Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = El Cachucho

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3550 KiB  
Article
Deep Learning Based Characterization of Cold-Water Coral Habitat at Central Cantabrian Natura 2000 Sites Using YOLOv8
by Alberto Gayá-Vilar, Alberto Abad-Uribarren, Augusto Rodríguez-Basalo, Pilar Ríos, Javier Cristobo and Elena Prado
J. Mar. Sci. Eng. 2024, 12(9), 1617; https://doi.org/10.3390/jmse12091617 - 11 Sep 2024
Viewed by 511
Abstract
Cold-water coral (CWC) reefs, such as those formed by Desmophyllum pertusum and Madrepora oculata, are vital yet vulnerable marine ecosystems (VMEs). The need for accurate and efficient monitoring of these habitats has driven the exploration of innovative approaches. This study presents a [...] Read more.
Cold-water coral (CWC) reefs, such as those formed by Desmophyllum pertusum and Madrepora oculata, are vital yet vulnerable marine ecosystems (VMEs). The need for accurate and efficient monitoring of these habitats has driven the exploration of innovative approaches. This study presents a novel application of the YOLOv8l-seg deep learning model for the automated detection and segmentation of these key CWC species in underwater imagery. The model was trained and validated on images collected at two Natura 2000 sites in the Cantabrian Sea: the Avilés Canyon System (ACS) and El Cachucho Seamount (CSM). Results demonstrate the model’s high accuracy in identifying and delineating individual coral colonies, enabling the assessment of coral cover and spatial distribution. The study revealed significant variability in coral cover between and within the study areas, highlighting the patchy nature of CWC habitats. Three distinct coral community groups were identified based on percentage coverage composition and abundance, with the highest coral cover group being located exclusively in the La Gaviera canyon head within the ACS. This research underscores the potential of deep learning models for efficient and accurate monitoring of VMEs, facilitating the acquisition of high-resolution data essential for understanding CWC distribution, abundance, and community structure, and ultimately contributing to the development of effective conservation strategies. Full article
(This article belongs to the Special Issue Application of Deep Learning in Underwater Image Processing)
Show Figures

Figure 1

Back to TopTop