Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,738)

Search Parameters:
Keywords = JAK1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 12757 KiB  
Review
Biological Evaluations and Computer-Aided Approaches of Janus Kinases 2 and 3 Inhibitors for Cancer Treatment: A Review
by Lenci K. Vázquez-Jiménez, Gildardo Rivera, Alfredo Juárez-Saldivar, Jessica L. Ortega-Balleza, Eyra Ortiz-Pérez, Elena Jaime-Sánchez, Alma Paz-González and Edgar E. Lara-Ramírez
Pharmaceutics 2024, 16(9), 1165; https://doi.org/10.3390/pharmaceutics16091165 (registering DOI) - 4 Sep 2024
Viewed by 196
Abstract
Cancer remains one of the leading diseases of mortality worldwide. Janus kinases 2/3 (JAK2/3) have been considered a drug target for the development of drugs to treat different types of cancer. JAK2/3 play a critical role in innate immunity, inflammation, and hematopoiesis by [...] Read more.
Cancer remains one of the leading diseases of mortality worldwide. Janus kinases 2/3 (JAK2/3) have been considered a drug target for the development of drugs to treat different types of cancer. JAK2/3 play a critical role in innate immunity, inflammation, and hematopoiesis by mediating the signaling of numerous cytokines, growth factors, and interferons. The current focus is to develop new selective inhibitors for each JAK type. In this review, the current strategies of computer-aided studies, and biological evaluations against JAK2/3 are addressed. We found that the new synthesized JAK2/3 inhibitors are prone to containing heterocyclic aromatic rings such as pyrimidine, pyridine, and pyrazolo [3,4-d]pyrimidine. Moreover, inhibitors of natural origin derived from plant extracts and insects have shown suitable inhibitory capacities. Computer-assisted studies have shown the important features of inhibitors for JAK2/3 binding. Biological evaluations showed that the inhibition of the JAK receptor affects its related signaling pathway. Although the reviewed compounds showed good inhibitory capacity in vitro and in vivo, more in-depth studies are needed to advance toward full approval of cancer treatments in humans. Full article
(This article belongs to the Special Issue Promising Small Molecule Compounds in Cancer Treatment)
Show Figures

Figure 1

13 pages, 20477 KiB  
Review
Vitiligo: From Pathogenesis to Treatment
by Reinhart Speeckaert, Elise Van Caelenberg, Arno Belpaire, Marijn M. Speeckaert and Nanja van Geel
J. Clin. Med. 2024, 13(17), 5225; https://doi.org/10.3390/jcm13175225 - 3 Sep 2024
Viewed by 189
Abstract
Recent advances in vitiligo have provided promising treatment options, particularly through understanding the immune-mediated mechanisms leading to depigmentation. The inflammatory components in both vitiligo (non-segmental) and segmental vitiligo have similarities. Both are believed to result from an immune-based destruction of melanocytes by anti-melanocyte-specific [...] Read more.
Recent advances in vitiligo have provided promising treatment options, particularly through understanding the immune-mediated mechanisms leading to depigmentation. The inflammatory components in both vitiligo (non-segmental) and segmental vitiligo have similarities. Both are believed to result from an immune-based destruction of melanocytes by anti-melanocyte-specific cytotoxic T cells. The JAK-STAT pathway is activated with IFN-γ as the crucial cytokine and Th1-associated chemokines such as CXCL9 and CXCL10 recruit immune cells towards vitiligo skin. Nonetheless, clear differences are also present, such as the localized nature of segmental vitiligo, likely due to somatic mosaicism and increased presence of poliosis. The differing prevalence of poliosis suggests that the follicular immune privilege, which is known to involve immune checkpoints, may be more important in vitiligo (non-segmental). Immunomodulatory therapies, especially those targeting the JAK-IFNγ pathway, are currently at the forefront, offering effective inhibition of melanocyte destruction by cytotoxic T cells. Although Janus Kinase (JAK) inhibitors demonstrate high repigmentation rates, optimal results can take several months to years. The influence of environmental UV exposure on repigmentation in patients receiving immunomodulating drugs remains largely underexplored. Nonetheless, the combined effect of phototherapy with JAK inhibitors is impressive and suggests a targeted immune-based treatment may still require additional stimulation of melanocytes for repigmentation. Identifying alternative melanocyte stimulants beyond UV light remains crucial for the future management of vitiligo. Full article
Show Figures

