Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Forel-Ule scale

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7313 KiB  
Article
Shallow Water Bathymetry Inversion Based on Machine Learning Using ICESat-2 and Sentinel-2 Data
by Mengying Ye, Changbao Yang, Xuqing Zhang, Sixu Li, Xiaoran Peng, Yuyang Li and Tianyi Chen
Remote Sens. 2024, 16(23), 4603; https://doi.org/10.3390/rs16234603 - 7 Dec 2024
Viewed by 1106
Abstract
Shallow water bathymetry is essential for maritime navigation, environmental monitoring, and coastal management. While traditional methods such as sonar and airborne LiDAR provide high accuracy, their high cost and time-consuming nature limit their application in remote and sensitive areas. Satellite remote sensing offers [...] Read more.
Shallow water bathymetry is essential for maritime navigation, environmental monitoring, and coastal management. While traditional methods such as sonar and airborne LiDAR provide high accuracy, their high cost and time-consuming nature limit their application in remote and sensitive areas. Satellite remote sensing offers a cost-effective and rapid alternative for large-scale bathymetric inversion, but it still relies on significant in situ data to establish a mapping relationship between spectral data and water depth. The ICESat-2 satellite, with its photon-counting LiDAR, presents a promising solution for acquiring bathymetric data in shallow coastal regions. This study proposes a rapid bathymetric inversion method based on ICESat-2 and Sentinel-2 data, integrating spectral information, the Forel-Ule Index (FUI) for water color, and spatial location data (normalized X and Y coordinates and polar coordinates). An automated script for extracting bathymetric photons in shallow water regions is provided, aiming to facilitate the use of ICESat-2 data by researchers. Multiple machine learning models were applied to invert bathymetry in the Dongsha Islands, and their performance was compared. The results show that the XG-CID and RF-CID models achieved the highest inversion accuracies, 93% and 94%, respectively, with the XG-CID model performing best in the range from −10 m to 0 m and the RF-CID model excelling in the range from −15 m to −10 m. Full article
(This article belongs to the Special Issue Artificial Intelligence for Ocean Remote Sensing)
Show Figures

Figure 1

15 pages, 28158 KiB  
Article
Landsat-Derived Forel–Ule Index in the Three Gorges Reservoir over the Past Decade: Distribution, Trend, and Driver
by Yao Wang, Lei Feng, Jingan Shao, Menglan Gan, Meiling Liu, Ling Wu and Botian Zhou
Sensors 2024, 24(23), 7449; https://doi.org/10.3390/s24237449 - 22 Nov 2024
Viewed by 469
Abstract
Water color is an essential indicator of water quality assessment, and thus water color remote sensing has become a common method in large-scale water quality monitoring. The satellite-derived Forel–Ule index (FUI) can actually reflect the comprehensive water color characterization on a large scale; [...] Read more.
Water color is an essential indicator of water quality assessment, and thus water color remote sensing has become a common method in large-scale water quality monitoring. The satellite-derived Forel–Ule index (FUI) can actually reflect the comprehensive water color characterization on a large scale; however, the spatial distribution and temporal trends in water color and their drivers remain prevalently elusive. Using the Google Earth Engine platform, this study conducts the Landsat-derived FUI to track the complicated water color dynamics in a large reservoir, i.e., the Three Gorges Reservoir (TGR), in China over the past decade. The results show that the distinct patterns of latitudinal FUI distribution are found in the four typical TGR tributaries on the yearly and monthly scales, and the causal relationship between heterogeneous FUI trends and natural/anthropogenic drivers on different temporal scales is highlighted. In addition, the coexistence of phytoplankton bloom and summer flood in the TGR tributaries has been revealed through the hybrid representation of greenish and yellowish schemes. This study is an important step forward in understanding the water quality change in a river–reservoir ecosystem affected by complex coupling drivers on a large spatiotemporal scale. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 3953 KiB  
Article
Use of Digital Images as a Low-Cost System to Estimate Surface Optical Parameters in the Ocean
by Alejandra Castillo-Ramírez, Eduardo Santamaría-del-Ángel, Adriana González-Silvera, Jesús Aguilar-Maldonado, Jorge Lopez-Calderon and María-Teresa Sebastiá-Frasquet
Sensors 2023, 23(6), 3199; https://doi.org/10.3390/s23063199 - 16 Mar 2023
Cited by 1 | Viewed by 2113
Abstract
Ocean color is the result of absorption and scattering, as light interacts with the water and the optically active constituents. The measurement of ocean color changes enables monitoring of these constituents (dissolved or particulate materials). The main objective of this research is to [...] Read more.
Ocean color is the result of absorption and scattering, as light interacts with the water and the optically active constituents. The measurement of ocean color changes enables monitoring of these constituents (dissolved or particulate materials). The main objective of this research is to use digital images to estimate the light attenuation coefficient (Kd), the Secchi disk depth (ZSD), and the chlorophyll a (Chla) concentration and to optically classify plots of seawater using the criteria proposed by Jerlov and Forel using digital images captured at the ocean surface. The database used in this study was obtained from seven oceanographic cruises performed in oceanic and coastal areas. Three approaches were developed for each parameter: a general approach that can be applied under any optical condition, one for oceanic conditions, and another for coastal conditions. The results of the coastal approach showed higher correlations between the modeled and validation data, with rp values of 0.80 for Kd, 0.90 for ZSD, 0.85 for Chla, 0.73 for Jerlov, and 0.95 for Forel–Ule. The oceanic approach failed to detect significant changes in a digital photograph. The most precise results were obtained when images were captured at 45° (n = 22; Fr cal=11.02>Fr crit=5.99). Therefore, to ensure precise results, the angle of photography is key. This methodology can be used in citizen science programs to estimate ZSD, Kd, and the Jerlov scale. Full article
(This article belongs to the Special Issue Low-Cost Sensors for Environmental Monitoring)
Show Figures

