Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (653)

Search Parameters:
Keywords = Immunosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4200 KiB  
Article
Strategy for Accurate Detection of Six Tropane Alkaloids in Honey Using Lateral Flow Immunosensors
by Boyan Sun, Chuanlei Wang, Zile Wang, Jiayi Liang, Ke Han, Shuai Zhang, Chunchao Yin, Xiaomei Wang, Chujun Liu, Zhiyue Feng, Sihan Wang and Haiyang Jiang
Sensors 2024, 24(22), 7265; https://doi.org/10.3390/s24227265 - 13 Nov 2024
Viewed by 430
Abstract
Honey, a widely consumed food, is susceptible to contamination by various toxic substances during production. Tropane alkaloids, with their potent neurotoxicity, are frequently found in honey. Hence, there is an acute need for rapid and effective detection methods to monitor these alkaloids. Lateral [...] Read more.
Honey, a widely consumed food, is susceptible to contamination by various toxic substances during production. Tropane alkaloids, with their potent neurotoxicity, are frequently found in honey. Hence, there is an acute need for rapid and effective detection methods to monitor these alkaloids. Lateral flow immunoassay (LFIA), known for its simple operation, low cost, and reliable results, holds great promise. In this study, we developed an efficient and user-friendly analytical method for the simultaneous detection of six tropane alkaloids (atropine, L-hyoscyamine, scopolamine, anisodamine, homatropine, and apoatropine) in honey based on an AuNPs lateral flow immunoassay (AuNPs-LFIA) with broad-spectrum antibodies. Under optimal conditions, the calculated detection limits were 0.22, 0.29, 0.51, 6.34, 0.30, and 0.94 ng/mL, respectively. By diluting the honey sample five times, the contaminants can be readily detected using LFIA. Semi-quantitative and quantitative analyses can be completed within 17 min. This innovative method fills the void in LFIA for detecting tropane alkaloids and serves as a valuable reference for LFIA detection of honey samples, providing a crucial strategy for the accurate detection of these important compounds. Full article
Show Figures

Figure 1

32 pages, 16379 KiB  
Review
Electrochemical Sensing Strategies for Synthetic Orange Dyes
by Dihua Wu, Jiangwei Zhu, Yuhong Zheng and Li Fu
Molecules 2024, 29(21), 5026; https://doi.org/10.3390/molecules29215026 - 24 Oct 2024
Viewed by 1152
Abstract
This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with [...] Read more.
This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with electrode surfaces. The review covers a range of sensor designs, from unmodified electrodes to advanced nanomaterial-based platforms. Chemically modified electrodes incorporating polymers and molecularly imprinted polymers are discussed for their enhanced selectivity. Particular attention is given to nanomaterial-based sensors, including those utilizing carbon nanotubes, graphene derivatives, and metal nanoparticles, which have demonstrated exceptional sensitivity and wide linear ranges. The potential of biological-based approaches, such as DNA interaction sensors and immunosensors, is also evaluated. Current challenges in the field are addressed, including matrix effects in complex samples and long-term stability issues. Emerging trends are highlighted, including the development of multi-modal sensing platforms and the integration of artificial intelligence for data analysis. The review concludes by discussing the commercial potential of these sensors in food safety, environmental monitoring, and smart packaging applications, emphasizing their importance in ensuring the safe use of synthetic orange dyes across industries. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications—2nd Edition)
Show Figures

