Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = HPMC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4324 KiB  
Article
Development of Personalised Immediate-Release Gel-Based Formulations Using Semi-Solid Extrusion
by Morenikeji Aina, Fabien Baillon, Romain Sescousse, Noelia M. Sanchez-Ballester, Sylvie Begu, Ian Soulairol and Martial Sauceau
Gels 2024, 10(10), 665; https://doi.org/10.3390/gels10100665 - 17 Oct 2024
Viewed by 343
Abstract
Precision in dosing is crucial for optimizing therapeutic outcomes and preventing overdosing, especially in preterm infants. Traditional manual adjustments to adapt the dose often lead to inaccuracies, contamination risks, and reduced precision. To overcome these challenges, semi-solid extrusion 3D printing was used to [...] Read more.
Precision in dosing is crucial for optimizing therapeutic outcomes and preventing overdosing, especially in preterm infants. Traditional manual adjustments to adapt the dose often lead to inaccuracies, contamination risks, and reduced precision. To overcome these challenges, semi-solid extrusion 3D printing was used to create personalised gel-based caffeine dosage forms. The hydrogels, made from agar and hydroxypropyl methylcellulose, demonstrated excellent rheological properties, ensuring uniform extrusion and accurate shape retention during and after printing. This gel formulation allowed for precise adjustments of caffeine volume and content tailored to a neonate weighing 1.36 kg, achieving a recovery of 103.46%, well within acceptable limits. Additionally, three production batches confirmed the process’s reproducibility with minimal variability. Forced degradation studies showed that both pure caffeine and caffeine in the gel matrix exhibited similar stability profiles, confirming the drug’s chemical integrity. The printed gel dosage forms also displayed immediate-release characteristics, with over 80% of caffeine released within 45 min, highlighting their suitability for rapid therapeutic action. These findings emphasise the potential of SSE 3DP and gel-based formulations to produce personalised drug delivery systems with high precision, reproducibility, and reliability. Full article
Show Figures

Graphical abstract

18 pages, 3919 KiB  
Article
Sublingual Fast-Dissolving Thin Films of Loratadine: Characterization, In Vitro and Ex Vivo Evaluation
by Yahya Alhamhoom, Ashitha Kakarlapudi Said, Avichal Kumar, Shivakumar Hagalavadi Nanjappa, Divya Wali, Mohamed Rahamathulla, Syeda Ayesha Farhana, Mohammed Muqtader Ahmed and Thippeswamy Boreddy Shivanandappa
Polymers 2024, 16(20), 2919; https://doi.org/10.3390/polym16202919 - 17 Oct 2024
Viewed by 413
Abstract
Loratadine (LOR) is a second-generation antihistamine that exhibits a low and variable oral bioavailability (10–40%) and delayed onset owing to poor solubility and an extensive first-pass effect. Therefore, in light of the clinical need, the main goal of the present study was to [...] Read more.
Loratadine (LOR) is a second-generation antihistamine that exhibits a low and variable oral bioavailability (10–40%) and delayed onset owing to poor solubility and an extensive first-pass effect. Therefore, in light of the clinical need, the main goal of the present study was to develop sublingual fast-dissolving thin films of LOR–citric acid co-amorphous systems (LOR-CAs) with the aim of eliciting a faster onset and improving the bioavailability. We formulated sublingual fast-dissolving thin films of LOR by a film-casting technique using hydrophilic polymers like hydroxypropyl methylcellulose (HPMC E15), polyvinyl pyrrolidone K30 (PVP K30), and hydroxypropyl cellulose EL (HPC-EF) and citric acid as a pH modulator, while glycerin served as a plasticizer. The sublingual fast-dissolving thin films were characterized by FTIR, SEM, DSC, and XRD and evaluated for in vitro dissolution and ex vivo mucoadhesion. The best formulation (F1) developed using HPMC E15 as a polymer, glycerin as a plasticizer, and citric acid as a pH modulator was found to be the optimized formulation as it was smooth, clear, flexible, and displayed good mucoadhesion (11.27 ± 0.418 gm/cm2) and uniform thickness (0.25 ± 0.02 mm). The formulation F1 was found to display a significantly shorter DT (30.30 ± 0.6 s) and rapid release of LOR (92.10 ± 2.3% in 60 min) compared to other formulations (ANOVA, p < 0.001). The results indicated that the prepared sublingual films are likely to elicit a faster therapeutic effect, avoid first-pass metabolism, and improve the bioavailability. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