Figure 1

23 pages, 5351 KiB  
Article
Innovative Remote Sensing Identification of Cyanobacterial Blooms Inspired from Pseudo Water Color
by Zhen Cao, Yuanyuan Jing, Yuchao Zhang, Lai Lai, Zhaomin Liu and Qiduo Yang
Remote Sens. 2023, 15(1), 215; https://doi.org/10.3390/rs15010215 - 30 Dec 2022
Cited by 7 | Viewed by 3389
Abstract
The identification and monitoring of cyanobacterial blooms (CBs) is critical for ensuring water security. However, traditional methods are time-consuming and labor-intensive and are not ideal for large-scale monitoring. In operational monitoring, the existing remote sensing methods are also not ideal due to complex [...] Read more.
The identification and monitoring of cyanobacterial blooms (CBs) is critical for ensuring water security. However, traditional methods are time-consuming and labor-intensive and are not ideal for large-scale monitoring. In operational monitoring, the existing remote sensing methods are also not ideal due to complex surface features, unstable models, and poor robustness thresholds. Here, a novel algorithm, the pseudo-Forel-Ule index (P-FUI), is developed and validated to identify cyanobacterial blooms based on Terra MODIS, Landsat-8 OLI, Sentinel-2 MSI, and Sentinel-3 OLCI sensors. First, three parameters of P-FUI, that is, brightness Y, saturation s, and hue angle α, were calculated based on remote sensing reflectance. Then, the robustness thresholds of the parameters were determined by statistical analysis for a frequency distribution histogram. We validated the accuracy of our approach using high-spatial-resolution satellite data with the aid of field investigations. Considerable results were obtained by using water color differences directly. The overall classification accuracy is more than 93.76%, and the user’s accuracy and producer’s accuracy are more than 94.60% and 94.00%, respectively, with a kappa coefficient of 0.91. The identified cyanobacterial blooms’ spatial distribution with high, medium, and low intensity produced consistent results compared to those based on satellite data. Impact factors were also discussed, and the algorithm was shown to be tolerant of perturbations by clouds and high turbidity. This new approach enables operational monitoring of cyanobacterial blooms in eutrophic lakes. Full article
(This article belongs to the Special Issue Remote Sensing for Monitoring Harmful Algal Blooms)
Show Figures