Figure 1

2 pages, 509 KiB  
Correction
Correction: Li et al. Selenomethionine Inhibited HADV-Induced Apoptosis Mediated by ROS through the JAK-STAT3 Signaling Pathway. Nutrients 2024, 16, 1966
by Chuqing Li, Xia Liu, Jiali Li, Jia Lai, Jingyao Su, Bing Zhu, Buyun Gao, Yinghua Li and Mingqi Zhao
Nutrients 2024, 16(17), 2969; https://doi.org/10.3390/nu16172969 - 3 Sep 2024
Viewed by 117
Abstract
In the original publication [...] Full article
(This article belongs to the Section Nutrition and Metabolism)
31 pages, 17779 KiB  
Article
Sedative-Hypnotic Effect and Mechanism of Carbon Nanofiber Loaded with Essential Oils of Ligusticum chuanxiong (Ligusticum chuanxiong Hort.) and Finger Citron (Citrus medica L. var. sarcodactylis) on Mice Models of Insomnia
by Yue Hu, Xiaofang He, Yuanyuan Wu, Wenjie Zhang, Huiyi Feng, Haolin Liu, Qianqian Wu, Leying Gao, Yu Long, Xiaoqiu Li, Jie Deng, Yin Ma and Nan Li
Biomolecules 2024, 14(9), 1102; https://doi.org/10.3390/biom14091102 - 2 Sep 2024
Viewed by 343
Abstract
(1) Background: Insomnia is a neurological illness that poses a significant threat to both physical and mental health. It results in the activation of neuroglial cells, heightened neuroinflammation, oxidative stress, and disruptions in the Hypothalamic–Pituitary–Adrenal (HPA) axis. Ligusticum Chuanxiong (CX) and Finger citron [...] Read more.
(1) Background: Insomnia is a neurological illness that poses a significant threat to both physical and mental health. It results in the activation of neuroglial cells, heightened neuroinflammation, oxidative stress, and disruptions in the Hypothalamic–Pituitary–Adrenal (HPA) axis. Ligusticum Chuanxiong (CX) and Finger citron (FC) are frequently utilized botanicals for addressing sleeplessness. Both herbs possess notable anti-inflammatory properties in their volatile oils. However, their effectiveness is hindered by the nasal mucosal irritation and instability they exhibit. (2) Methods: This study involved the preparation of a nanofiber composite system using carbon nanofiber (CNF) suspensions containing essential oils of Ligusticum chuanxiong–Finger citron (CXEO-FCEO-CNF). The effects and mechanisms of these essential oils in improving insomnia were investigated using an insomnia mouse model after encapsulation. (3) Results: The CXEO-FCEO-CNF had an average particle size of 103.19 ± 1.64 nm. The encapsulation rates of essential oils of Ligusticum chuanxiong (CXEO) and essential oils of Finger citron (FCEO) were 44.50% and 46.15%, respectively. This resulted in a considerable improvement in the stability of the essential oils over a period of 30 days. The essential oils effectively decreased the irritation of the nasal mucosa following encapsulation. Furthermore, CXEO-FCEO-CNF enhanced voluntary activity and sleep in mice with insomnia, notably boosted the activity of superoxide dismutase (SOD), reduced the concentration of lipoxidized malondialdehyde (MDA), decreased the levels of hormones associated with the HPA axis, and regulated the levels of neurotransmitters, resulting in a beneficial therapeutic outcome. CXEO-FCEO-CNF contains a total of 23 active ingredients, such as alpha-Asarone, (E)-methyl isoeugenol, and Senkyunolide. These ingredients primarily work by modulating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling system to decrease oxidative stress and inflammatory reactions. (4) Conclusions: This study presented initial evidence that the combination of CXEO and FCEO in nanofiber formulations effectively reduces the nasal mucosal irritation and instability of essential oils. Furthermore, it demonstrated the potential anti-neuroinflammatory and therapeutic effects of these formulations in treating insomnia. Overall, this study provides a theoretical foundation for developing new essential oil formulations derived from herbs. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 3285 KiB  
Article
Development of a Formulation and In Vitro Evaluation of a Pulmonary Drug Delivery System for a Novel Janus Kinase (JAK) Inhibitor, CPL409116
by Aleksandra Rzewińska, Jakub Szlęk, Damian Dąbrowski, Ewelina Juszczyk, Katarzyna Mróz, Heikki Räikkönen, Mia Siven, Maciej Wieczorek and Przemysław Dorożyński
Pharmaceutics 2024, 16(9), 1157; https://doi.org/10.3390/pharmaceutics16091157 - 31 Aug 2024
Viewed by 389
Abstract
The pursuit of targeted therapies for cytokine-dependent diseases has led to the discovery of Janus kinase (JAK) inhibitors, a promising class of drugs. Among them, CPL409116, a selective dual JAK and rho-associated protein kinase inhibitor (ROCK), has demonstrated potential for treating conditions such [...] Read more.
The pursuit of targeted therapies for cytokine-dependent diseases has led to the discovery of Janus kinase (JAK) inhibitors, a promising class of drugs. Among them, CPL409116, a selective dual JAK and rho-associated protein kinase inhibitor (ROCK), has demonstrated potential for treating conditions such as pulmonary fibrosis exacerbated by the COVID-19 pandemic. This study investigated the feasibility of delivering CPL409116 via inhalation, with the aim of minimizing the systemic adverse effects associated with oral administration. Two micronization methods, jet milling and spray drying, were assessed for CPL409116, with spray drying chosen for its ability to produce an amorphous form of the compound. Moreover, parameters such as the mixing energy, drug load, and force control agent significantly influenced the fine particle fraction (FPF), a critical parameter for pulmonary drug delivery. This study provides insights into optimizing the formulation parameters to enhance the delivery efficiency of CPL409116 to the lungs, offering potential for improved therapeutic outcomes in cytokine-dependent pulmonary diseases. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Respiratory Diseases)
Show Figures

