Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = MCOLN1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4295 KiB  
Article
Activation of the TRPML1 Ion Channel Induces Proton Secretion in the Human Gastric Parietal Cell Line HGT-1
by Alina Ulrike Mueller, Gaby Andersen, Phil Richter and Veronika Somoza
Int. J. Mol. Sci. 2024, 25(16), 8829; https://doi.org/10.3390/ijms25168829 - 13 Aug 2024
Viewed by 1039
Abstract
The lysosomal Ca2+ channel TRPML1 was found to be responsible for gastric acid secretion in murine gastric parietal cells by inducing the trafficking of H+/K+-ATPase containing tubulovesicles to the apical membrane. Therefore, we hypothesized a similar role of [...] Read more.
The lysosomal Ca2+ channel TRPML1 was found to be responsible for gastric acid secretion in murine gastric parietal cells by inducing the trafficking of H+/K+-ATPase containing tubulovesicles to the apical membrane. Therefore, we hypothesized a similar role of TRPML1 in regulating proton secretion in the immortalized human parietal cell line HGT-1. The primary focus was to investigate the involvement of TRPML1 in proton secretion using the known synthetic agonists ML-SA1 and ML-SA5 and the antagonist ML-SI3 and, furthermore, to identify food-derived compounds that target the channel. Proton secretion stimulated by ML-SA1 was reduced by 122.2 ± 22.7% by the antagonist ML-SI3. The steroid hormone 17β-estradiol, present in animal-derived foods, diminished the proton secretory effect of ML-SA1 by 63.4 ± 14.5%. We also demonstrated a reduction in the proton secretory effects of ML-SA1 and ML-SA5 on TRPML1 knock-down cells. The food-derived compounds sulforaphane and trehalose promoted proton secretion in HGT-1 cells but may act independently of TRPML1. Also, histamine- and caffeine-induced proton secretion were affected by neither the TRPML1 antagonist ML-SI3 nor the TRPML1 knock-down. In summary, the results obtained suggest that the activation of TRPML1 promotes proton secretion in HGT-1 cells, but the channel may not participate in canonical signaling pathways. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Graphical abstract

16 pages, 4411 KiB  
Article
From Acid Alpha-Glucosidase Deficiency to Autophagy: Understanding the Bases of POMPE Disease
by Valentina Sánchez-Porras, Johana Maria Guevara-Morales and Olga Yaneth Echeverri-Peña
Int. J. Mol. Sci. 2023, 24(15), 12481; https://doi.org/10.3390/ijms241512481 - 5 Aug 2023
Cited by 1 | Viewed by 2353
Abstract
Pompe disease (PD) is caused by mutations in the GAA gene, which encodes the lysosomal enzyme acid alpha-glucosidase, causing lysosomal glycogen accumulation, mainly in muscular tissue. Autophagic buildup is considered the main factor affecting skeletal muscle, although other processes are also involved. Uncovering [...] Read more.
Pompe disease (PD) is caused by mutations in the GAA gene, which encodes the lysosomal enzyme acid alpha-glucosidase, causing lysosomal glycogen accumulation, mainly in muscular tissue. Autophagic buildup is considered the main factor affecting skeletal muscle, although other processes are also involved. Uncovering how these mechanisms are interconnected could be an approximation to address long-lasting concerns, like the differential skeletal and cardiac involvement in each clinical phenotype. In this sense, a network reconstruction based on a comprehensive literature review of evidence found in PD enriched with the STRING database and other scientific articles is presented. The role of autophagic lysosome reformation, PGC-1α, MCOLN1, calcineurin, and Keap1 as intermediates between the events involved in the pathologic cascade is discussed and contextualized within their relationship with mTORC1/AMPK. The intermediates and mechanisms found open the possibility of new hypotheses and questions that can be addressed in future experimental studies of PD. Full article
Show Figures