20 pages, 3989 KiB  
Article
Quality by Design (QbD) Approach to Develop Colon-Specific Ketoprofen Hot-Melt Extruded Pellets: Impact of Eudragit® S 100 Coating on the In Vitro Drug Release
by Sateesh Kumar Vemula, Sagar Narala, Prateek Uttreja, Nagarjuna Narala, Bhaskar Daravath, Chamundeswara Srinivasa Akash Kalla, Srikanth Baisa, Siva Ram Munnangi, Naveen Chella and Michael A. Repka
Pharmaceutics 2024, 16(10), 1265; https://doi.org/10.3390/pharmaceutics16101265 - 27 Sep 2024
Viewed by 480
Abstract
Background: A pelletizer paired with hot-melt extrusion technology (HME) was used to develop colon-targeted pellets for ketoprofen (KTP). Thermal stability and side effects in the upper gastrointestinal tract made ketoprofen more suitable for this work. Methods: The pellets were prepared using the enzyme-triggered [...] Read more.
Background: A pelletizer paired with hot-melt extrusion technology (HME) was used to develop colon-targeted pellets for ketoprofen (KTP). Thermal stability and side effects in the upper gastrointestinal tract made ketoprofen more suitable for this work. Methods: The pellets were prepared using the enzyme-triggered polymer Pectin LM in the presence of HPMC HME 4M, followed by pH-dependent Eudragit® S 100 coating to accommodate the maximum drug release in the colon by minimizing drug release in the upper gastrointestinal tract (GIT). Box–Behnken Design (BBD) was used for response surface optimization of the proportion of different independent variables like Pectin LM (A), HPMC HME 4M (B), and Eudragit® S 100 (C) required to lower the early drug release in upper GIT and to extend the drug release in the colon. Results: Solid-state characterization studies revealed that ketoprofen was present in a solid solution state in the hot-melt extruded polymer matrix. The desired responses of the prepared optimized KTP pellets obtained by considering the designed space showed 1.20% drug release in 2 h, 3.73% in the first 5 h of the lag period with the help of Eudragit® S 100 coating, and 93.96% in extended release up to 24 h in the colonic region. Conclusions: Hence, developing Eudragit-coated hot-melt extruded pellets could be a significant method for achieving the colon-specific release of ketoprofen. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

15 pages, 5896 KiB  
Article
Crosslinked All-Femtosecond Laser-Cut Corneal Allogenic Intracorneal Ring Segments (AFXL CAIRSs): Pilot Ex Vivo Study and Report of First Two Cases Performed in Italy
by Cosimo Mazzotta, Marco Zagari, Giulia Bona, Diego Ponzin, Shady T. Awwad, Emilio A. Torres-Netto, Farhad Hafezi and Soosan Jacob
J. Clin. Med. 2024, 13(19), 5771; https://doi.org/10.3390/jcm13195771 - 27 Sep 2024
Viewed by 693
Abstract
Objectives: This pilot ex vivo study and first clinical experience in Italy evaluate the impact of using pre-implantation crosslinking on all-femtosecond laser-cut corneal allogenic intracorneal ring segments (AFXL CAIRSs). Methods: Six human donor eye-bank corneas were used for this preclinical ex vivo human [...] Read more.
Objectives: This pilot ex vivo study and first clinical experience in Italy evaluate the impact of using pre-implantation crosslinking on all-femtosecond laser-cut corneal allogenic intracorneal ring segments (AFXL CAIRSs). Methods: Six human donor eye-bank corneas were used for this preclinical ex vivo human study. Three donor (D) corneas were used for AFXL CAIRSs. First, they were prepared with an IntraLase™ femtosecond laser (Johnson & Johnson, New Brunswick, NJ, USA). The allogenic tissue rings were crosslinked before implantation with Riboflavin–UV-A accelerated crosslinking protocol (ACXL) with a 0.1% HPMC Riboflavin isotonic solution (Vibex Rapid, Glaukos-Avedro, Burlington, MA, USA) and a new KXL UV-A emitter (Glaukos-Avedro, USA). Three corneas were used as recipients (Rs) of the AFXL CAIRSs. After completing the ex vivo phase, IRB approval and signing a specific informed consent, the first two Italian patients were treated. A single ACXL CAIRS was implanted in a 51-year-old male with 53.53 D K steep, 363 μm minimum corneal thickness (MCT) and a double ACXL CAIRS was implanted in a 46-year-old male patient with 58.30 D K steep, 443 μm MCT. The longest follow-up was at three months. Results: Crosslinking of the segments enhanced tissue stiffness and grip, facilitating manipulation and CAIRS insertion into the recipient tunnels, and the yellowish color of the crosslinked segments improved visibility. The segment’s thickness and volume remained unaltered during the follow-up. Both patients improved UDVA and BSCVA. K steep and High-Order Aberrations (HOAs) were reduced and MCT increased. Conclusions: Pre-implantation ACXL facilitated CAIRS insertion preserving dimensions and volume during the follow-up, rendering this important step a promising candidate in method standardization. Functional data and MCT improved significantly without adverse events. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