Figure 1

16 pages, 9707 KiB  
Article
Increased Expression of the Neuropeptides PACAP/VIP in the Brain of Mice with CNS Targeted Production of IL-6 Is Mediated in Part by Trans-Signalling
by Alessandro Castorina, Jurgen Scheller, Kevin A. Keay, Rubina Marzagalli, Stefan Rose-John and Iain L. Campbell
Int. J. Mol. Sci. 2024, 25(17), 9453; https://doi.org/10.3390/ijms25179453 - 30 Aug 2024
Viewed by 194
Abstract
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective [...] Read more.
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences. Full article
(This article belongs to the Special Issue New Mechanisms and Therapeutics in Neurological Diseases 3.0)
Show Figures

Graphical abstract

21 pages, 1419 KiB  
Review
Macrophages and Gut Barrier Function: Guardians of Gastrointestinal Health in Post-Inflammatory and Post-Infection Responses
by Edward Xiangtai Meng, George Nicholas Verne and Qiqi Zhou
Int. J. Mol. Sci. 2024, 25(17), 9422; https://doi.org/10.3390/ijms25179422 - 30 Aug 2024
Viewed by 312
Abstract
The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights [...] Read more.
The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights into maintaining and restoring gastrointestinal (GI) health. This review explores the essential role of macrophages in maintaining the gut barrier function and their contribution to post-inflammatory and post-infectious responses in the gut. Macrophages significantly contribute to gut barrier integrity through epithelial repair, immune modulation, and interactions with gut microbiota. They demonstrate active plasticity by switching phenotypes to resolve inflammation, facilitate tissue repair, and regulate microbial populations following an infection or inflammation. In addition, tissue-resident (M2) and infiltration (M1) macrophages convert to each other in gut problems such as IBS and IBD via major signaling pathways mediated by NF-κB, JAK/STAT, PI3K/AKT, MAPK, Toll-like receptors, and specific microRNAs such as miR-155, miR-29, miR-146a, and miR-199, which may be good targets for new therapeutic approaches. Future research should focus on elucidating the detailed molecular mechanisms and developing personalized therapeutic approaches to fully harness the potential of macrophages to maintain and restore intestinal permeability and gut health. Full article
(This article belongs to the Collection Feature Papers in Molecular Immunology)
Show Figures

Figure 1

20 pages, 2558 KiB  
Article
HSV-2 Manipulates Autophagy through Interferon Pathway: A Strategy for Viral Survival
by Debashree Dass, Anwesha Banerjee, Kishore Dhotre, Vaishnavi Sonawane, Ashwini More and Anupam Mukherjee
Viruses 2024, 16(9), 1383; https://doi.org/10.3390/v16091383 - 29 Aug 2024
Viewed by 284
Abstract
Autophagy, an evolutionarily conserved cellular process, influences the regulation of viral infections. While the existing understanding indicates that Herpes Simplex Virus type 2 (HSV-2) maintains a basal level of autophagy to support its viral yield, the precise pathways governing the induction of autophagy [...] Read more.
Autophagy, an evolutionarily conserved cellular process, influences the regulation of viral infections. While the existing understanding indicates that Herpes Simplex Virus type 2 (HSV-2) maintains a basal level of autophagy to support its viral yield, the precise pathways governing the induction of autophagy during HSV-2 infection remain unknown. Therefore, this study aims to explore the role of type I interferons (IFN-I) in modulating autophagy during HSV-2 infection and to decode the associated signaling pathways. Our findings revealed an interplay wherein IFN-I regulates the autophagic response during HSV-2 infection. Additionally, we investigated the cellular pathways modulated during this complex process. Exploring the intricate network of signaling events involved in autophagy induction during HSV-2 infection holds promising therapeutic implications. Identifying these pathways advances our understanding of host–virus interactions and holds the foundation for developing targeted therapeutic strategies against HSV-2. The insight gained from this study provides a platform for exploring potential therapeutic targets to restrict HSV-2 infections, addressing a crucial need in antiviral research. Full article
(This article belongs to the Special Issue Host Cell-Virus Interaction, 3rd Edition)
Show Figures