Graphical abstract

15 pages, 5736 KiB  
Article
TRP Family Genes Are Differently Expressed and Correlated with Immune Response in Glioma
by Chaoyou Fang, Houshi Xu, Yibo Liu, Chenkai Huang, Xiaoyu Wang, Zeyu Zhang, Yuanzhi Xu, Ling Yuan, Anke Zhang, Anwen Shao and Meiqing Lou
Brain Sci. 2022, 12(5), 662; https://doi.org/10.3390/brainsci12050662 - 19 May 2022
Cited by 3 | Viewed by 2551
Abstract
(1) Background: glioma is the most prevalent primary tumor of the human central nervous system and accompanies extremely poor prognosis in patients. The transient receptor potential (TRP) channels family consists of six different families, which are closely associated with cancer cell proliferation, differentiation, [...] Read more.
(1) Background: glioma is the most prevalent primary tumor of the human central nervous system and accompanies extremely poor prognosis in patients. The transient receptor potential (TRP) channels family consists of six different families, which are closely associated with cancer cell proliferation, differentiation, migration, and invasion. TRP family genes play an essential role in the development of tumors. Nevertheless, the function of these genes in gliomas is not fully understood. (2) Methods: we analyze the gene expression data of 28 TRP family genes in glioma patients through bioinformatic analysis. (3) Results: the study showed the aberrations of TRP family genes were correlated to prognosis in glioma. Then, we set enrichment analysis and selected 10 hub genes that may play an important role in glioma. Meanwhile, the expression of 10 hub genes was further established according to different grades, survival time, IDH mutation status, and 1p/19q codeletion status. We found that TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, MCOLN1, MCOLN2, and MCOLN3 were significantly correlated to the prognosis in glioma patients. Furthermore, we illustrated that the expression of hub genes was associated with immune activation and immunoregulators (immunoinhibitors, immunostimulators, and MHC molecules) in glioma. (4) Conclusions: we proved that TRP family genes are promising immunotherapeutic targets and potential clinical biomarkers in patients with glioma. Full article
Show Figures

Graphical abstract

13 pages, 3869 KiB  
Article
Sensory Ion Channel Candidates Inform on the Clinical Course of Pancreatic Cancer and Present Potential Targets for Repurposing of FDA-Approved Agents
by Wenjie Shi, Chen Li, Thomas Wartmann, Christoph Kahlert, Renfei Du, Aristotelis Perrakis, Thomas Brunner, Roland S. Croner and Ulf D. Kahlert
J. Pers. Med. 2022, 12(3), 478; https://doi.org/10.3390/jpm12030478 - 16 Mar 2022
Cited by 23 | Viewed by 4511
Abstract
Background: Transient receptor potential channels (TRPs) have been demonstrated to take on functions in pancreatic adenocarcinoma (PAAD) biology. However, little data are available that validate the potential of TRP in a clinical translational setting. Methods: A TRPs-related gene signature was constructed based on [...] Read more.
Background: Transient receptor potential channels (TRPs) have been demonstrated to take on functions in pancreatic adenocarcinoma (PAAD) biology. However, little data are available that validate the potential of TRP in a clinical translational setting. Methods: A TRPs-related gene signature was constructed based on the Cox regression using a TCGA-PAAD cohort and receiver operating characteristic (ROC) was used to evaluate the predictive ability of this model. Core genes of the signature were screened by a protein-to-protein interaction (PPI) network, and expression validated by two independent datasets. The mutation analysis and gene set enrichment analysis (GSEA) were conducted. Virtual interventions screening was performed to discover substance candidates for the identified target genes. Results: A four TRPs-related gene signature, which contained MCOLN1, PKD1, TRPC3, and TRPC7, was developed and the area under the curve (AUC) was 0.758. Kaplan–Meier analysis revealed that patients with elevated signature score classify as a high-risk group featuring significantly shorter recurrence free survival (RFS) time, compared to the low-risk patients (p < 0.001). The gene prediction model also had a good predictive capability for predicting shortened overall survival (OS) and disease-specific survival (DSS) (AUC = 0.680 and AUC = 0.739, respectively). GSEA enrichment revealed the core genes of the signature, TRPC3 and TRPC7, were involved in several cancer-related pathways. TRPC3 mRNA is elevated in cancer tissue compared to control tissue and augmented in tumors with lymph node invasion compared to tumors without signs of lymph node invasion. Virtual substance screening of FDA approved compounds indicates that four small molecular compounds might be potentially selective not only for TRPC3 protein but also as a potential binding partner to TRPC7 protein. Conclusions: Our computational pipeline constructed a four TRP-related gene signature that enables us to predict clinical prognostic value of hitherto unrecognized biomarkers for PAAD. Sensory ion channels TRPC3 and TRPC7 could be the potential therapeutic targets in pancreatic cancer and TRPC3 might be involved in dysregulating mitochondrial functions during PAAD genesis. Full article
(This article belongs to the Special Issue Frontiers in Pathogenesis and Therapeutics of Cancer)
Show Figures