15 pages, 4688 KiB  
Article
Development of Gastroretentive Floating Combination Tablets Containing Amoxicillin Trihydrate 500 mg and Levofloxacin 125 mg for Eradicating Resistant Helicobacter pylori
by Da Hun Kim, Sa-Won Lee, Jun Hak Lee, Jin Woo Park, Sung Mo Park, Han-Joo Maeng, Tae-Sung Koo and Kwan Hyung Cho
Pharmaceutics 2024, 16(10), 1242; https://doi.org/10.3390/pharmaceutics16101242 - 24 Sep 2024
Viewed by 486
Abstract
Background/Objectives: The aim of this work was to prepare and characterize gastroretentive floating combination tablets (GRCTs) containing 500 mg of amoxicillin trihydrate (AMX) and 125 mg of levofloxacin (LVX) that provide sustained drug release and stability at gastric pH levels for the eradication [...] Read more.
Background/Objectives: The aim of this work was to prepare and characterize gastroretentive floating combination tablets (GRCTs) containing 500 mg of amoxicillin trihydrate (AMX) and 125 mg of levofloxacin (LVX) that provide sustained drug release and stability at gastric pH levels for the eradication of resistant Helicobacter pylori. Method: GRCTs were prepared with low-density excipients and hydrophilic swellable polymers, including hydroxypropyl methylcellulose (HPMC) of various viscosities, polyethylene oxide (PEO), and carboxymethylcellulose (CMC), by the direct compression method. The prepared GRCTs were investigated and optimized in terms of pH stability, tablet hardness, floating lag time and total floating time, drug release rate, gel strength. Results: AMX and LVX in GRCT were stable at the HP eradication target pH above 4.0. The effervescent GRCT composition (AMX/LVX/HPMC [4000 cP]/CMC/microcrystalline cellulose/citric acid/sodium bicarbonate/calcium silicate/silicon dioxide/magnesium stearate = 500/125/50/50/125/40/60/30/10/10, w/w) yielded acceptable hardness (>6 kp), reduced floating lag time (<5 s), a long floating duration (>12 h), and sustained release rates of AMX and LVX (>90% until 12 h). This optimized GRCT had a gel strength of 107.33 ± 10.69 g and pH > 4.0, which maintained the tablets’ shape and AMX stability for 12 h. Conclusions: Collectively, the formulated effervescent GRCTs combining AMX and LVX represented a promising candidate dosage form for eradicating resistant H. pylori. Full article
(This article belongs to the Special Issue New Technology for Prolonged Drug Release, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 4835 KiB  
Article
Development of Glycerosomal pH Triggered In Situ Gelling System to Ameliorate the Nasal Delivery of Sulpiride for Pediatric Psychosis
by Mona M. Shahien, Alia Alshammari, Somaia Ibrahim, Enas Haridy Ahmed, Hanan Abdelmawgoud Atia, Hemat A. Elariny and Marwa H. Abdallah
Gels 2024, 10(9), 608; https://doi.org/10.3390/gels10090608 - 23 Sep 2024
Viewed by 437
Abstract
Sulpiride (Sul) is a medication that blocks dopamine D2 receptors. It is used to treat gastrointestinal disturbances and has antipsychotic effects depending on the dose given. Sulpiride is subject to P-glycoprotein efflux, resulting in limited bioavailability and erratic absorption. Hence, the aim [...] Read more.
Sulpiride (Sul) is a medication that blocks dopamine D2 receptors. It is used to treat gastrointestinal disturbances and has antipsychotic effects depending on the dose given. Sulpiride is subject to P-glycoprotein efflux, resulting in limited bioavailability and erratic absorption. Hence, the aim of this study was to generate a glycerosomal in situ gel of sulpiride for intranasal administration, specifically targeting children with schizophrenia who may have difficulty swallowing traditional solid medications, for enhancing its bioavailability. This study aimed to demonstrate the efficacy of intranasal administration of glycerin-encapsulated lipid-nanovesicles (glycerosomes) mixed with in situ gels for prolonged release of anti-psychotic medication. A Box–Behnken design was utilized to create sulpiride-loaded glycerosomes (Sul-GMs), with the lipid amount (A), glycerin concentration (B), and sonication time (C) acting as independent variables. Their impact on the entrapment efficiency, EE% (Y1), and in vitro drug release (Y2) were evaluated. The sulpiride EE% showed an increase when the glycerin concentration was raised to 25% v/v. Nevertheless, when the glycerin concentration was raised to 40% v/v, there was a notable decrease in the EE%. The optimized glycerosome was added to pH triggered carbopol 974P in situ gel formulations including HPMC K15M with different concentrations. The in situ gel formulation (G3) comprising 0.6% carbopol 974P and 0.6% hydroxypropyl methyl cellulose-K15M (HPMC K15M) demonstrated suitable pH, viscosity, desired gel strength, spreadability, and mucoadhesive strength. Consequently, it was selected for in vitro study, ex vivo permeation investigation, and in vivo evaluations. The glycerosomal in situ gel exhibited favorable ex vivo permeability of SU when applied to the nasal mucosa. The pharmacokinetic investigation revealed that the optimized Sul-loaded glycerosomal in situ gel exhibited a significant fourfold and twofold enhancement in systemic bioavailability compared to both the control gel and the commercially available formulation. Finally, the intranasal administration of Sul-loaded glycerosomal in situ gel is a promising alternative to oral treatment for pediatric patients with psychosis. Full article
(This article belongs to the Special Issue Functional Gels Applied in Drug Delivery)
Show Figures