Figure 1

18 pages, 5912 KiB  
Article
Electrochemical Immunosensors on Laser-Induced Graphene Platforms for Monitoring of Anti-RBD Antibodies After SARS-CoV-2 Infection
by Beatriz R. Martins, Cristhianne Molinero R. Andrade, Guilherme F. Simão, Rhéltheer de Paula Martins, Lucas V. de Faria, Tiago A. Matias, Virmondes Rodrigues Júnior, Rodrigo Alejandro Abarza Munoz and Renata Pereira Alves
Biosensors 2024, 14(11), 514; https://doi.org/10.3390/bios14110514 - 22 Oct 2024
Viewed by 673
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed a major challenge to global health. The development of fast, accurate, and accessible diagnostic methods is essential in controlling the disease and mitigating its impacts. In this context, electrochemical biosensors present themselves as [...] Read more.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed a major challenge to global health. The development of fast, accurate, and accessible diagnostic methods is essential in controlling the disease and mitigating its impacts. In this context, electrochemical biosensors present themselves as promising tools for the efficient monitoring of SARS-CoV-2 infection. We have developed a highly specific biosensor for the detection of anti-SARS-CoV-2 antibodies in patient sera. The use of the RBD-S region as an antigen, although purified to minimize cross-linking, poses a specific challenge. The structural similarity between SARS-CoV-2 and other respiratory viruses, as well as the complexity of the serum matrix, hinders robust analytical strategies to ensure diagnostic accuracy. This work presents a novel immunosensor for COVID-19 diagnosis using laser-induced graphene (LIG) electrodes subjected to electrochemical reduction with graphene (named rGraphene-LIG). In the present study, we chose an initial approach focused on demonstrating the concept and evaluating the feasibility of the rGraphene-LIG sensor for SARS-CoV-2 detection. The rGraphene-LIG electrodes presented a notable current increase for the redox probe in the aqueous solution of a mixture of 5 mmol L−1 potassium ferricyanide/ferrocyanide ([Fe(CN)6]3−/[Fe(CN)6]4−) in 0.1 mol L−1 KCl (pH set at 7.4). As a proof of concept, the rGraphene-LIG electrode was applied for antibody determination in real samples using cyclic voltammetry, and a limit of detection (LOD) of 0.032 μg L−1 was achieved. When determining antigens in commercial samples, we obtained an LOD of 560 ηg mL−1 and a limit of quantification of 1677 ηg mL−1. The results of the electrochemical experiments were in accordance with the surface roughness obtained from atomic force microscopy images. Based on these results, the rGraphene-LIG electrode is shown to be an excellent platform for immunoglobulin detection when present in individuals after antigenic exposure caused by SARS-CoV-2. Full article
Show Figures

Figure 1

12 pages, 4553 KiB  
Article
A Biomimetic Chip with Dendrimer-Encapsulated Platinum Nanoparticles for Enhanced Electrochemiluminescence Detection of Cardiac Troponin I
by Yun Hui, Weijun Kong, Weiliang Shu, Zhiting Peng, Fengshan Shen, Mingyang Jiang, Zhen Xu, Tianzhun Wu, Wenhua Zhou and Xue-Feng Yu
Chemosensors 2024, 12(10), 214; https://doi.org/10.3390/chemosensors12100214 - 16 Oct 2024
Viewed by 571
Abstract
The measurement of cardiac troponin I (cTnI) is of vital importance for the early diagnosis of acute myocardial infarction. In this study, an enhanced electrochemiluminescent immunoassay for the highly sensitive and precise determination of cTnI was reported. A biomimetic chip with nepenthes peristome [...] Read more.
The measurement of cardiac troponin I (cTnI) is of vital importance for the early diagnosis of acute myocardial infarction. In this study, an enhanced electrochemiluminescent immunoassay for the highly sensitive and precise determination of cTnI was reported. A biomimetic chip with nepenthes peristome surface microstructures to achieve single-layer microbead arrays and integrated microelectrode arrays (MEAs) for ECL detection was microfabricated. Ru@SiO2 nanoparticles were prepared as signal amplificators labeling immunomagnetic beads. Dendrimer-encapsulated platinum nanoparticles (Pt DENs) were electrochemically modified on ITO MEAs. The resulting Pt DEN-modified ITO MEAs preserved good optical transparency and exhibited an approximately 20-fold ECL signal amplification compared to that obtained from bare ITO. The method made full use of the biomimetic chip with Pt DENs to develop single-layer immunomagnetic bead arrays with increasingly catalyzed electrochemical oxidation of the [Ru(bpy)3]2+–TPA system. Consequently, a limit of detection calculated as 0.38 pg/mL (S/N = 3) was obtained with excellent selectivity, demonstrating significant potential for the detection of cTnI in clinical diagnostics. Full article
(This article belongs to the Special Issue Application of Luminescent Materials for Sensing, 2nd Edition)
Show Figures