Figure 1

12 pages, 1560 KiB  
Article
Diagnostic Performance of Serum Erythropoietin to Discriminate Polycythemia Vera from Secondary Erythrocytosis through Established Subnormal Limits
by Ji Sang Yoon, Hyunhye Kang, Dong Wook Jekarl, Sung-Eun Lee and Eun-Jee Oh
Diagnostics 2024, 14(17), 1902; https://doi.org/10.3390/diagnostics14171902 (registering DOI) - 29 Aug 2024
Viewed by 206
Abstract
Serum erythropoietin (sEPO) is an initial screening tool for distinguishing polycythemia vera (PV) from secondary erythrocytosis (SE), but defining ‘subnormal’ sEPO levels for PV diagnosis remains contentious, complicating its clinical utility. This study compares the diagnostic performance of sEPO across established subnormal limits, [...] Read more.
Serum erythropoietin (sEPO) is an initial screening tool for distinguishing polycythemia vera (PV) from secondary erythrocytosis (SE), but defining ‘subnormal’ sEPO levels for PV diagnosis remains contentious, complicating its clinical utility. This study compares the diagnostic performance of sEPO across established subnormal limits, including reference interval (RI), clinical decision limit (CDL), and functional reference limit. sEPO levels were analyzed in 393 healthy donors (HDs) and 90 patients (41 PV and 49 SE), who underwent bone marrow biopsy and genetic tests due to erythrocytosis. The RI (2.5–97.5 percentile from HDs) of sEPO was 5.3–26.3 IU/L. A CDL of 3.1 IU/L, determined by ROC analysis in erythrocytosis patients, had a sensitivity of 80.5% and specificity of 87.8% for diagnosing PV. A functional reference limit of 7.0 IU/L, estimated based on the relationship between sEPO and hemoglobin, hematocrit, and WBC, increased sensitivity to 97.6% but decreased specificity to 46.7%. Using 5.3 IU/L as a ‘subnormal’ limit identified all three JAK2-negative PV cases, increasing the sensitivity and negative predictive value to 97.6% and 97.0%, respectively. Combining the RI, CDL, and functional reference limit may improve PV diagnostic accuracy. Full article
(This article belongs to the Special Issue Hematology: Diagnostic Techniques and Assays)
Show Figures

Figure 1

13 pages, 639 KiB  
Review
Kinases Inhibitors as New Therapeutic Opportunities in Cutaneous T-Cell Lymphoma
by Sara Valero-Diaz, Camilla Amato and Berta Casar
Kinases Phosphatases 2024, 2(3), 255-267; https://doi.org/10.3390/kinasesphosphatases2030016 - 28 Aug 2024
Viewed by 297
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of T-cell lymphomas characterised by high relapse rates and no curative treatments unless the allogeneic stem cell transplantation. The main complication in the management of this kind of malignancy is the variability that characterises the [...] Read more.
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of T-cell lymphomas characterised by high relapse rates and no curative treatments unless the allogeneic stem cell transplantation. The main complication in the management of this kind of malignancy is the variability that characterises the genetic and clinical features among the CTCL subtypes. JAK/STAT, MAPK/ERK, PI3K/Akt, and NF-kB are those signalling pathways that are found altered in CTCL and that are responsible for promoting both T-cell malignancy and the pro-tumorigenic microenvironment. Thus, targeting key players of these pathways can be an advantageous therapeutic option for CTCL. In this review, we aim to summarise the different approaches that precisely inhibit the kinases of each cited signalling. JAK inhibitors seem to be the most promising kinase inhibitors for CTCL. However, adverse events have been reported especially in patients with immunosuppression or an underlying autoimmune disease. More studies are needed, especially clinical trials, to investigate the benefits of these drugs for the treatment of cutaneous T-cell lymphomas. Full article
(This article belongs to the Special Issue Human Protein Kinases: Development of Small-Molecule Therapies)
Show Figures