Figure 1

13 pages, 3955 KiB  
Article
Foam Stabilization Process for Nano-Al2O3 and Its Effect on Mechanical Properties of Foamed Concrete
by Haibao Zhang, Zhenjun Wang, Ting Zhang and Zhaorui Li
Nanomaterials 2024, 14(18), 1516; https://doi.org/10.3390/nano14181516 - 18 Sep 2024
Viewed by 469
Abstract
Foamed concrete is increasingly utilized in engineering due to its light weight, excellent thermal insulation, fire resistance, etc. However, its low strength has always been the most crucial factor limiting its large-scale application. This study introduced an innovative method to enhance the strength [...] Read more.
Foamed concrete is increasingly utilized in engineering due to its light weight, excellent thermal insulation, fire resistance, etc. However, its low strength has always been the most crucial factor limiting its large-scale application. This study introduced an innovative method to enhance the strength of foamed concrete by using nano-Al2O3 (NA) as a foam stabilizer. NA was introduced into a foaming agent containing sodium dodecyl sulfate (SDS) and hydroxypropyl methylcellulose (HPMC) to prepare a highly stable foam. This approach significantly improved the foam stability and the strength of foamed concrete. Its drainage volume, settlement distance, microstructure, and stabilizing action were investigated, along with the strength, microstructure, and hydration products of foamed concrete. The presence of NA effectively reduced the drainage volume and settlement distance of the foam. NA is distributed at the gas–liquid interface and within the liquid film to play a hindering role, increasing the thickness of the liquid film, delaying the liquid discharge rate from the liquid film, and hindering bubble aggregation, thereby enhancing foam stability. Additionally, due to the stabilizing effect of NA on the foam, the precast foam forms a fine and uniform pore structure in the hardened foamed concrete. At 28 d, the compressive strength of FC0 (0% NAs in foam) is 2.18 MPa, while that of FC3 (0.18% NAs in foam) is 3.90 MPa, increased by 79%. The reason for this is that NA promotes the formation of AFt, and its secondary hydration leads to the continuous consumption of Ca(OH)2, resulting in a more complete hydration reaction. This study presents a novel method for significantly improving the performance of foamed concrete by incorporating NA. Full article
Show Figures