Figure 1

16 pages, 5129 KiB  
Article
Enhanced Electrochemiluminescence of Luminol and-Dissolved Oxygen by Nanochannel-Confined Au Nanomaterials for Sensitive Immunoassay of Carcinoembryonic Antigen
by Weibin Li, Ruliang Yu and Fengna Xi
Molecules 2024, 29(20), 4880; https://doi.org/10.3390/molecules29204880 - 15 Oct 2024
Viewed by 765
Abstract
Simple development of an electrochemiluminescence (ECL) immunosensor for convenient detection of tumor biomarker is of great significance for early cancer diagnosis, treatment evaluation, and improving patient survival rates and quality of life. In this work, an immunosensor is demonstrated based on an enhanced [...] Read more.
Simple development of an electrochemiluminescence (ECL) immunosensor for convenient detection of tumor biomarker is of great significance for early cancer diagnosis, treatment evaluation, and improving patient survival rates and quality of life. In this work, an immunosensor is demonstrated based on an enhanced ECL signal boosted by nanochannel-confined Au nanomaterial, which enables sensitive detection of the tumor biomarker—carcinoembryonic antigen (CEA). Vertically-ordered mesoporous silica film (VMSF) with a nanochannel array and amine groups was rapidly grown on a simple and low-cost indium tin oxide (ITO) electrode using the electrochemically assisted self-assembly (EASA) method. Au nanomaterials were confined in situ on the VMSF through electrodeposition, which catalyzed both the conversion of dissolved oxygen (O2) to reactive oxygen species (ROS) and the oxidation of a luminol emitter and improved the electrode active surface. The ECL signal was enhanced fivefold after Au nanomaterial deposition. The recognitive interface was fabricated by covalent immobilization of the CEA antibody on the outer surface of the VMSF, followed with the blocking of non-specific binding sites. In the presence of CEA, the formed immunocomplex reduced the diffusion of the luminol emitter, resulting in the reduction of the ECL signal. Based on this mechanism, the constructed immunosensor was able to provide sensitive detection of CEA ranging from 1 pg·mL−1 to 100 ng·mL−1 with a low limit of detection (LOD, 0.37 pg·mL−1, S/N = 3). The developed immunosensor exhibited high selectivity and good stability. ECL determination of CEA in fetal bovine serum was achieved. Full article
Show Figures

Figure 1

26 pages, 4155 KiB  
Review
Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis
by Yin Shen, Shichao Zhao, Fei Chen, Yanfei Lv and Li Fu
Biosensors 2024, 14(10), 496; https://doi.org/10.3390/bios14100496 - 12 Oct 2024
Viewed by 593
Abstract
This review examines recent advancements in electrochemical immunosensors for the detection of organophosphate pesticides, focusing on strategies to enhance sensitivity and selectivity. The widespread use of these pesticides has necessitated the development of rapid, accurate, and field-deployable detection methods. We discuss the fundamental [...] Read more.
This review examines recent advancements in electrochemical immunosensors for the detection of organophosphate pesticides, focusing on strategies to enhance sensitivity and selectivity. The widespread use of these pesticides has necessitated the development of rapid, accurate, and field-deployable detection methods. We discuss the fundamental principles of electrochemical immunosensors and explore innovative approaches to improve their performance. These include the utilization of nanomaterials such as metal nanoparticles, carbon nanotubes, and graphene for signal amplification; enzyme-based amplification strategies; and the design of three-dimensional electrode architectures. The integration of these sensors into microfluidic and lab-on-a-chip devices has enabled miniaturization and automation, while screen-printed and disposable electrodes have facilitated on-site testing. We analyze the challenges faced in real sample analysis, including matrix effects and the stability of biological recognition elements. Emerging trends such as the application of artificial intelligence for data interpretation and the development of aptamer-based sensors are highlighted. The review also considers the potential for commercialization and the hurdles that must be overcome for widespread adoption. Future research directions are identified, including the development of multi-analyte detection platforms and the integration of sensors with emerging technologies like the Internet of Things. This comprehensive overview provides insights into the current state of the field and outlines promising avenues for future development in organophosphate pesticide detection. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