Figure 1

16 pages, 32828 KiB  
Article
The Cardioprotective Potential of Herbal Formulas in Myocardial Infarction-Induced Heart Failure through Inhibition of JAK/STAT3 Signaling and Improvement of Cardiac Function
by Youn-Jae Jang, Hye-Yoom Kim, Se-Won Na, Mi-Hyeon Hong, Jung-Joo Yoon, Ho-Sub Lee and Dae-Gill Kang
Pharmaceuticals 2024, 17(9), 1132; https://doi.org/10.3390/ph17091132 - 27 Aug 2024
Viewed by 360
Abstract
Myocardial infarction (MI) is a leading cause of heart failure, characterized by adverse cardiac remodeling. This study evaluated the cardioprotective potential of Dohongsamul-tang (DHT), a traditional Korean herbal formula, in a rat model of MI-induced heart failure. Rats underwent left anterior descending (LAD) [...] Read more.
Myocardial infarction (MI) is a leading cause of heart failure, characterized by adverse cardiac remodeling. This study evaluated the cardioprotective potential of Dohongsamul-tang (DHT), a traditional Korean herbal formula, in a rat model of MI-induced heart failure. Rats underwent left anterior descending (LAD) artery ligation and were treated with either 100 mg/kg or 200 mg/kg of DHT daily for 8 weeks. DHT treatment significantly improved cardiac function, as evidenced by increased ejection fraction (EF) from 62.1% to 70.1% (100 mg/kg) and fractional shortening (FS) from 32.3% to 39.4% (200 mg/kg) compared to the MI control group. Additionally, DHT reduced infarct size by approximately 63.3% (from 60.0% to 22.0%) and heart weight by approximately 16.7% (from 3.6 mg/g to 3.0 mg/g), and significantly decreased levels of heart failure biomarkers: LDH was reduced by 37.6% (from 1409.1 U/L to 879.1 U/L) and CK-MB by 47.6% (from 367.3 U/L to 192.5 U/L). Histological analysis revealed a reduction in left ventricle (LV) fibrosis by approximately 50% (from 24.0% to 12.0%). At the molecular level, DHT inhibited the expression of phospho-JAK by 75% (from 2-fold to 0.5-fold), phospho-STAT3 by 30.8% (from 1.3-fold to 0.9-fold), Bax/Bcl-2 by 56.3% (from 3.2-fold to 1.4-fold), and caspase-3 by 46.3% (from 1.23-fold to 0.66-fold). These results suggest that DHT exerts cardioprotective effects by modulating the JAK/STAT3 signaling pathway, highlighting its potential as a therapeutic option for heart failure. Full article
(This article belongs to the Special Issue Plant-Based Therapies for Circulatory Disorders)
Show Figures

Graphical abstract

15 pages, 4856 KiB  
Article
Mesenchymal Stem Cell Therapy in Alopecia Areata: Visual and Molecular Evidence from a Mouse Model
by Song-Hee Park, Seo-Won Song, Yu-Jin Lee, Hoon Kang and Jung-Eun Kim
Int. J. Mol. Sci. 2024, 25(17), 9236; https://doi.org/10.3390/ijms25179236 - 26 Aug 2024
Viewed by 372
Abstract
Recent studies have highlighted the potential of Mesenchymal Stem Cells (MSCs) as an alternative treatment for Alopecia Areata (AA) due to their immunosuppressive properties. While MSCs have shown promise in cell experiments, their effectiveness in vivo remains uncertain. This study aims to validate [...] Read more.