Figure 1

22 pages, 11883 KiB  
Article
Experimental Study on the Suspending Mechanism of Suspending Agent in Coal-Based Solid Waste Slurry for Long-Distance Pipeline Transportation
by Tao Li, Tao Yang, Heng Min, Min Cao and Jingyan Hu
Processes 2024, 12(9), 1937; https://doi.org/10.3390/pr12091937 - 9 Sep 2024
Viewed by 536
Abstract
The transportation of coal-based solid waste filling slurry (CSWFS) through pipelines for underground goaf injection is essential for enhancing mine safety and promoting green, low-carbon coal mining. To address the issue of pipeline blockage caused by the suspension sensitivity of CSWFS during long-distance [...] Read more.
The transportation of coal-based solid waste filling slurry (CSWFS) through pipelines for underground goaf injection is essential for enhancing mine safety and promoting green, low-carbon coal mining. To address the issue of pipeline blockage caused by the suspension sensitivity of CSWFS during long-distance transportation, this study proposes the addition of the suspending agent hydroxypropyl methyl cellulose (HPMC) to transform the filling slurry into a stable suspending slurry. The mechanism by which the suspending agent modifies the rheological property of CSWFS was elucidated and verified. Firstly, an evaluation index system for the suspending state of CSWFS based on the “experimental test and theoretical calculation” was established. The values for layering degree, bleeding rate time-loss, and the corresponding average time-loss rate over 0 to 120 min of A1–A5 CSWFS were recorded as 24 mm–2 mm, 3.0–0.2%, 252.4–54.2%, and 149.6–14.6%, respectively. The concentration gradient evaluation result, C/CA = 0.91 (≥0.8), confirmed that the suspending agent maintained a stable suspending state over time for CSWFS. Secondly, it was demonstrated that the suspending agent HPMC modified the rheological property of A1–A5 CSWFS by increasing its plastic viscosity, which strengthened the viscous resistance to particle settling, thereby transforming a semi-stable slurry into a stable one. Additionally, the formation of a spatial suspending network by the suspending agent ensures that no pipeline blockage accidents occured in practical engineering applications. Furthermore, the XRD and SEM tests were utilized to verify the microstructure of the top (T) and bottom (B) samples in A4 block. It was concluded that the type of hydration products, occurrence forms, lapping compactness, and microstructural development were consistent, ultimately forming a high-strength, dense, hardened filling block. Finally, numerical simulation confirmed that the addition of suspending agent in A4 slurry formed a comprehensive spatial suspending network and a well-structured, unified system. This is one effective approach which could contribute to addressing the technical issue of pipeline blockage during long-distance pipeline transportation. Full article
(This article belongs to the Topic Energy Extraction and Processing Science)
Show Figures

Figure 1

23 pages, 18590 KiB  
Article
Binary and Ternary Inclusion Complexes of Niflumic Acid: Synthesis, Characterization, and Dissolution Profile
by Zohra Bouchekhou, Amel Hadj Ziane-Zafour, Florentina Geanina Lupascu, Bianca-Ștefania Profire, Alina Nicolescu, Denisse-Iulia Bostiog, Florica Doroftei, Ioan-Andrei Dascalu, Cristian-Dragoș Varganici, Mariana Pinteala, Lenuta Profire, Tudor Pinteala and Bachir Bouzid
Pharmaceutics 2024, 16(9), 1190; https://doi.org/10.3390/pharmaceutics16091190 - 9 Sep 2024
Viewed by 544
Abstract
Although niflumic acid (NA) is one of the most used non-steroidal anti-inflammatory drugs, it suffers from poor solubility, low bioavailability, and significant adverse effects. To address these limitations, the complexation of NA with cyclodextrins (CDs) is a promising strategy. However, complexing CDs with [...] Read more.
Although niflumic acid (NA) is one of the most used non-steroidal anti-inflammatory drugs, it suffers from poor solubility, low bioavailability, and significant adverse effects. To address these limitations, the complexation of NA with cyclodextrins (CDs) is a promising strategy. However, complexing CDs with low molecular weight drugs like NA can lead to low CE. This study explores the development of inclusion complexes of NA with 2-hydroxypropyl-β-cyclodextrin (2HP-β-CD), including the effect of converting NA to its sodium salt (NAs) and adding hydroxypropyl methylcellulose (HPMC) on complex formation. Inclusion complexes were prepared using co-evaporation solvent and freeze-drying methods, and their CE and Ks were determined through a phase solubility study. The complexes were characterized using physicochemical analyses, including FT-IR, DSC, SEM, XRD, DLS, UV-Vis, 1H-NMR, and 1H-ROESY. The dissolution profiles of the complexes were also evaluated. The analyses confirmed complex formation for all systems, demonstrating drug–cyclodextrin interactions, amorphous drug states, morphological changes, and improved solubility and dissolution profiles. The NAs-2HP-β-CD-HPMC complex exhibited the highest CE and Ks values, a 1:1 host-guest molar ratio, and the best dissolution profile. The results indicate that the NAs-2HP-β-CD-HPMC complex has potential for delivering NA, which might enhance its therapeutic effectiveness and minimize side effects. Full article
(This article belongs to the Special Issue Self-Assembled Amphiphilic Copolymers in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