Figure 1

29 pages, 11047 KiB  
Article
A Universal Fuzzy Logic Optical Water Type Scheme for the Global Oceans
by Tianxia Jia, Yonglin Zhang and Rencai Dong
Remote Sens. 2021, 13(19), 4018; https://doi.org/10.3390/rs13194018 - 8 Oct 2021
Cited by 11 | Viewed by 2525
Abstract
The classification of natural waters is a way to generalize and systematize ocean color science. However, there is no consensus on an optimal water classification template in many contexts. In this study, we conducted an unsupervised classification of the PACE (Plankton, Aerosols, Cloud, [...] Read more.
The classification of natural waters is a way to generalize and systematize ocean color science. However, there is no consensus on an optimal water classification template in many contexts. In this study, we conducted an unsupervised classification of the PACE (Plankton, Aerosols, Cloud, and Ocean Ecosystem) synthetic hyperspectral data set, divided the global ocean waters into 15 classes, then obtained a set of fuzzy logic optical water type schemes (abbreviated as the U-OWT in this study) that were tailored for several multispectral satellite sensors, including SeaWiFS, MERIS, MODIS, OLI, VIIRS, MSI, and OLCI. The consistency analysis showed that the performance of U-OWT on different satellite sensors was comparable, and the sensitivity analysis demonstrated the U-OWT could resist a certain degree of input disturbance on remote sensing reflectance. Compared to existing ocean-aimed optical water type schemes, the U-OWT can distinguish more mesotrophic and eutrophic water classes. Furthermore, the U-OWT was highly compatible with other water classification taxonomies, including the trophic state index, the multivariate absorption combinations, and the Forel-Ule Scale, which indirectly demonstrated the potential for global applicability of the U-OWT. This finding was also helpful for the further conversion and unification of different water type taxonomies. As the fundamental basis, the U-OWT can be applied to many oceanic fields that need to be explored in the future. To promote the reproducibility of this study, an IDL®-based standalone U-OWT calculation tool is freely distributed. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation)
Show Figures

Graphical abstract

12 pages, 3559 KiB  
Communication
Citizen Science Tools Reveal Changes in Estuarine Water Quality Following Demolition of Buildings
by Nandini Menon, Grinson George, Rajamohananpillai Ranith, Velakandy Sajin, Shreya Murali, Anas Abdulaziz, Robert J. W. Brewin and Shubha Sathyendranath
Remote Sens. 2021, 13(9), 1683; https://doi.org/10.3390/rs13091683 - 27 Apr 2021
Cited by 17 | Viewed by 4189
Abstract
Turbidity and water colour are two easily measurable properties used to monitor pollution. Here, we highlight the utility of a low-cost device—3D printed, hand-held Mini Secchi disk (3DMSD) with Forel-Ule (FU) colour scale sticker on its outer casing—in combination with a mobile phone [...] Read more.
Turbidity and water colour are two easily measurable properties used to monitor pollution. Here, we highlight the utility of a low-cost device—3D printed, hand-held Mini Secchi disk (3DMSD) with Forel-Ule (FU) colour scale sticker on its outer casing—in combination with a mobile phone application (‘TurbAqua’) that was provided to laymen for assessing the water quality of a shallow lake region after demolition of four high-rise buildings on the shores of the lake. The demolition of the buildings in January 2020 on the banks of a tropical estuary—Vembanad Lake (a Ramsar site) in southern India—for violation of Indian Coastal Regulation Zone norms created public uproar, owing to the consequences of subsequent air and water pollution. Measurements of Secchi depth and water colour using the 3DMSD along with measurements of other important water quality variables such as temperature, salinity, pH, and dissolved oxygen (DO) using portable instruments were taken for a duration of five weeks after the demolition to assess the changes in water quality. Paired t-test analyses of variations in water quality variables between the second week of demolition and consecutive weeks up to the fifth week showed that there were significant increases in pH, dissolved oxygen, and Secchi depth over time, i.e., the impact of demolition waste on the Vembanad Lake water quality was found to be relatively short-lived, with water clarity, colour, and DO returning to levels typical of that period of year within 4–5 weeks. With increasing duration after demolition, there was a general decrease in the FU colour index to 17 at most stations, but it did not drop to 15 or below, i.e., towards green or blue colour indicating clearer waters, during the sampling period. There was no significant change in salinity from the second week to the fifth week after demolition, suggesting little influence of other factors (e.g., precipitation or changes in tidal currents) on the inferred impact of demolition waste. Comparison with pre-demolition conditions in the previous year (2019) showed that the relative changes in DO, Secchi depth, and pH were very high in 2020, clearly depicting the impact of demolition waste on the water quality of the lake. Match-ups of the turbidity of the water column immediately before and after the demolition using Sentinel 2 data were in good agreement with the in situ data collected. Our study highlights the power of citizen science tools in monitoring lakes and managing water resources and articulates how these activities provide support to Sustainable Development Goal (SDG) targets on Health (Goal 3), Water quality (Goal 6), and Life under the water (Goal 14). Full article
Show Figures