14 pages, 2817 KiB  
Article
Salivary Cortisol Detection with a Fully Inkjet-Printed Paper-Based Electrochemical Sensor
by Miguel Zea, Hamdi Ben Halima, Rosa Villa, Imad Abrao Nemeir, Nadia Zine, Abdelhamid Errachid and Gemma Gabriel
Micromachines 2024, 15(10), 1252; https://doi.org/10.3390/mi15101252 - 12 Oct 2024
Viewed by 941
Abstract
Electrochemical paper-based analytical devices (ePADs) offer an innovative, low-cost, and environmentally friendly approach for real-time diagnostics. In this study, we developed a functional all-inkjet paper-based electrochemical immunosensor using gold (Au) printed ink to detect salivary cortisol. Covalent binding of the cortisol monoclonal antibody [...] Read more.
Electrochemical paper-based analytical devices (ePADs) offer an innovative, low-cost, and environmentally friendly approach for real-time diagnostics. In this study, we developed a functional all-inkjet paper-based electrochemical immunosensor using gold (Au) printed ink to detect salivary cortisol. Covalent binding of the cortisol monoclonal antibody onto the printed Au surface was achieved through electrodeposition of 4-carboxymethylaniline (CMA), with ethanolamine passivation to prevent non-specific binding. The ePAD exhibited a linear response within the physiological cortisol range (5–20 ng/mL), with sensitivities of 25, 23, and 19 Ω·ng/mL and R2 values of 0.995, 0.979, and 0.99, respectively. Additionally, interference studies against tumor necrosis factor-α (TNF-α) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) yielded excellent results. This novel ePAD, fabricated using inkjet printing technology on paper, simplifies the process, reduces environmental impact, and lowers fabrication costs. Full article
(This article belongs to the Special Issue Microelectrodes and Microdevices for Electrochemical Applications)
Show Figures

Figure 1

11 pages, 5333 KiB  
Article
Fluorescence Immunoassay of Prostate-Specific Antigen Using 3D Paddle Screw-Type Devices and Their Rotating System
by Su Bin Han, Han Sol Kim, Young Ju Jo and Soo Suk Lee
Biosensors 2024, 14(10), 494; https://doi.org/10.3390/bios14100494 - 11 Oct 2024
Viewed by 673
Abstract
In this paper, we present a sensitive and highly reproducible fluorescence immunosensor for detecting PSA in human serum. A unique feature of this study is that it uses creatively designed paddle screw-type devices and their custom-made rotating system for PSA immunoassay. The paddle [...] Read more.
In this paper, we present a sensitive and highly reproducible fluorescence immunosensor for detecting PSA in human serum. A unique feature of this study is that it uses creatively designed paddle screw-type devices and their custom-made rotating system for PSA immunoassay. The paddle screw devices were designed to maximize the surface-to-volume ratio over which the immunoassay reaction could occur to improve detection sensitivity. This paddle screw-based immunoassay offers an accessible and efficient method with a short analysis time of less than 30 min. Active rotation of the paddle screw plays a crucial role in fast and accurate analysis of PSA. Additionally, a paddle screw-based immunoassay and subsequent fluorescence detection using a custom prototype fluorescence detection system were compared to a typical well plate-based immunoassay system. Results of PSA detection in human serum showed that the detection sensitivity through the paddle screw-based analysis improved about five times compared to that with a well plate-based analysis. Full article
Show Figures