Recent studies have highlighted the potential of Mesenchymal Stem Cells (MSCs) as an alternative treatment for Alopecia Areata (AA) due to their immunosuppressive properties. While MSCs have shown promise in cell experiments, their effectiveness in vivo remains uncertain. This study aims to validate local administration of MSC therapy’s efficacy in AA treatment through animal experiments. AA was induced through Interferon-gamma (IFN-γ) administration in mice, and MSC treatment (MSCT)’s effects were assessed visually and through tissue analysis. The MSC-treated group showed more hair regrowth compared to the control (CTL) group. MSCT notably reduced local inflammatory cytokines (JAK1, JAK2, STAT1, STAT3, IFN-γR, IL-1β, IL-16, IL-17α, and IL-18) in AA-induced mice’s skin, but systemic cytokine levels remained unchanged. Furthermore, MSC treatment normalized the expression of Wnt/β-catenin signaling pathway genes (LEF1 and β-catenin) and growth factors (FGF7 and FGF2), which are crucial for hair cycle regulation. This study lays the groundwork for further exploring MSCs as a potential treatment for AA, but more research is needed to fully understand their therapeutic potential. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 4050 KiB  
Article
Pleurocinus ostreatus Polysaccharide Alleviates Cyclophosphamide-Induced Immunosuppression through the Gut Microbiome, Metabolome, and JAK/STAT1 Signaling Pathway
by Daiyao Liu, Abdul Mueed, He Ma, Tianci Wang, Ling Su and Qi Wang
Foods 2024, 13(17), 2679; https://doi.org/10.3390/foods13172679 - 25 Aug 2024
Viewed by 461
Abstract
This study investigated the structure of Pleurocinus ostreatus polysaccharide (POP-1) and its effect on immunocompromised mice induced by cyclophosphamide (CY). Novel POP-1 was α- and β-glucopyranose, its molecular weight was 4.78 × 104 Da, it was mainly composed of glucose (88.9%), and it [...] Read more.
This study investigated the structure of Pleurocinus ostreatus polysaccharide (POP-1) and its effect on immunocompromised mice induced by cyclophosphamide (CY). Novel POP-1 was α- and β-glucopyranose, its molecular weight was 4.78 × 104 Da, it was mainly composed of glucose (88.9%), and it also contained galactose (2.97%), mannose (5.02%), fucose (0.3%), arabinose (0.21%), ribose (0.04%), galactose acid (0.17%), and glucose acid (1.45%). After POP-1 was administered to immunosuppressed mice, results showed that POP-1 increased the body weight, spleen, and thymus index and enhanced T lymphocyte proliferation in mice. POP-1 up-regulated the expression of CD3+, CD4+, and CD8+ lymphocytes and the ratio of CD4+/CD8+ in the mouse spleen to increase immunoglobulin (IgM, IgG, and IgA) and secrete cytokines (IL-2, IL-6, TNF-α, and IFN-γ) through activation of the JAK/STAT1 signaling pathway. Moreover, POP-1 remarkably reversed the gut-microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Muribaculaceae, Lactobacillaceae, Blautia, and Ligilactobacillus and altered the fecal metabolites by increasing hexahomomethionine, DG(8:0/20:4(5Z, 8Z, 11Z, 14Z)-OH(20)/0:0, 2-((3-aminopyridin-2-yl)methylene)hydrazinecarbothioamide, Ginkgoic acid, and carboxy-ethyl-hydroxychroman, which is closely related to the immunity function. This study indicates that P. ostreatus polysaccharide effectively restores immunosuppressive activity and can be a functional ingredient in food and pharmaceutical products. Full article
Show Figures

