse diseases including atherosclerosis, cancer, and [...] Read more.
Cholesterol homeostasis is pivotal for cellular function. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), also abbreviated as SOAT1, is an enzyme responsible for catalyzing the storage of excess cholesterol to cholesteryl esters. ACAT1 is an emerging target to treat diverse diseases including atherosclerosis, cancer, and neurodegenerative diseases. F12511 is a high-affinity ACAT1 inhibitor. Previously, we developed a stealth liposome-based nanoparticle to encapsulate F12511 to enhance its delivery to the brain and showed its efficacy in treating a mouse model for Alzheimer’s disease (AD). In this study, we introduce F26, a close derivative of F12511 metabolite in rats. F26 was encapsulated in the same DSPE-PEG2000/phosphatidylcholine (PC) liposome-based nanoparticle system. We employed various in vitro and in vivo methodologies to assess F26’s efficacy and toxicity compared to F12511. The results demonstrate that F26 is more effective and durable than F12511 in inhibiting ACAT1, in both mouse embryonic fibroblasts (MEFs), and in multiple mouse tissues including the brain tissues, without exhibiting any overt systemic or neurotoxic effects. This study demonstrates the superior pharmacokinetic and safety profile of F26 in wild-type mice, and suggests its therapeutic potential against various neurodegenerative diseases including AD. Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles)
Show Figures

Figure 1

23 pages, 12660 KiB  
Article
Optimizing Cardiomyocyte Differentiation: Comparative Analysis of Bone Marrow and Adipose-Derived Mesenchymal Stem Cells in Rats Using 5-Azacytidine and Low-Dose FGF and IGF Treatment
by Ahmed Farag, Sai Koung Ngeun, Masahiro Kaneda, Mohamed Aboubakr and Ryou Tanaka
Biomedicines 2024, 12(8), 1923; https://doi.org/10.3390/biomedicines12081923 - 22 Aug 2024
Viewed by 528
Abstract
Mesenchymal stem cells (MSCs) exhibit multipotency, self-renewal, and immune-modulatory properties, making them promising in regenerative medicine, particularly in cardiovascular treatments. However, optimizing the MSC source and induction method of cardiac differentiation is challenging. This study compares the cardiomyogenic potential of bone marrow (BM)-MSCs [...] Read more.
Mesenchymal stem cells (MSCs) exhibit multipotency, self-renewal, and immune-modulatory properties, making them promising in regenerative medicine, particularly in cardiovascular treatments. However, optimizing the MSC source and induction method of cardiac differentiation is challenging. This study compares the cardiomyogenic potential of bone marrow (BM)-MSCs and adipose-derived (AD)-MSCs using 5-Azacytidine (5-Aza) alone or combined with low doses of Fibroblast Growth Factor (FGF) and Insulin-like Growth Factor (IGF). BM-MSCs and AD-MSCs were differentiated using two protocols: 10 μmol 5-Aza alone and 10 μmol 5-Aza with 1 ng/mL FGF and 10 ng/mL IGF. Morphological, transcriptional, and translational analyses, along with cell viability assessments, were performed. Both the MSC types exhibited similar morphological changes; however, AD-MSCs achieved 70–80% confluence faster than BM-MSCs. Surface marker profiling confirmed CD29 and CD90 positivity and CD45 negativity. The differentiation protocols led to cell flattening and myotube formation, with earlier differentiation in AD-MSCs. The combined protocol reduced cell mortality in BM-MSCs and enhanced the expression of cardiac markers (MEF2c, Troponin I, GSK-3β), particularly in BM-MSCs. Immunofluorescence confirmed cardiac-specific protein expression in all the treated groups. Both MSC types exhibited the expression of cardiac-specific markers indicative of cardiomyogenic differentiation, with the combined treatment showing superior efficiency for BM-MSCs. Full article
(This article belongs to the Special Issue In Vitro Models of Cardiovascular Diseases and Toxicity)
Show Figures