Figure 1

12 pages, 3170 KiB  
Article
Mycotoxin Detection through Colorimetric Immunoprobing with Gold Nanoparticle Antibody Conjugates
by Vinayak Sharma, Bilal Javed, Hugh J. Byrne and Furong Tian
Biosensors 2024, 14(10), 491; https://doi.org/10.3390/bios14100491 - 10 Oct 2024
Viewed by 830
Abstract
Driven by their exceptional optical characteristics, robust chemical stability, and facile bioconjugation, gold nanoparticles (AuNPs) have emerged as a preferred material for detection and biosensing applications in scientific research. This study involves the development of a simple, rapid, and cost-effective colorimetric immuno-sensing probe [...] Read more.
Driven by their exceptional optical characteristics, robust chemical stability, and facile bioconjugation, gold nanoparticles (AuNPs) have emerged as a preferred material for detection and biosensing applications in scientific research. This study involves the development of a simple, rapid, and cost-effective colorimetric immuno-sensing probe to detect aflatoxin B1 and zearalenone using AuNP antibody (AuNP-mAb) conjugates. Anti-toxin antibodies were attached to the AuNPs by using the physical adsorption method. The colorimetric immunosensor developed operates on the principle that the optical properties of the AuNP are very sensitive to aggregation, which can be induced by a critical high salt concentration. Although the presence of antibodies on the AuNP surface inhibits the aggregation, these antibodies bind to the toxin with higher affinity, which leads to exposure of the surface of AuNPs and aggregation in a salt environment. The aggregation triggers a noticeable but variable alteration in color from red to purple and blueish gray, as a result of a red shift in the surface plasmon resonance band of the AuNPs. The extent of the shift is dependent on the toxin exposure dose and can be quantified using a calibration curve through UV–Visible–NIR spectroscopy. The limit of detection using this assay was determined to be as low as 0.15 ng/mL for both zearalenone and aflatoxin B1. The specificity of the prepared immunoprobe was analyzed for a particular mycotoxin in the presence of other mycotoxins. The developed immunoprobe was evaluated for real-world applicability using artificially spiked samples. This colorimetric immunoprobe based on localized surface plasmon resonance (LSPR) has a reduced detection limit compared to other immunoassays, a rapid readout, low cost, and facile fabrication. Full article
(This article belongs to the Special Issue Biosensors for the Analysis and Detection of Drug, Food or Disease)
Show Figures

Figure 1

25 pages, 5952 KiB  
Review
The Evolution of Illicit-Drug Detection: From Conventional Approaches to Cutting-Edge Immunosensors—A Comprehensive Review
by Nigar Anzar, Shariq Suleman, Yashda Singh, Supriya Kumari, Suhel Parvez, Roberto Pilloton and Jagriti Narang
Biosensors 2024, 14(10), 477; https://doi.org/10.3390/bios14100477 - 3 Oct 2024
Viewed by 977
Abstract
The increasing use of illicit drugs has become a major global concern. Illicit drugs interact with the brain and the body altering an individual’s mood and behavior. As the substance-of-abuse (SOA) crisis continues to spread across the world, in order to reduce trafficking [...] Read more.
The increasing use of illicit drugs has become a major global concern. Illicit drugs interact with the brain and the body altering an individual’s mood and behavior. As the substance-of-abuse (SOA) crisis continues to spread across the world, in order to reduce trafficking and unlawful activity, it is important to use point-of-care devices like biosensors. Currently, there are certain conventional detection methods, which include gas chromatography (GC), mass spectrometry (MS), surface ionization, surface-enhanced Raman spectroscopy (SERS), surface plasmon resonance (SPR), electrochemiluminescence (ECL), high-performance liquid chromatography (HPLC), etc., for the detection of abused drugs. These methods have the advantage of high accuracy and sensitivity but are generally laborious, expensive, and require trained operators, along with high sample requirements, and they are not suitable for on-site drug detection scenarios. As a result, there is an urgent need for point-of-care technologies for a variety of drugs that can replace conventional techniques, such as a biosensor, specifically an immunosensor. An immunosensor is an analytical device that integrates an antibody-based recognition element with a transducer to detect specific molecules (antigens). In an immunosensor, the highly selective antigen–antibody interaction is used to identify and quantify the target analyte. The binding event between the antibody and antigen is converted by the transducer into a measurable signal, such as electrical, optical, or electrochemical, which corresponds to the presence and concentration of the analyte in the sample. This paper provides a comprehensive overview of various illicit drugs, the conventional methods employed for their detection, and the advantages of immunosensors over conventional techniques. It highlights the critical need for on-site detection and explores emerging point-of-care testing methods. The paper also outlines future research goals in this field, emphasizing the potential of advanced technologies to enhance the accuracy, efficiency, and convenience of drug detection. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