Figure 1

20 pages, 3710 KiB  
Article
LEP Gene Promotes Milk Fat Synthesis via the JAK2-STAT3 and mTOR Signaling Pathways in Buffalo Mammary Epithelial Cells
by Ruixia Gao, Qunyao Zhu, Lige Huang, Xinyang Fan, Xiaohong Teng and Yongwang Miao
Animals 2024, 14(16), 2446; https://doi.org/10.3390/ani14162446 - 22 Aug 2024
Viewed by 308
Abstract
Leptin (LEP), a protein hormone well-known for its role in metabolic regulation, has recently been linked to lipid metabolism in cattle. However, its function in buffalo mammary glands remains unclear. To address this issue, we isolated and identified the LEP gene and conducted [...] Read more.
Leptin (LEP), a protein hormone well-known for its role in metabolic regulation, has recently been linked to lipid metabolism in cattle. However, its function in buffalo mammary glands remains unclear. To address this issue, we isolated and identified the LEP gene and conducted experiments to investigate its function in buffalo mammary epithelial cells (BuMECs). In this study, two transcript variants of LEP, designated as LEP_X1 and LEP_X2, were identified. The coding sequences (CDS) of LEP_X1 and LEP_X2 are 504 bp and 579 bp in length, encoding 167 and 192 amino acid residues, respectively. Bioinformatics analysis revealed that LEP_X2 is a hydrophobic protein with an isoelectric point below 7 and contains a signal peptide, while LEP_X1 is hydrophilic and lacks a signal peptide. Our study found that LEP gene expression in lactating BuMECs was significantly higher than in non-lactating cells, with LEP_X2 expression remarkably higher than LEP_X1 in lactating BuMECs. Overexpression of both LEP_X1 and LEP_X2 significantly promoted the expression of genes related to milk fat synthesis in lactating BuMECs, including STAT3, PI3K, mTOR, SCD, and SREBF1, accompanied by an increase in cellular triglycerides (TG). Interestingly, LEP_X2 overexpression significantly suppressed LEP_X1 expression while increasing intracellular TG concentration by 12.10-fold compared to LEP_X1 overexpression, suggesting an antagonistic relationship between the two variants and supposing LEP_X2 plays a dominant role in milk fat synthesis in lactating BuMECs. Additionally, four nucleotide substitutions were identified in the buffalo LEP CDS, including a nonsynonymous substitution c.148C>T (p.Arg50Cys), which was predicted to decrease the stability of the LEP protein without affecting its function. These results collectively underscore the significant role of LEP in milk fat synthesis and can provide a basis for molecular breeding strategies of buffalo. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