Figure 1

15 pages, 2155 KiB  
Article
Microplastic and Nanoplastic Particle Isolation from Liquid and Biological Samples via Mini-Extruder Filtration (MEF)
by Abigail Hall, Luis F. Cardona Polo, Kennedy Helms, Alexei Christodoulides and Nathan J. Alves
Environments 2024, 11(8), 180; https://doi.org/10.3390/environments11080180 - 21 Aug 2024
Viewed by 503
Abstract
Microplastic pollution poses an increasing environmental and human health risk and additional techniques are needed to facilitate nondestructive, quantitative particle recovery and analysis. Using a mini-extruder filtration (MEF) device, the efficiency of pristine particle capture from solution and digested biological tissue (blood clots) [...] Read more.
Microplastic pollution poses an increasing environmental and human health risk and additional techniques are needed to facilitate nondestructive, quantitative particle recovery and analysis. Using a mini-extruder filtration (MEF) device, the efficiency of pristine particle capture from solution and digested biological tissue (blood clots) was assessed. Polystyrene particles in both the submicron (100, 300, and 500 nm) and micron range (2, 5, 7, and 10 µm) with aminated, carboxylated, or unmodified surface modifications were explored. The MEF-isolated-particle recovery was analyzed pre- and postseparation isolation and quantified via a Nanosight LM10 particle tracking system (submicron particles) or hemacytometer (micron particles). Particles’ surface chemistry and concentration did not impact recovery compared to unfiltered samples with smaller particle sizes reducing recovery efficiency. Micron particle size recovery averaged 86.8 ± 4.3% across all surface chemistries at the same concentration; however, submicron particle recoveries varied by size and charge with 500 nm exhibiting recoveries of 80.6 ± 16.6%, 300 nm 73.0 ± 10.4%, and 100 nm particles 17.0 ± 10.3%. The mini-extruder device, used as a filtration recovery system, efficiently captures 10 to 0.5 µm particles from environmental and tissue samples making it an effective and low-cost platform facilitating the nondestructive capture of diverse microplastics for subsequent analysis. Full article
(This article belongs to the Special Issue Deployment of Green Technologies for Sustainable Environment III)
Show Figures

Graphical abstract

15 pages, 2562 KiB  
Article
Sludge Recycling from Non-Lime Purification of Electrolysis Wastewater: Bridge from Contaminant Removal to Waste-Derived NOX SCR Catalyst
by Ju Gao, Fucheng Sun, Pei Liu, Jizhi Zhou and Yufeng Zhang
Catalysts 2024, 14(8), 535; https://doi.org/10.3390/catal14080535 - 17 Aug 2024
Viewed by 625
Abstract
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst [...] Read more.
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst developed from the sludge produced with Fe/C micro-electrolysis Fenton technology (MEF) in wastewater treatment was investigated, taking into account various sludge compositions, Fe/C ratios, and contaminant contents. It was found that, at about 300 °C, the NOX removal rate could reach 100% and there was a wide decomposition temperature zone. The effect of individual components of electroplating sludge, i.e., P, Fe and Ni, on NOX degradation performance of the obtained solids was investigated. It was found that the best effect was achieved when the Fe/P was 8/3 wt%, and variations in the Ni content had a limited effect on the NOX degradation performance. When the Fe/C was 1:2 and the Fe/C/P was 1:2:0.4, the electroplating sludge formed after treatment with Fe/C MEF provided the best NOX removal rate at 100%. Moreover, the characterization results show that the activated carbon was also involved in the catalytic reduction degradation of NOX. An excessive Fe content may cause agglomeration on the catalyst surface and thus affect the catalytic efficiency. The addition of P effectively reduces the catalytic reaction temperature, and the formation of phosphate promotes the generation of adsorbed oxygen, which in turn contributes to improvements in catalytic efficiency. Therefore, our work suggests that controlling the composition in the sludge is an efficient way to modulate SCR catalysis, providing a bridge from contaminant-bearing waste to efficient catalyst. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Figure 1