Figure 1

14 pages, 4556 KiB  
Article
Peripheral Inflammatory Cytokine Signature Mirrors Motor Deficits in Mucolipidosis IV
by Albert L. Misko, Laura D. Weinstock, Sitara B. Sankar, Amanda Furness, Yulia Grishchuk and Levi B. Wood
Cited by 3 | Viewed by 2402
Abstract
Background: Mucolipidosis IV (MLIV) is an autosomal recessive pediatric disease that leads to motor and cognitive deficits and loss of vision. It is caused by a loss of function of the lysosomal channel transient receptor potential mucolipin-1 and is associated with an early [...] Read more.
Background: Mucolipidosis IV (MLIV) is an autosomal recessive pediatric disease that leads to motor and cognitive deficits and loss of vision. It is caused by a loss of function of the lysosomal channel transient receptor potential mucolipin-1 and is associated with an early pro-inflammatory brain phenotype, including increased cytokine expression. The goal of the current study was to determine whether blood cytokines are linked to motor dysfunction in patients with MLIV and reflect brain inflammatory changes observed in an MLIV mouse model. Methods: To determine the relationship between blood cytokines and motor function, we collected plasma from MLIV patients and parental controls concomitantly with assessment of motor function using the Brief Assessment of Motor Function and Modified Ashworth scales. We then compared these profiles with cytokine profiles in brain and plasma samples collected from the Mcoln1−/− mouse model of MLIV. Results: We found that MLIV patients had prominently increased cytokine levels compared to familial controls and identified profiles of cytokines correlated with motor dysfunction, including IFN-γ, IFN-α2, and IP-10. We found that IP-10 was a key differentiating factor separating MLIV cases from controls based on data from human plasma, mouse plasma, and mouse brain. Conclusions: Our data indicate that MLIV is characterized by increased blood cytokines, which are strongly related to underlying neurological and functional deficits in MLIV patients. Moreover, our data identify the interferon pro-inflammatory axis in both human and mouse signatures, suggesting that interferon signaling is an important aspect of MLIV pathology. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

9 pages, 1919 KiB  
Article
Mucolipidosis Type IV in Omani Families with a Novel MCOLN1 Mutation: Search for Evidence of Founder Effect
by Badriya Al-Alawi, Beena Harikrishna, Khalid Al-Thihli, Sana Al Zuhabi, Anuradha Ganesh, Zainab Al Hashami, Zeyana Al Dhamhmani, Razan Zadjali, Nafila B. Al Riyami and Fahad Zadjali
Genes 2022, 13(2), 248; https://doi.org/10.3390/genes13020248 - 28 Jan 2022
Cited by 3 | Viewed by 2386
Abstract
Mucolipidosis Type IV (MLIV) is caused by a deficiency of the mucolipin cation channel encoded by Mucolipin TRP Cation Channel 1 gene (MCOLN1). It is a slowly progressive neurodevelopmental and neurodegenerative disorder causing severe psychomotor developmental delay and progressive visual impairment, [...] Read more.
Mucolipidosis Type IV (MLIV) is caused by a deficiency of the mucolipin cation channel encoded by Mucolipin TRP Cation Channel 1 gene (MCOLN1). It is a slowly progressive neurodevelopmental and neurodegenerative disorder causing severe psychomotor developmental delay and progressive visual impairment, which is often misdiagnosed as cerebral palsy. We describe six patients with MLIV from two Omani families with a novel c.237+5G>A mutation in the MCOLN1 gene predicted to affect mRNA splicing. Mutation screening with a high-resolution melting (HRM) assay in a large population sample did not detect this mutation in control subjects. This report highlights the importance of considering MLIV in the differential diagnosis of patients in a pediatric age group with cerebral palsy-like presentation. Although the same rare mutation was seen in two apparently unrelated families, this was not seen in the sample screened from the general population. The HRM assay provides a cost-effective assay for population screening for the c.237+5G>A mutation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3281 KiB  
Article
Potential Combination Drug Therapy to Prevent Redox Stress and Mitophagy Dysregulation in Retinal Müller Cells under High Glucose Conditions: Implications for Diabetic Retinopathy
by Lalit Pukhrambam Singh and Takhellambam S. Devi
Diseases 2021, 9(4), 91; https://doi.org/10.3390/diseases9040091 - 14 Dec 2021
Cited by 11 | Viewed by 3930
Abstract
Chronic hyperglycemia-induced thioredoxin-interacting protein (TXNIP) expression, associated oxidative/nitrosative stress (ROS/RNS), and mitochondrial dysfunction play critical roles in the etiology of diabetic retinopathy (DR). However, there is no effective drug treatment to prevent or slow down the progression of DR. The purpose of this [...] Read more.
Chronic hyperglycemia-induced thioredoxin-interacting protein (TXNIP) expression, associated oxidative/nitrosative stress (ROS/RNS), and mitochondrial dysfunction play critical roles in the etiology of diabetic retinopathy (DR). However, there is no effective drug treatment to prevent or slow down the progression of DR. The purpose of this study is to examine if a combination drug treatment targeting TXNIP and the mitochondria-lysosome pathway prevents high glucose-induced mitochondrial stress and mitophagic flux in retinal Müller glial cells in culture, relevant to DR. We show that diabetes induces TXNIP expression, redox stress, and Müller glia activation (gliosis) in rat retinas when compared to non-diabetic rat retinas. Furthermore, high glucose (HG, 25 mM versus low glucose, LG 5.5 mM) also induces TXNIP expression and mitochondrial stress in a rat retinal Müller cell line, rMC1, in in vitro cultures. Additionally, we develop a mitochondria-targeted mCherry and EGFP probe tagged with two tandem COX8a mitochondrial target sequences (adenovirus-CMV-2×mt8a-CG) to examine mitophagic flux in rMC1. A triple drug combination treatment was applied using TXNIP-IN1 (which inhibits TXNIP interaction with thioredoxin), Mito-Tempo (mitochondrial anti-oxidant), and ML-SA1 (lysosome targeted activator of transient calcium channel MCOLN1/TRPML1 and of transcription factor TFEB) to study the mitochondrial–lysosomal axis dysregulation. We found that HG induces TXNIP expression, redox stress, and mitophagic flux in rMC1 versus LG. Treatment with the triple drug combination prevents mitophagic flux and restores transcription factor TFEB and PGC1α nuclear localization under HG, which is critical for lysosome biosynthesis and mitogenesis, respectively. Our results demonstrate that 2×mt8a-CG is a suitable probe for monitoring mitophagic flux, both in live and fixed cells in in vitro experiments, which may also be applicable to in vivo animal studies, and that the triple drug combination treatment has the potential for preventing retinal injury and disease progression in diabetes. Full article
Show Figures