13 pages, 4048 KiB  
Article
Portable Electrochemical Immunosensor Based on a Gold Microblobs-Optimized Screen-Printed Electrode for SARS-CoV-2 Diagnosis
by Melissa M. Giacomet, Paulo H. M. Buzzetti, Oscar O. S. Junior, Alessandro F. Martins, Elton G. Bonafe and Johny P. Monteiro
Inorganics 2024, 12(9), 252; https://doi.org/10.3390/inorganics12090252 - 18 Sep 2024
Viewed by 606
Abstract
The development of biosensors for determining the most diverse biomolecules is a constant focus of many research groups. There is a latent need to propose sensors that combine portability, simple measurements, and good analytical performance. Here, we propose an electrochemical immunosensor that is [...] Read more.
The development of biosensors for determining the most diverse biomolecules is a constant focus of many research groups. There is a latent need to propose sensors that combine portability, simple measurements, and good analytical performance. Here, we propose an electrochemical immunosensor that is fully portable and energy-independent for diagnosing antibodies against SARS-CoV-2 (the virus that causes COVID-19). Initially, disposable screen-printed carbon electrodes (SPEs) were covered by gold microblobs (AuMBs), which were synthesized amperometrically from Au3+ ions. Then, the SPE-AuMBs were coated with cysteamine, which allowed the N-hydroxysuccinimide-activated SARS-CoV-2 antigen (spike protein) to be immobilized. The antigen-activated electrode was used to detect COVID-19 antibodies from current measurements obtained by differential pulse voltammetry. The AuMBs synthesis time was optimized, and the presence of gold structures improved the electrochemical responses of the SPE. It was possible to quantitatively determine antibodies in the concentration range of 0.25 to 10 µg mL−1. This range includes concentrations found in biological fluids from patients at any stage of the disease. An analysis took approximately the same time as traditional rapid nasal tests (20 min) and costed less, considering all the steps necessary to prepare a disposable antigen-functionalized SPE. Full article
Show Figures