18 pages, 3303 KiB  
Article
Design and Evaluation of New Gel-Based Floating Matrix Tablets Utilizing the Sublimation Technique for Gastroretentive Drug Delivery
by Worawut Kriangkrai, Satit Puttipipatkhachorn, Pornsak Sriamornsak and Srisagul Sungthongjeen
Viewed by 548
Abstract
A gel-based floating matrix tablet was formulated and evaluated using the sublimation technique to enhance gastroretentive drug delivery. Anhydrous theophylline was employed as the active pharmaceutical ingredient, combined with sublimation agents and hydroxypropyl methylcellulose as the gel-forming polymer. The resulting tablets exhibited high [...] Read more.
A gel-based floating matrix tablet was formulated and evaluated using the sublimation technique to enhance gastroretentive drug delivery. Anhydrous theophylline was employed as the active pharmaceutical ingredient, combined with sublimation agents and hydroxypropyl methylcellulose as the gel-forming polymer. The resulting tablets exhibited high porosity, immediate floatation, and sustained buoyancy for over 8 h. Optimization of the floating behavior and drug release profiles was achieved by adjusting the viscosity of and hydroxypropyl methylcellulose and the concentration of sublimation agents, specifically ammonium carbonate and menthol. These agents were selected for their effectiveness in creating a porous structure, thus reducing tablet density and enhancing floatation. Higher HPMC viscosity resulted in increased floating force, slower drug release, and improved swelling properties due to a slower erosion rate. A critical assessment of the balance between tablet porosity, mechanical strength, and drug release kinetics indicates that ammonium carbonate provided superior tablet hardness and lower friability compared to menthol, favoring a controlled release mechanism. The release dynamics of theophylline were best described by the anomalous (non-Fickian) diffusion model, suggesting a combined effect of diffusion and erosion. This research advances the development of gastroretentive drug delivery systems, highlighting the potential of sublimation-based floating matrix tablets for sustained drug release. Full article
(This article belongs to the Special Issue Polysaccharide: Gelation Arts)
Show Figures

Graphical abstract

17 pages, 2672 KiB  
Article
Mannitol-Coated Hydroxypropyl Methylcellulose as a Directly Compressible Controlled Release Excipient for Moisture-Sensitive Drugs: A Stability Perspective
by Christina Yong Xin Kang, Keat Theng Chow, Yuan Siang Lui, Antoine Salome, Baptiste Boit, Philippe Lefevre, Tze Ning Hiew, Rajeev Gokhale and Paul Wan Sia Heng
Pharmaceuticals 2024, 17(9), 1167; https://doi.org/10.3390/ph17091167 - 4 Sep 2024
Cited by 1 | Viewed by 1031
Abstract
Background/Objectives: Hydroxypropyl methylcellulose (HPMC) is one of the most commonly used hydrophilic polymers in formulations of matrix tablets for controlled release applications. However, HPMC attracts moisture and poses issues with drug stability in formulations containing moisture-sensitive drugs. Methods: Herein, the moisture sorption behavior [...] Read more.
Background/Objectives: Hydroxypropyl methylcellulose (HPMC) is one of the most commonly used hydrophilic polymers in formulations of matrix tablets for controlled release applications. However, HPMC attracts moisture and poses issues with drug stability in formulations containing moisture-sensitive drugs. Methods: Herein, the moisture sorption behavior of excipients and drug stability using aspirin as the model drug in matrix tablets were evaluated, using HPMC and the newly developed mannitol-coated HPMC, under accelerated stability conditions (40 °C, 75% relative humidity) with open and closed dishes. Results: Tablets prepared with mannitol-coated HPMC showed a slower drug degradation rate compared to tablets prepared with directly compressible HPMC. Initial moisture content and hygroscopicity were stronger predictors of drug stability compared to water activity when comparing samples without similar moisture content. In the early stage (day 0 to 30), the aspirin degradation rate was similar in both open and closed conditions, as moisture content is the main degradation contributor. In the later stage (day 30 to 90), aspirin degradation was faster under closed conditions than under open conditions, likely due to autocatalytic effects caused by the volatile acidic by-product entrapped in the closed environment. Conclusions: The findings from this study reinforced the importance of judicious excipient selection based on the understanding of excipient–moisture interactions to maximize the chemical stability of moisture-sensitive drugs. Mannitol-coated HPMC is a promising addition to the formulator’s toolbox for the formulation of controlled release dosage forms by direct compression. Full article
(This article belongs to the Special Issue Preparation Technologies and Dissolution Behaviour of Oral Solids)
Show Figures