Graphical abstract

9 pages, 821 KiB  
Review
Endolysosomal Cation Channels and MITF in Melanocytes and Melanoma
by Carla Abrahamian and Christian Grimm
Biomolecules 2021, 11(7), 1021; https://doi.org/10.3390/biom11071021 - 13 Jul 2021
Cited by 16 | Viewed by 4474
Abstract
Microphthalmia-associated transcription factor (MITF) is the principal transcription factor regulating pivotal processes in melanoma cell development, growth, survival, proliferation, differentiation and invasion. In recent years, convincing evidence has been provided attesting key roles of endolysosomal cation channels, specifically TPCs and TRPMLs, in cancer, [...] Read more.
Microphthalmia-associated transcription factor (MITF) is the principal transcription factor regulating pivotal processes in melanoma cell development, growth, survival, proliferation, differentiation and invasion. In recent years, convincing evidence has been provided attesting key roles of endolysosomal cation channels, specifically TPCs and TRPMLs, in cancer, including breast cancer, glioblastoma, bladder cancer, hepatocellular carcinoma and melanoma. In this review, we provide a gene expression profile of these channels in different types of cancers and decipher their roles, in particular the roles of two-pore channel 2 (TPC2) and TRPML1 in melanocytes and melanoma. We specifically discuss the signaling cascades regulating MITF and the relationship between endolysosomal cation channels, MAPK, canonical Wnt/GSK3 pathways and MITF. Full article
Show Figures