19 pages, 7673 KiB  
Article
Hypoxia-Induced Adaptations of Embryonic Fibroblasts: Implications for Developmental Processes
by Zeyu Li, Delong Han, Zhenchi Li and Lingjie Luo
Biology 2024, 13(8), 598; https://doi.org/10.3390/biology13080598 - 8 Aug 2024
Viewed by 603
Abstract
Animal embryonic development occurs under hypoxia, which can promote various developmental processes. Embryonic fibroblasts, which can differentiate into bone and cartilage and secrete various members of the collagen protein family, play essential roles in the formation of embryonic connective tissues and basement membranes. [...] Read more.
Animal embryonic development occurs under hypoxia, which can promote various developmental processes. Embryonic fibroblasts, which can differentiate into bone and cartilage and secrete various members of the collagen protein family, play essential roles in the formation of embryonic connective tissues and basement membranes. However, the adaptations of embryonic fibroblasts under hypoxia remain poorly understood. In this study, we investigated the effects of hypoxia on mouse embryonic fibroblasts (MEFs). We found that hypoxia can induce migration, promote metabolic reprogramming, induce the production of ROS and apoptosis, and trigger the activation of multiple signaling pathways of MEFs. Additionally, we identified several hypoxia-inducible genes, including Proser2, Bean1, Dpf1, Rnf128, and Fam71f1, which are regulated by HIF1α. Furthermore, we demonstrated that CoCl2 partially mimics the effects of low oxygen on MEFs. However, we found that the mechanisms underlying the production of ROS and apoptosis differ between hypoxia and CoCl2 treatment. These findings provide insights into the complex interplay between hypoxia, fibroblasts, and embryonic developmental processes. Full article
Show Figures

Figure 1

16 pages, 3191 KiB  
Article
Unveiling Resistance and Virulence Mechanisms under Darwinian Positive Selection for Novel Drug Discovery for Gardnerella vaginalis
by Eduarda Guimarães Sousa, Andrei Giacchetto Felice, Fabiana Vieira Dominici, Arun Kumar Jaiswal, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Lucas Gabriel Rodrigues Gomes, Vasco Ariston de Carvalho Azevedo and Siomar de Castro Soares
Venereology 2024, 3(3), 120-135; https://doi.org/10.3390/venereology3030010 - 1 Aug 2024
Viewed by 521
Abstract
Gardnerella vaginalis is a Gram-variable bacillus capable of causing bacterial vaginosis, a condition prevalent in reproductive-age women, this bacterium is present in almost 100% of cases and is also considered a gateway to various sexually transmitted infections. This organism exhibits high pathogenicity linked [...] Read more.
Gardnerella vaginalis is a Gram-variable bacillus capable of causing bacterial vaginosis, a condition prevalent in reproductive-age women, this bacterium is present in almost 100% of cases and is also considered a gateway to various sexually transmitted infections. This organism exhibits high pathogenicity linked to virulence and resistance genes acquired throughout evolution, showcasing elevated resistance to a broad spectrum of drug classes. This study conducted comparative genomic analyses to identify these genes and correlate their presence with positive Darwinian selection. Additionally, new drug targets were selected through docking and molecular modeling, guided by the heightened antimicrobial resistance exhibited by this microbial species. The available genomes of G. vaginalis were analyzed, and the orthologous genes were delineated and positively selected, whereby 29 groups were found. Of these genes, one of great importance was predicted, Mef(A), which is related to resistance to the macrolide group of antibiotics, which are one of the main choices for the treatment of sexually transmitted infections. Additionally, two potential protein candidates were selected as drug targets. These proteins were linked with a natural compound each and are considered good potential drug targets. The analyses in this study contribute to analyzing the evolution of the species and how resistance genes are related to their permanence as a potential pathogen. Full article
Show Figures