Graphical abstract

27 pages, 9145 KiB  
Article
Application of Hydrophilic Polymers to the Preparation of Prolonged-Release Minitablets with Bromhexine Hydrochloride and Bisoprolol Fumarate
by Agata Grzejdziak, Witold Brniak, Olaf Lengier, Justyna Anna Żarek, Dziyana Hliabovich and Aleksander Mendyk
Pharmaceutics 2024, 16(9), 1153; https://doi.org/10.3390/pharmaceutics16091153 - 30 Aug 2024
Viewed by 622
Abstract
Minitablets have been extensively studied in recent years as a convenient pediatric form because they allow successful administration even in very young children. Their advantages include easy dose adjustment by multiplication of single units as well as the possibility of drug release modification [...] Read more.
Minitablets have been extensively studied in recent years as a convenient pediatric form because they allow successful administration even in very young children. Their advantages include easy dose adjustment by multiplication of single units as well as the possibility of drug release modification by coating or forming matrix systems. The aim of this study was to demonstrate the possibility of the formulation of prolonged-release minitablets with bromhexine hydrochloride (BHX) and bisoprolol fumarate (BFM) dedicated to pediatric patients. Minitablets with 3 mm diameter and 15 mg mass, containing 1 mg of active substance in 1 unit, were prepared by direct compression with hydroxypropyl methylcellulose (HPMC) of different grades, methylcellulose, sodium alginate, or polyvinyl alcohol (PVA) as a sustained-release polymer. Different amounts of polymers and different compression forces were evaluated. Analysis of minitablets included their uniformity, hardness, and dissolution tests. The kinetics of drug substance release were analyzed with dedicated software. The prepared minitablets met the pharmacopeial requirements with respect to the uniformity of mass and content. The compressibility of BFM was significantly better than that of BHX, yet all minitablets had good mechanical properties. Dissolution studies showed a strong relationship between the type of polymer and its amount in the mass of a tablet and the dissolution rate. Prolonged release of up to 8 h was achieved when HPMC of 4000 cP viscosity was used in the amount of 30% to 80%. Sodium alginate in the amount of 50% was also effective in prolonging dissolution, but PVA was much less effective. Studies on the release kinetics showed that dissolution from prolonged-release minitablets with BHX fit the best to Hopfenberg or Hixson–Crowell models, while in the case of BFM, the best fit was found for Hopfenberg or Korsmeyer–Peppas models. Full article
(This article belongs to the Special Issue Advanced Pharmaceutical Excipients Used in Solid Dosage Forms)
Show Figures