Figure 1

18 pages, 335 KiB  
Review
Neuropathophysiology, Genetic Profile, and Clinical Manifestation of Mucolipidosis IV—A Review and Case Series
by Aleksandra Jezela-Stanek, Elżbieta Ciara and Karolina M. Stepien
Int. J. Mol. Sci. 2020, 21(12), 4564; https://doi.org/10.3390/ijms21124564 - 26 Jun 2020
Cited by 14 | Viewed by 3934
Abstract
Mucolipidosis type IV (MLIV) is an ultra-rare lysosomal storage disorder caused by biallelic mutations in MCOLN1 gene encoding the transient receptor potential channel mucolipin-1. So far, 35 pathogenic or likely pathogenic MLIV-related variants have been described. Clinical manifestations include severe intellectual disability, speech [...] Read more.
Mucolipidosis type IV (MLIV) is an ultra-rare lysosomal storage disorder caused by biallelic mutations in MCOLN1 gene encoding the transient receptor potential channel mucolipin-1. So far, 35 pathogenic or likely pathogenic MLIV-related variants have been described. Clinical manifestations include severe intellectual disability, speech deficit, progressive visual impairment leading to blindness, and myopathy. The severity of the condition may vary, including less severe psychomotor delay and/or ocular findings. As no striking recognizable facial dysmorphism, skeletal anomalies, organomegaly, or lysosomal enzyme abnormalities in serum are common features of MLIV, the clinical diagnosis may be significantly improved because of characteristic ophthalmological anomalies. This review aims to outline the pathophysiology and genetic defects of this condition with a focus on the genotype–phenotype correlation amongst cases published in the literature. The authors will present their own clinical observations and long-term outcomes in adult MLIV cases. Full article
(This article belongs to the Special Issue Genetic and Metabolic Molecular Research of Lysosomal Storage Disease)
22 pages, 5567 KiB  
Article
Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene
by Owais M. Bhat, Xinxu Yuan, Sarah Camus, Fadi N. Salloum and Pin-Lan Li
Int. J. Mol. Sci. 2020, 21(5), 1713; https://doi.org/10.3390/ijms21051713 - 3 Mar 2020
Cited by 22 | Viewed by 4493
Abstract
Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to [...] Read more.
Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to investigate whether lysosomal expression of mucolipin-1, a product of the mouse Mcoln1 gene, contributes to lysosomal positioning and sEV secretion, thereby leading to arterial medial calcification (AMC) and stiffening. In Mcoln1−/− mice, we found that a high dose of vitamin D (Vit D; 500,000 IU/kg/day) resulted in increased AMC compared to their wild-type littermates, which was accompanied by significant downregulation of SM22-α and upregulation of RUNX2 and osteopontin in the arterial media, indicating a phenotypic switch to osteogenic. It was also shown that significantly decreased co-localization of lysosome marker (Lamp-1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1−/− mice as compared to their wild-type littermates. Besides, Mcoln1−/− mice showed significant increase in the expression of exosome/ sEV markers, CD63, and annexin-II (AnX2) in the arterial medial wall, accompanied by significantly reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), suggesting a reduction of the lysosome-MVB interactions. In the plasma of Mcoln1−/− mice, the number of sEVs significantly increased as compared to the wild-type littermates. Functionally, pulse wave velocity (PWV), an arterial stiffening indicator, was found significantly increased in Mcoln1−/− mice, and Vit D treatment further enhanced such stiffening. All these data indicate that the Mcoln1 gene deletion in mice leads to abnormal lysosome positioning and increased sEV secretion, which may contribute to the arterial stiffness during the development of AMC. Full article
Show Figures

Figure 1

17 pages, 4597 KiB  
Article
Effects of Fat and Fatty Acids on the Formation of Autolysosomes in the Livers from Yellow Catfish Pelteobagrus Fulvidraco
by Li-Xiang Wu, Chuan-Chuan Wei, Shui-Bo Yang, Tao Zhao and Zhi Luo
Genes 2019, 10(10), 751; https://doi.org/10.3390/genes10100751 - 25 Sep 2019
Cited by 12 | Viewed by 3405
Abstract
The autophagy-lysosome pathway, which involves many crucial genes and proteins, plays crucial roles in the maintenance of intracellular homeostasis by the degradation of damaged components. At present, some of these genes and proteins have been identified but their specific functions are largely unknown. [...] Read more.
The autophagy-lysosome pathway, which involves many crucial genes and proteins, plays crucial roles in the maintenance of intracellular homeostasis by the degradation of damaged components. At present, some of these genes and proteins have been identified but their specific functions are largely unknown. This study was performed to clone and characterize the full-length cDNA sequences of nine key autolysosome-related genes (vps11, vps16, vps18, vps33b, vps41, lamp1, mcoln1, ctsd1 and tfeb) from yellow catfish Pelteobagrus fulvidraco. The expression of these genes and the transcriptional responses to a high-fat diet and fatty acids (FAs) (palmitic acid (PA) and oleic acid (OA)) were investigated. The mRNAs of these genes could be detected in heart, liver, muscle, spleen, brain, mesenteric adipose tissue, intestine, kidney and ovary, but varied with the tissues. In the liver, the mRNA levels of the nine autolysosome-related genes were lower in fish fed a high-fat diet than those fed the control, indicating that a high-fat diet inhibited formation of autolysosomes. Palmitic acid (a saturated FA) significantly inhibited the formation of autolysosomes at 12 h, 24 h and 48 h incubation. In contrast, oleic acid (an unsaturated FA) significantly induced the formation of autolysosomes at 12 h, but inhibited them at 24 h. At 48 h, the effects of OA incubation on autolysosomes were OA concentration-dependent in primary hepatocytes of P. fulvidraco. The results of flow cytometry and laser confocal observations confirmed these results. PA and OA incubation also increased intracellular non-esterified fatty acid (NEFA) concentration at 12 h, 24 h and 48 h, and influenced mRNA levels of fatty acid binding protein (fabp) and fatty acid transport protein 4 (fatp4) which facilitate FA transport in primary hepatocytes of P. fulvidraco. The present study demonstrated the molecular characterization of the nine autolysosome-related genes and their transcriptional responses to fat and FAs in fish, which provides the basis for further exploring their regulatory mechanism in vertebrates. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Graphical abstract