Graphical abstract

11 pages, 5423 KiB  
Article
An Epilepsy-Associated CILK1 Variant Compromises KATNIP Regulation and Impairs Primary Cilia and Hedgehog Signaling
by Ana Limerick, Ellie A. McCabe, Jacob S. Turner, Kevin W. Kuang, David L. Brautigan, Yi Hao, Cheuk Ying Chu, Sean H. Fu, Sean Ahmadi, Wenhao Xu and Zheng Fu
Cells 2024, 13(15), 1258; https://doi.org/10.3390/cells13151258 - 26 Jul 2024
Viewed by 739
Abstract
Mutations in human CILK1 (ciliogenesis associated kinase 1) are linked to ciliopathies and epilepsy. Homozygous point and nonsense mutations that extinguish kinase activity impair primary cilia function, whereas mutations outside the kinase domain are not well understood. Here, we produced a knock-in mouse [...] Read more.
Mutations in human CILK1 (ciliogenesis associated kinase 1) are linked to ciliopathies and epilepsy. Homozygous point and nonsense mutations that extinguish kinase activity impair primary cilia function, whereas mutations outside the kinase domain are not well understood. Here, we produced a knock-in mouse equivalent to the human CILK1 A615T variant identified in juvenile myoclonic epilepsy (JME). This residue is in the intrinsically disordered C-terminal region of CILK1 separate from the kinase domain. Mouse embryo fibroblasts (MEFs) with either heterozygous or homozygous A612T mutant alleles exhibited a higher ciliation rate, shorter individual cilia, and upregulation of ciliary Hedgehog signaling. Thus, a single A612T mutant allele was sufficient to impair primary cilia and ciliary signaling in MEFs. Gene expression profiles of wild-type versus mutant MEFs revealed profound changes in cilia-related molecular functions and biological processes. The CILK1 A615T mutant protein was not increased to the same level as the wild-type protein when co-expressed with scaffold protein KATNIP (katanin-interacting protein). Our data show that KATNIP regulation of a JME-associated single-residue variant of CILK1 is compromised, and this impairs the maintenance of primary cilia and Hedgehog signaling. Full article
(This article belongs to the Special Issue Primary Cilia in Health and Diseases)
Show Figures

Figure 1

13 pages, 2902 KiB  
Article
Effect of Stepwise Exposure to High-Level Erythromycin on Anaerobic Digestion
by Yanxiang Zhang, Chunxing Li, Xinyu Zhu and Irini Angelidaki
Molecules 2024, 29(15), 3489; https://doi.org/10.3390/molecules29153489 - 25 Jul 2024
Viewed by 612
Abstract
High-level erythromycin (ERY) fermentation wastewater will pose serious threats to lake environments. Anaerobic digestion (AD) has advantages in treating high-level antibiotic wastewater. However, the fate of antibiotic resistance genes (ARGs) and microbial communities in AD after stepwise exposure to high-level ERY remains unclear. [...] Read more.
High-level erythromycin (ERY) fermentation wastewater will pose serious threats to lake environments. Anaerobic digestion (AD) has advantages in treating high-level antibiotic wastewater. However, the fate of antibiotic resistance genes (ARGs) and microbial communities in AD after stepwise exposure to high-level ERY remains unclear. In this study, an AD reactor was first exposed to 0, 5, 10, 50, 100 and 200 mg/L ERY and then re-exposed to 0, 50, 200 and 500 mg/L ERY to investigate the effect of ERY on AD. The results show that AD could adapt to the presence of high-level ERY (500 mg/L) and could maintain efficient CH4 production after domestication with low-level ERY (50 mg/L). The AD process could achieve higher removal of ERY (>94%), regardless of the initial ERY concentration. ErmB and mefA, conferring resistance through target alteration and efflux pumps, respectively, were dominant in the AD process. The first exposure to ERY stimulated an increase in the total ARG abundance, while the AD process seemed to discourage ARG maintenance following re-exposure to ERY. ERY inhibited the process of acetoclastic methanogenesis, but strengthened the process of hydrogenotrophic methanogenesis. This work provides useful information for treating high-level ERY fermentation wastewater by the AD process. Full article
Show Figures