Graphical abstract

34 pages, 11625 KiB  
Article
Modelling Water Colour Characteristics in an Optically Complex Nearshore Environment in the Baltic Sea; Quantitative Interpretation of the Forel-Ule Scale and Algorithms for the Remote Estimation of Seawater Composition
by Sławomir B. Woźniak and Justyna Meler
Remote Sens. 2020, 12(17), 2852; https://doi.org/10.3390/rs12172852 - 2 Sep 2020
Cited by 8 | Viewed by 4031
Abstract
The paper presents the modelling results of selected characteristics of water-leaving light in an optically complex nearshore marine environment. The modelled quantities include the spectra of the remote-sensing reflectance Rrs(λ) and the hue angle α, which quantitatively describes the colour of [...] Read more.
The paper presents the modelling results of selected characteristics of water-leaving light in an optically complex nearshore marine environment. The modelled quantities include the spectra of the remote-sensing reflectance Rrs(λ) and the hue angle α, which quantitatively describes the colour of water visible to the unaided human eye. Based on the latter value, it is also possible to match water-leaving light spectra to classes on the traditional Forel-Ule water colour scale. We applied a simple model that assumes that seawater is made up of chemically pure water and three types of additional optically significant components: particulate organic matter (POM) (which includes living phytoplankton), particulate inorganic matter (PIM), and chromophoric dissolved organic matter (CDOM). We also utilised the specific inherent optical properties (SIOPs) of these components, determined from measurements made at a nearshore location on the Gulf of Gdańsk. To a first approximation, the simple model assumes that the Rrs spectrum can be described by a simple function of the ratio of the light backscattering coefficient to the sum of the light absorption and backscattering coefficients (u = bb/(a + bb)). The model calculations illustrate the complexity of possible relationships between the seawater composition and the optical characteristics of an environment in which the concentrations of individual optically significant components may be mutually uncorrelated. The calculations permit a quantitative interpretation of the Forel-Ule scale. The following parameters were determined for the several classes on this scale: typical spectral shapes of the u ratio, possible ranges of the total light absorption coefficient in the blue band (a(440)), as well as upper limits for concentrations of total and organic and inorganic fractions of suspended particles (SPM, POM and PIM concentrations). The paper gives examples of practical algorithms that, based on a given Rrs spectrum or some of its features, and using lookup tables containing the modelling results, enable to estimate the approximate composition of seawater. Full article
(This article belongs to the Special Issue Baltic Sea Remote Sensing)
Show Figures

Figure 1

20 pages, 6199 KiB  
Article
An Evaluation of Citizen Science Smartphone Apps for Inland Water Quality Assessment
by Tim J. Malthus, Renee Ohmsen and Hendrik J. van der Woerd
Remote Sens. 2020, 12(10), 1578; https://doi.org/10.3390/rs12101578 - 15 May 2020
Cited by 36 | Viewed by 4987
Abstract
Rapid and widespread monitoring of inland and coastal water quality occurs through the use of remote sensing and near-surface water quality sensors. A new addition is the development of smartphone applications (Apps) to measure and record surface reflectance, water color and water quality [...] Read more.
Rapid and widespread monitoring of inland and coastal water quality occurs through the use of remote sensing and near-surface water quality sensors. A new addition is the development of smartphone applications (Apps) to measure and record surface reflectance, water color and water quality parameters. In this paper, we present a field study of the HydroColor (HC, measures RGB reflectance and suspended particulate matter (SPM)) and EyeOnWater (EoW, determines the Forel–Ule scale—an indication to the visual appearance of the water surface) smartphone Apps to evaluate water quality for inland waters in Eastern Australia. The Brisbane river, multiple lakes and reservoirs and lagoons in Queensland and New South Wales were visited; hyperspectral reflection spectra were collected and water samples were analysed in the laboratory as reference. Based on detailed measurements at 32 sites, covering inland waters with a large range in sediment and algal concentrations, we find that both water quality Apps are close, but not quite on par with scientific spectrometers. EoW is a robust application that manages to capture the color of water with accuracy and precision. HC has great potential, but is influenced by errors in the observational procedure and errors in the processing of images in the iPhone. The results show that repeated observations help to reduce the effects of outliers, while implementation of camera response functions and processing should help to reduce systematic errors. For both Apps, no universal conversion to water quality composition is established, and we conclude that: (1) replicated measurements are useful; (2) color is a reliable monitoring parameter in its own right but it should not be used for other water quality variables, and; (3) tailored algorithms to convert reflectance and color to composition could be developed for lakes individually. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