10 pages, 475 KiB  
Review
Restoration of Skin Barrier Abnormalities with IL4/13 Inhibitors and Jak Inhibitors in Atopic Dermatitis: A Systematic Review
by Isidora Chatzigeorgiou, Dimitra Koumaki, Efstratios Vakirlis, Ilias Papadimitriou and Stamatios Gregoriou
Medicina 2024, 60(8), 1376; https://doi.org/10.3390/medicina60081376 - 22 Aug 2024
Viewed by 594
Abstract
Background and Objectives: Atopic dermatitis is a chronic inflammatory skin disorder with a significant burden on patients’ quality of life. This systematic review aims to evaluate the restoration of skin barrier abnormalities with interleukin-4/interleukin-13 (IL-4/IL-13) inhibitors and Janus kinase (JAK) inhibitors in [...] Read more.
Background and Objectives: Atopic dermatitis is a chronic inflammatory skin disorder with a significant burden on patients’ quality of life. This systematic review aims to evaluate the restoration of skin barrier abnormalities with interleukin-4/interleukin-13 (IL-4/IL-13) inhibitors and Janus kinase (JAK) inhibitors in atopic dermatitis. Materials and Methods: A comprehensive review of the literature was conducted, focusing on studies that assess the use of IL-4/IL-13 inhibitors and JAK inhibitors for atopic dermatitis. We identified eligible studies by searching Medline via PubMed with a special focus on their effect on the restoration of the epidermal barrier. Included studies evaluated the transepidermal water loss (TEWL), the reduction in epidermal thickness (ET), the improvement in ceramide synthesis, and the increase in stratum corneum hydration (SCH) with IL-4/IL-13 inhibitors and JAK inhibitors. The quality of included studies was assessed using the ROBINS-I and the RoB 2.0 tool for assessing the risk of bias. Results: Ten of the included studies concern dupilumab, while two concern JAK inhibitors. Ten were observational studies and two were randomized controlled trials (RCTs). The total number of included participants was 378 concerning dupilumab and 38 concerning JAK inhibitors. Five studies did not include any comparison group, three included healthy volunteers, two were conducted versus placebo, and two compared dupilumab with other treatments. The follow-up period ranged between 29 days and 32 weeks. The results demonstrated a significant decrease in transepidermal water loss (TEWL) and an increase in SCH on eczematous lesions for patients with sustained response to dupilumab treatment and observed improvements in ET and filaggrin (FLG) staining, which further support the efficacy of JAK inhibitors in enhancing skin barrier function. Conclusions: This review underscores the efficacy of IL-4/IL-13 inhibitors in improving skin barrier function. However, the limited number of studies focusing on JAK inhibitors and the overall lack of RCTs highlight the need for further research to establish the definitive role of IL-4/IL-13 inhibitors and JAK inhibitors in the restoration of the skin barrier. Full article
(This article belongs to the Special Issue Diagnosis and Treatment of Atopic Dermatitis in Adults and Children)
Show Figures

Figure 1

Back to TopTop