Figure 1

20 pages, 11485 KiB  
Article
Fabrication and Characterization of Dissolving Microneedles Containing Oryza sativa L. Extract Complex for Enhancement of Transfollicular Delivery
by Tanpong Chaiwarit, Baramee Chanabodeechalermrung, Pensak Jantrawut, Warintorn Ruksiriwanich and Mathukorn Sainakham
Polymers 2024, 16(16), 2377; https://doi.org/10.3390/polym16162377 - 22 Aug 2024
Viewed by 717
Abstract
Dissolving microneedles are extensively applied in drug delivery systems to enhance penetration into the skin. In this study, dissolving microneedles fabricated from polyvinylpyrrolidone K90 (PVP-K90) and hydroxypropylmethyl cellulose (HPMC) E50 in different ratios were characterized. The selected formulations incorporated Oryza sativa L. extract [...] Read more.
Dissolving microneedles are extensively applied in drug delivery systems to enhance penetration into the skin. In this study, dissolving microneedles fabricated from polyvinylpyrrolidone K90 (PVP-K90) and hydroxypropylmethyl cellulose (HPMC) E50 in different ratios were characterized. The selected formulations incorporated Oryza sativa L. extract complex and its characteristics, transfollicular penetration, and safety were observed. The microneedles, fabricated from PVP K90: HPMC E50 in a ratio of 25:5 (P25H5) and 20:10 (P20H10), revealed excellent morphological structure, proper mechanical strength, and excellent skin insertion. P25H5 microneedles exhibited faster dissolution than P20H10 microneedles. Microneedles containing Oryza sativa L. extract complex showed excellent morphological structure via scanning electron microscopy but decreased mechanical strength. P25H5-O, which exhibited an effective ability to enter skin, was selected for further investigation. This microneedle formulation had a high percentage of drug-loading content, enhanced skin penetration via the transfollicular route, and was safe for keratinocytes. As a result, the dissolving microneedle containing Oryza sativa L. extract complex can be used to enhance transfollicular delivery through the skin with safety. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 5042 KiB  
Article
Impact of Hot-Melt Extrusion on Glibenclamide’s Physical and Chemical States and Dissolution Behavior: Case Studies with Three Polymer Blend Matrices
by Nina Zupan, Ines Yous, Florence Danede, Jeremy Verin, Mostafa Kouach, Catherine Foulon, Emeline Dudognon and Susanne Florin Muschert
Pharmaceutics 2024, 16(8), 1071; https://doi.org/10.3390/pharmaceutics16081071 - 15 Aug 2024
Viewed by 651
Abstract
This research work dives into the complexity of hot-melt extrusion (HME) and its influence on drug stability, focusing on solid dispersions containing 30% of glibenclamide and three 50:50 polymer blends. The polymers used in the study are Ethocel Standard 10 Premium, Kollidon SR [...] Read more.
This research work dives into the complexity of hot-melt extrusion (HME) and its influence on drug stability, focusing on solid dispersions containing 30% of glibenclamide and three 50:50 polymer blends. The polymers used in the study are Ethocel Standard 10 Premium, Kollidon SR and Affinisol HPMC HME 4M. Glibenclamide solid dispersions are characterized using thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry), X-ray diffraction and scanning electron microscopy. This study reveals the transformation of glibenclamide into impurity A during the HME process using mass spectrometry and TGA. Thus, it enables the quantification of the extent of degradation. Furthermore, this work shows how polymer–polymer blend matrices exert an impact on process parameters, the active pharmaceutical ingredient’s physical state, and drug release behavior. In vitro dissolution studies show that the polymeric matrices investigated provide extended drug release (over 24 h), mainly dictated by the polymer’s chemical nature. This paper highlights how glibenclamide is degraded during HME and how polymer selection crucially affects the sustained release dynamics. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

24 pages, 4527 KiB  
Article
Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity
by Angelos-Panagiotis Bizymis, Virginia Giannou and Constantina Tzia
Molecules 2024, 29(16), 3754; https://doi.org/10.3390/molecules29163754 - 8 Aug 2024
Viewed by 871
Abstract
The aim of this study was to develop functional composite edible films or coatings for fruit preservation by the addition of bioactive components in combinations that have not yet been thoroughly studied, according to the relevant literature. Edible films were initially composed of [...] Read more.
The aim of this study was to develop functional composite edible films or coatings for fruit preservation by the addition of bioactive components in combinations that have not yet been thoroughly studied, according to the relevant literature. Edible films were initially composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio), and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio). The bioactive components incorporated (5, 10 and 15% v/v) were as follows: (i) pomace oil-based nanoemulsion (NE) aiming to enhance barrier properties, and (ii) caffeine (C), aiming to enhance the antioxidant activity of films, respectively. Indeed, NE addition led to very high barrier properties (low oxygen and water vapor permeability), increased flexibility and reduced color. Furthermore, the contribution of these coatings to fresh strawberries’ preservation under cold storage was investigated, with very promising results concerning weight loss, color difference, and preservation of fruit moisture and quantity of O2 and CO2 inside the packages. Additionally, C addition led to very high antioxidant activity, reduced color and improved barrier properties. Finally, the contribution of these coatings to avocado’s preservation under cold storage was investigated, with very encouraging results for color difference, hardness and peroxide value of the fruit samples. Full article
Show Figures

Figure 1

Back to TopTop