26 pages, 5564 KiB  
Article
A Printable Device for Measuring Clarity and Colour in Lake and Nearshore Waters
by Robert J. W. Brewin, Thomas G. Brewin, Joseph Phillips, Sophie Rose, Anas Abdulaziz, Werenfrid Wimmer, Shubha Sathyendranath and Trevor Platt
Sensors 2019, 19(4), 936; https://doi.org/10.3390/s19040936 - 22 Feb 2019
Cited by 30 | Viewed by 10801
Abstract
Two expanding areas of science and technology are citizen science and three-dimensional (3D) printing. Citizen science has a proven capability to generate reliable data and contribute to unexpected scientific discovery. It can put science into the hands of the citizens, increasing understanding, promoting [...] Read more.
Two expanding areas of science and technology are citizen science and three-dimensional (3D) printing. Citizen science has a proven capability to generate reliable data and contribute to unexpected scientific discovery. It can put science into the hands of the citizens, increasing understanding, promoting environmental stewardship, and leading to the production of large databases for use in environmental monitoring. 3D printing has the potential to create cheap, bespoke scientific instruments that have formerly required dedicated facilities to assemble. It can put instrument manufacturing into the hands of any citizen who has access to a 3D printer. In this paper, we present a simple hand-held device designed to measure the Secchi depth and water colour (Forel Ule scale) of lake, estuarine and nearshore regions. The device is manufactured with marine resistant materials (mostly biodegradable) using a 3D printer and basic workshop tools. It is inexpensive to manufacture, lightweight, easy to use, and accessible to a wide range of users. It builds on a long tradition in optical limnology and oceanography, but is modified for ease of operation in smaller water bodies, and from small watercraft and platforms. We provide detailed instructions on how to build the device and highlight examples of its use for scientific education, citizen science, satellite validation of ocean colour data, and low-cost monitoring of water clarity, colour and temperature. Full article
(This article belongs to the Special Issue Remote Sensing of Ocean Colour: Theory and Applications)
Show Figures

Graphical abstract

2820 KiB  
Article
Classifying Natural Waters with the Forel-Ule Colour Index System: Results, Applications, Correlations and Crowdsourcing
by Shungudzemwoyo P. Garaba, Anna Friedrichs, Daniela Voß and Oliver Zielinski
Int. J. Environ. Res. Public Health 2015, 12(12), 16096-16109; https://doi.org/10.3390/ijerph121215044 - 18 Dec 2015
Cited by 61 | Viewed by 11497
Abstract
Societal awareness of changes in the environment and climate has grown rapidly, and there is a need to engage citizens in gathering relevant scientific information to monitor environmental changes due to recognition that citizens are a potential source of critical information. The apparent [...] Read more.
Societal awareness of changes in the environment and climate has grown rapidly, and there is a need to engage citizens in gathering relevant scientific information to monitor environmental changes due to recognition that citizens are a potential source of critical information. The apparent colour of natural waters is one aspect of our aquatic environment that is easy to detect and an essential complementary optical water quality indicator. Here we present the results and explore the utility of the Forel-Ule colour index (FUI) scale as a proxy for different properties of natural waters. A FUI scale is used to distinguish the apparent colours of different natural surface water masses. Correlation analysis was completed in an effort to determine the constituents of natural waters related to FUI. Strong correlations with turbidity, Secchi-disk depth, and coloured dissolved organic material suggest the FUI is a good indicator of changes related to other constituents of water. The increase in the number of tools capable of determining the FUI colours, (i) ocean colour remote sensing products; (ii) a handheld scale; and (iii) a mobile device app, make it a versatile relative measure of water quality. It has the potential to provide higher spatial and temporal resolution of data for a modernized classification of optical water quality. This FUI colour system has been favoured by several scientists in the last century because it is affordable and easy to use and provides indicative information about the colour of water and the water constituents producing that colour. It is therefore within the scope of a growing interest in the application and usefulness of basic measurement methodologies with the potential to provide timely benchmark information about the environment to the public, scientists and policymakers. Full article
Show Figures

Graphical abstract

Back to TopTop