Graphical abstract

12 pages, 3715 KiB  
Article
Carbon Nitride Nanosheets as an Adhesive Layer for Stable Growth of Vertically-Ordered Mesoporous Silica Film on a Glassy Carbon Electrode and Their Application for CA15-3 Immunosensor
by Jun Xing, Hongxin Wang and Fei Yan
Molecules 2024, 29(18), 4334; https://doi.org/10.3390/molecules29184334 - 12 Sep 2024
Cited by 2 | Viewed by 532
Abstract
Vertically ordered mesoporous silica films (VMSF) are a class of porous materials composed of ultrasmall pores and ultrathin perpendicular nanochannels, which are attractive in the areas of electroanalytical sensors and molecular separation. However, VMSF easily falls off from the carbonaceous electrodes and thereby [...] Read more.
Vertically ordered mesoporous silica films (VMSF) are a class of porous materials composed of ultrasmall pores and ultrathin perpendicular nanochannels, which are attractive in the areas of electroanalytical sensors and molecular separation. However, VMSF easily falls off from the carbonaceous electrodes and thereby impacts their broad applications. Herein, carbon nitride nanosheets (CNNS) were served as an adhesive layer for stable growth of VMSF on the glassy carbon electrode (GCE). CNNS bearing plentiful oxygen-containing groups can covalently bind with silanol groups of VMSF, effectively promoting the stability of VMSF on the GCE surface. Benefiting from numerous open nanopores of VMSF, modification of VMSF’s external surface with carbohydrate antigen 15-3 (CA15-3)-specific antibody allows the target-controlled transport of electrochemical probes through the internal silica nanochannels, yielding sensitive quantitative detection of CA15-3 with a broad detection range of 1 mU/mL to 1000 U/mL and a low limit of detection of 0.47 mU/mL. Furthermore, the proposed VMSF/CNNS/GCE immunosensor is capable of highly selective and accurate determination of CA15-3 in spiked serum samples, which offers a simple and effective electrochemical strategy for detection of various practical biomarkers in complicated biological specimens. Full article
(This article belongs to the Special Issue Two-Dimensional Materials: From Synthesis to Applications)
Show Figures

Figure 1

13 pages, 5707 KiB  
Article
Photonic Dipstick Immunosensor to Detect Adulteration of Ewe, Goat, and Donkey Milk with Cow Milk through Bovine κ-Casein Detection
by Dimitra Kourti, Michailia Angelopoulou, Eleni Makarona, Anastasios Economou, Panagiota Petrou, Konstantinos Misiakos and Sotirios Kakabakos
Sensors 2024, 24(17), 5688; https://doi.org/10.3390/s24175688 - 31 Aug 2024
Viewed by 705
Abstract
The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a [...] Read more.
The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a silicon photonic dipstick sensor accommodating two U-shaped Mach–Zehnder Interferometers (MZIs) was employed for the label-free detection of the adulteration of ewe, goat, and donkey milk with cow milk. One of the two MZIs of the chip was modified with bovine κ-casein, while the other was modified with bovine serum albumin to serve as a blank. All assay steps were performed by immersion of the chip side where the MZIs are positioned into the reagent solutions, leading to a photonic dipstick immunosensor. Thus, the chip was first immersed in a mixture of milk with anti-bovine κ-casein antibody and then in a secondary antibody solution for signal enhancement. A limit of detection of 0.05% v/v cow milk in ewe, goat, or donkey milk was achieved in 12 min using a 50-times diluted sample. This fast, sensitive, and simple assay, without the need for sample pre-processing, microfluidics, or pumps, makes the developed sensor ideal for the detection of milk adulteration at the point of need. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2024)
Show Figures