Figure 1

20 pages, 8754 KiB  
Article
Transcriptome Profiling of Mouse Embryonic Fibroblast Spontaneous Immortalization: A Comparative Analysis
by Jocshan Loaiza-Moss, Ursula Braun and Michael Leitges
Int. J. Mol. Sci. 2024, 25(15), 8116; https://doi.org/10.3390/ijms25158116 - 25 Jul 2024
Viewed by 560
Abstract
Cell immortalization, a hallmark of cancer development, is a process that cells can undergo on their path to carcinogenesis. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) have been used for decades; however, changes in the global transcriptome during this process have been poorly described. [...] Read more.
Cell immortalization, a hallmark of cancer development, is a process that cells can undergo on their path to carcinogenesis. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) have been used for decades; however, changes in the global transcriptome during this process have been poorly described. In our research, we characterized the poly-A RNA transcriptome changes after spontaneous immortalization. To this end, differentially expressed genes (DEGs) were screened using DESeq2 and characterized by gene ontology enrichment analysis and protein–protein interaction (PPI) network analysis to identify the potential hub genes. In our study, we identified changes in the expression of genes involved in proliferation regulation, cell adhesion, immune response and transcriptional regulation in immortalized MEFs. In addition, we performed a comparative analysis with previously reported MEF immortalization data, where we propose a predicted gene regulatory network model in immortalized MEFs based on the altered expression of Mapk11, Cdh1, Chl1, Zic1, Hoxd10 and the novel hub genes Il6 and Itgb2. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 1923 KiB  
Article
Effects of Substituting Tenebrio molitor and Elodea nuttallii as Feed on Growth, Flesh Quality and Intestinal Microbiota of Red Swamp Crayfish (Procambarus clarkii)
by Muyan Li, Weiwei Lv, Yifan Zhao, Weiwei Huang, Quan Yuan, Hang Yang, Aimin Wang, Wenzong Zhou and Mingyou Li
Foods 2024, 13(14), 2292; https://doi.org/10.3390/foods13142292 - 20 Jul 2024
Viewed by 703
Abstract
This study aimed to evaluate the impact of substituting a portion of feed with Tenebrio molitor (TM) and Elodea nuttallii (EN) on crayfish culture. A total of 270 crayfish (5.1 ± 0.4 g) were fed three different diet combinations (A: 100% feed; B: [...] Read more.
This study aimed to evaluate the impact of substituting a portion of feed with Tenebrio molitor (TM) and Elodea nuttallii (EN) on crayfish culture. A total of 270 crayfish (5.1 ± 0.4 g) were fed three different diet combinations (A: 100% feed; B: 80% feed + 10% TM + 10% EN; C: 75% feed + 15% TM + 10% EN) for 12 weeks. The findings demonstrated that group C had an important beneficial impact on the growth performance of crayfish. This was evidenced by a rise in digestive enzyme activity (trypsin, lipase, and cellulase) in the intestinal and hepatopancreas, as well as an upregulation in the expression of growth-related genes (ghsr, igfbp7, mhc, mlc1, mef2, and pax7) in the muscle. Furthermore, the assessment of the flesh quality of crayfish muscle in group C was conducted. The findings indicated a significant increase (p < 0.05) in the energy value (moisture, crude protein, and crude lipid) within the muscle. The levels of delicious amino acids (Glu, Ala, Ser, Gly, and Tyr) and polyunsaturated fatty acids (ARA, DHA) were enhanced, resulting in an improved nutritional profile and flavor of the muscle while maintaining the Σn-3/Σn-6 ratio. The remodeling of the intestinal microbiota (abundance of Proteobacteria and ratio of Firmicutes/Bacteroidota bacteria) also revealed improved growth performance. Additional research is necessary to ascertain whether excessive use of TM or EN feed substitution can have negative effects on crayfish culture. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

20 pages, 4235 KiB  
Article
PKR Mediates the Mitochondrial Unfolded Protein Response through Double-Stranded RNA Accumulation under Mitochondrial Stress
by Fedho Kusuma, Soyoung Park, Kim Anh Nguyen, Rosalie Elvira, Duckgue Lee and Jaeseok Han
Int. J. Mol. Sci. 2024, 25(14), 7738; https://doi.org/10.3390/ijms25147738 - 15 Jul 2024
Viewed by 723
Abstract
Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms [...] Read more.
Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms relaying mitochondrial stress signals to the nucleus in mammals remain poorly defined. Here, we explored the role of protein kinase R (PKR), an eIF2α kinase activated by double-stranded RNAs (dsRNAs), in mitochondrial stress signaling. We found that UPRMT does not occur in cells lacking PKR, indicating its crucial role in this process. Mechanistically, we observed that dsRNAs accumulate within mitochondria under stress conditions, along with unprocessed mitochondrial transcripts. Furthermore, we demonstrated that accumulated mitochondrial dsRNAs in mouse embryonic fibroblasts (MEFs) deficient in the Bax/Bak channels are not released into the cytosol and do not induce the UPRMT upon mitochondrial stress, suggesting a potential role of the Bax/Bak channels in mediating the mitochondrial stress response. These discoveries enhance our understanding of how cells maintain mitochondrial integrity, respond to mitochondrial dysfunction, and communicate stress signals to the nucleus through retrograde signaling. This knowledge provides valuable insights into prospective therapeutic targets for diseases associated with mitochondrial stress. Full article
Show Figures

Figure 1

Back to TopTop