18 pages, 12978 KiB  
Article
New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture—Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicles
by Magdalena Kulus, Patrycja Sujka-Kordowska, Aneta Konwerska, Piotr Celichowski, Wiesława Kranc, Jakub Kulus, Hanna Piotrowska-Kempisty, Paweł Antosik, Dorota Bukowska, Dariusz Iżycki, Małgorzata Bruska, Maciej Zabel, Michał Nowicki and Bartosz Kempisty
Int. J. Mol. Sci. 2019, 20(16), 3966; https://doi.org/10.3390/ijms20163966 - 15 Aug 2019
Cited by 17 | Viewed by 4900
Abstract
Nowadays, science has a lot of knowledge about the physiology of ovarian processes, especially folliculogenesis, hormone production and ovulation. However, the molecular basis for these processes remains largely undiscovered. The cell layer surrounding the growing oocyte—granulosa cells—are characterized by high physiological capabilities (e.g., [...] Read more.
Nowadays, science has a lot of knowledge about the physiology of ovarian processes, especially folliculogenesis, hormone production and ovulation. However, the molecular basis for these processes remains largely undiscovered. The cell layer surrounding the growing oocyte—granulosa cells—are characterized by high physiological capabilities (e.g., proliferation, differentiation) and potential for growth in primary cultures, which predisposes them for analysis in the context of possible application of their cultures in advanced methods of assisted reproduction. In this study, we have used standard molecular approaches to analyze markers of these processes in primarily in vitro cultured porcine granulosa, subjected to conditions usually applied to cultures of similar cells. The material for our research came from commercially slaughtered pigs. The cells were obtained by enzymatic digestion of tissues and in vitro culture in appropriate conditions. The obtained genetic material (RNA) was collected at specific time intervals (0 h—before culture; reference, 48, 98, 144 h) and then analyzed using expression microarrays. Genes that showed a fold change greater than |2| and an adjusted p value lower than 0.05 were described as differentially expressed. Three groups of genes: “Cell morphogenesis”, “cell differentiation” and “cell development” were analyzed. From 265 differently expressed genes that belong to chosen ontology groups we have selected DAPL1, CXCL10, NEBL, IHH, TGFBR3, SCUBE1, DAB1, ITM2A, MCOLN3, IGF1 which are most downregulated and PDPN, CAV1, TMOD1, TAGLN, IGFBP5, ITGB3, LAMB1, FN1, ITGA2, POSTN genes whose expression is upregulated through the time of culture, on which we focused in downstream analysis. The results were also validated using RT-qPCR. The aim of our work was to conduct primary in vitro culture of granulosa cells, as well as to analyze the expression of gene groups in relation to the proliferation of follicular granulosa cells in the model of primary culture in real time. This knowledge should provide us with a molecular insight into the processes occurring during the in vitro cultures of porcine granulosa cells, serving as a basic molecular entry on the extent of the loss of their physiological properties, as well as gain of new, culture-specific traits. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

8 pages, 764 KiB  
Review
Endolysosomal Cation Channels and Cancer—A Link with Great Potential
by Christian Grimm, Karin Bartel, Angelika M. Vollmar and Martin Biel
Pharmaceuticals 2018, 11(1), 4; https://doi.org/10.3390/ph11010004 - 5 Jan 2018
Cited by 48 | Viewed by 7474
Abstract
The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell [...] Read more.
The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells. Full article
Show Figures

Graphical abstract

Back to TopTop