Figure 1

30 pages, 9347 KiB  
Article
Targeted FT-NIR and SERS Detection of Breast Cancer HER-II Biomarkers in Blood Serum Using PCB-Based Plasmonic Active Nanostructured Thin Film Label-Free Immunosensor Immobilized with Directional GNU-Conjugated Antibody
by Mohammad E. Khosroshahi, Yesha Patel and Vithurshan Umashanker
Sensors 2024, 24(16), 5378; https://doi.org/10.3390/s24165378 - 20 Aug 2024
Viewed by 933
Abstract
This work describes our recent PCB-based plasmonic nanostructured platform patent (US 11,828,747B2) for the detection of biomarkers in breast cancer serum (BCS). A 50 nm thin gold film (TGF) was immersion-coated on PCB (i.e., PCB-TGF) and immobilized covalently with gold nanourchin (GNU) via [...] Read more.
This work describes our recent PCB-based plasmonic nanostructured platform patent (US 11,828,747B2) for the detection of biomarkers in breast cancer serum (BCS). A 50 nm thin gold film (TGF) was immersion-coated on PCB (i.e., PCB-TGF) and immobilized covalently with gold nanourchin (GNU) via a 1,6-Hexanedithiol (HDT) linkage to produce a plasmonic activated nanostructured thin film (PANTF) platform. A label-free SERS immunosensor was fabricated by conjugating the platform with monoclonal HER-II antibodies (mAb) in a directional orientation via adipic acid dihydrazide (ADH) to provide higher accessibility to overexpressed HER-II biomarkers (i.e., 2+ (early), 3+ (locally advanced), and positive (meta) in BCS. An enhancement factor (EF) of 0.3 × 105 was achieved for PANTF using Rhodamine (R6G), and the morphology was studied by scanning electron microscopy (SEM) and atomic force microscope (AFM). UV-vis spectroscopy showed the peaks at 222, 231, and 213 nm corresponding to ADH, mAb, and HER-II biomarkers, respectively. The functionalization and conjugation were investigated by Fourier Transform Near Infrared (FT-NIR) where the most dominant overlapped spectra of 2+, 3+, and Pos correspond to OH-combination of carbohydrate, RNH2 1st overtone, and aromatic CH 1st overtone of mAb, respectively. SERS data were filtered using the filtfilt filter from scipy.signals, baseline corrected using the Improved Asymmetric Least Squares (isals) function from the pybaselines.Whittaker library. The results showed the common peaks at 867, 1312, 2894, 3026, and 3258 cm−1 corresponding to glycine, alanine ν (C-N-C) assigned to the symmetric C-N-C stretch mode; tryptophan and α helix; C-H antisymmetric and symmetric stretching; NH3+ in amino acids; and N-H stretch primary amide, respectively, with the intensity of Pos > 3+ > 2+. This trend is justifiable considering the stage of each sample. Principal Component Analysis (PCA) and Linear Discrimination Analysis (LDA) were employed for the statistical analysis of data. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

17 pages, 3338 KiB  
Article
Virtual Screening and Validation of Affinity DNA Functional Ligands for IgG Fc Segment
by Qianyu Yang, Zhiwei Liu, Xinrui Xu, Jiang Wang, Bin Du, Pengjie Zhang, Bing Liu, Xihui Mu and Zhaoyang Tong
Int. J. Mol. Sci. 2024, 25(16), 8681; https://doi.org/10.3390/ijms25168681 - 9 Aug 2024
Viewed by 732
Abstract
The effective attachment of antibodies to the immune sensing interface is a crucial factor that determines the detection performance of immunosensors. Therefore, this study aims to investigate a novel antibody immobilization material with low molecular weight, high stability, and excellent directional immobilization effect. [...] Read more.
The effective attachment of antibodies to the immune sensing interface is a crucial factor that determines the detection performance of immunosensors. Therefore, this study aims to investigate a novel antibody immobilization material with low molecular weight, high stability, and excellent directional immobilization effect. In this study, we employed molecular docking technology based on the ZDOCK algorithm to virtually screen DNA functional ligands (DNAFL) for the Fc segment of antibodies. Through a comprehensive analysis of the key binding sites and contact propensities at the interface between DNAFL and IgG antibody, we have gained valuable insights into the affinity relationship, as well as the principles governing amino acid and nucleotide interactions at this interface. Furthermore, molecular affinity experiments and competitive binding experiments were conducted to validate both the binding ability of DNAFL to IgG antibody and its actual binding site. Through affinity experiments using multi-base sequences, we identified bases that significantly influence antibody-DNAFL binding and successfully obtained DNAFL with an enhanced affinity towards the IgG Fc segment. These findings provide a theoretical foundation for the targeted design of higher-affinity DNAFLs while also presenting a new technical approach for immunosensor preparation with potential applications in biodetection. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

Back to TopTop